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Abstract: In this paper, we investigate the problem of classifying feature vectors with mutually
independent but non-identically distributed elements that take values from a finite alphabet set. First,
we show the importance of this problem. Next, we propose a classifier and derive an analytical upper
bound on its error probability. We show that the error probability moves to zero as the length of the
feature vectors grows, even when there is only one training feature vector per label available. Thereby,
we show that for this important problem at least one asymptotically optimal classifier exists. Finally,
we provide numerical examples where we show that the performance of the proposed classifier
outperforms conventional classification algorithms when the number of training data is small and
the length of the feature vectors is sufficiently high.

Keywords: supervised classification; independent and non-identically distributed features; analytical
error probability

1. Introduction
1.1. Background

Supervised classification is a machine learning technique that maps an input feature
vector to an output label based on a set of correctly labeled training data. There is no single
learning algorithm that works best on all supervised learning problems, as shown by the no
free lunch theorem in [1]. As a result, there are many algorithms proposed in the literature
whose performance depends on the underlying problem and the amount of training data
available. The most widely used algorithms in the literature are decision trees [2,3], Support
Vector Machines (SVM) [4,5], Rule-Based Systems [6], naive Bayes classifiers [7], k-nearest
neighbors (KNN) [8], logistic regressions, and neural networks [9,10].

1.2. Motivation

In the following, we discuss the motivation for this work.

1.2.1. Lack of Tight Upper Bounds on the Performance of Classifiers

In general, there are no tight upper bounds on the performance of the classifiers
used in practice. Many of the previous works only provide experimental performance
results. However, this approach has drawbacks. For example, one has to rely on the
trial-and-error approach in order to develop a good classifier for a given problem, which
impacts the reliability. Next, the algorithms whose performance has been verified only
experimentally may work for a given problem, but may fail to work when applied to a
similar problem. Finally, experimental results do not provide intuition into the underlying
problem, whereas the analytical results provide the understanding of the underlying
problem and the corresponding solutions.

Motivated by this, in the paper, we aim to investigate classifiers with analytical upper
bounds on their performance.
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1.2.2. Independent and Non-Identically Distributed Features

In general, we can categorize the statistical properties of the feature vectors, which are
the input to the classifier, into three types. To this end, let Yn(X) =

[
Y1(X), Y2(X), . . . , Yn(X)

]
denote the input feature vector to the supervised classifier, where n is the length of the
feature vector and X is the label to which the feature vector Yn(X) belongs. Then, we can
distinguish the following three types of feature vectors depending on the statistics of the
elements in the feature vector Yn(X).

The first type of feature vector is when the elements of Yn(X) are independent and
identically distributed (i.i.d.). This is the simplest features model, but also the least ap-
plicable in practice. This model is identical to hypothesis testing, which has been well
investigated in the literature [11–13]. As a result, tight upper bounds on the performance of
supervised learning algorithms for this type of feature vector are available in the hypothesis
testing literature. For instance, the authors in [11] showed that the posterior entropy and
the maximum a posterior error probability decay to zero with the length of the feature
vector at the identical exponential rate, where the maximum achievable exponent is the
minimum Chernoff information. In [12], the authors determine the requirements for the
length of the vector Yn(X) and the number of labels m in order to achieve vanishing
exponential error probability in testing m hypothesis that minimizes the rejection zone.
In [13], the authors provide an upper bound and a lower-bound on the error probability of
Bayesian m-ary hypothesis testing in terms of conditional entropy.

The second type of feature vectors is when the elements of Yn(X) are mutually
dependent and non-identically distributed (d.non-i.d.). This type of features model is
the most general model and the most applicable in practice. However, it is also the
most difficult to tackle analytically. As a result, supervised learning algorithms proposed
for this features model lack analytical tight upper bounds on their performance [14–23].
This is because there are not any frameworks that produce closed-form results when
deriving statistics of vectors with d.non-i.d. elements when the underlying distributions
are unknown. Then how can we investigate analytically classifiers for practical scenarios
when the feature vectors have d.non-i.d. elements? A possible approach leads us to the
third type of feature vectors, explained in the following.

The third type of feature vectors is when the elements of Yn(X) are mutually inde-
pendent but non-identically distributed (i.non-i.d.). This features model is much simpler
than the d.non-i.d. features model and, more importantly, it is analytically tractable, as we
show in this paper. Furthermore, this features model is applicable in practice. Specifically,
there exists a class of algorithms, known as Independent Component Analysis (ICA), that
transform vectors with d.non-i.d. elements into vectors with i.non-i.d. elements with a
zero or a negligible loss of information [24–28]. The origins of ICA can be traced back to
Barlow [29], who argued that a good representation of binary data can be achieved by an
invertible transformation that transform vectors with d.non-i.d. elements into vectors with
i.non-i.d. elements. Finding such a transformation with no prior information about the dis-
tribution of the data has been considered an open problem until recently [28]. Specifically,
the authors in [28] show that this hard problem can be accurately solved with a branch
and bound search tree algorithm, or tightly approximated with a series of linear problems.
Thereby, the authors in [28] provide the first efficient set of solutions to Barlow’s problem.
So far, the complexity of the fastest such algorithm is O

(
n× 2n) [28]. Nevertheless, since

there exist such invertible transformations (i.e., no loss of information) which can transform
vectors with d.non-i.d. elements into vectors with i.non-i.d. elements, we can tackle the
features model comprised of d.non-i.d. elements by first transforming it (without loss of
information) into the features model comprised of i.non-i.d. elements and then tackling the
i.non-i.d. features model.

Motivated by this, in this paper, we investigate supervised classification of feature
vectors with i.non-i.d. elements.
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1.2.3. Small Training Set

The main factor that impacts the accuracy of supervised classification is the amount
of training data. In fact, most supervised algorithms are able to learn only if there is
a very large set of training data available [30]. The main reason for this is the curse of
dimensionality [31,32], which states that “the higher the dimensionality of the feature
vectors, the more training data are needed for the supervised classifier” [33]. For example,
supervised classification methods such as random forest [34,35] and KNN [36] suffer from
the curse of dimensionality. However, having large training data sets is not always possible
in practice. As a result, designing a supervised classification algorithm that exhibits good
performance even when the training data set is extremely small is important.

Motivated by this, in this paper, we investigate supervised classifiers for the case
when t training feature vectors per label are available, where t = 1, 2, ...

1.3. Contributions

In this paper, we propose an algorithm for supervised classification of feature vectors
with i.non-i.d. elements when the number of training feature vectors per label is t, where
t = 1, 2, ... Next, we derive an upper bound on the error probability of the proposed
classifier for uniformly distributed labels and prove that the error probability exponentially
decays to zero when the length of the feature vector, n, grows, even when only one training
vector per label is available, i.e., when t = 1. Hence, the proposed classification algorithm
provides an asymptotically optimal performance even when the number of training vectors
per label is extremely small. We compare the performance of the proposed classifier with
the naive Bayes classifier and to the KNN algorithm. Our numerical results show that
the proposed classifier significantly outperforms the naive Bayes classifier and the KNN
algorithm when the number of training feature vectors per label is small and the length of
the feature vectors n is sufficiently high.

The proposed algorithm is a form of the nearest neighbor classification algorithm,
where the nearest neighbor is searched in the domain of empirical distributions. As a
result, we refer to the algorithm as the nearest empirical distribution. The nearest empirical
distribution algorithm is not new and, to the best of our knowledge, it was first proposed
in [37] for the case when the elements of Yn(X) are i.i.d., i.e., for the equivalent problem of
hypothesis testing. However, in this paper, we propose the nearest empirical distribution
algorithm for the case when the elements of Yn(X) are i.non-i.d., which is much more
complex than the problem of hypothesis testing where the elements of Yn(X) are i.i.d.

To the best of our knowledge, this is the first paper that investigates the important
problem of classifying feature vectors with i.non-i.d. elements and provides an upper
bound on its error probability. The novelty of this paper is not with the classifier itself,
but rather in showing the importance of the problem of classifying feature vectors with
i.non-i.d elements and in showing analytically that at least one classifier with an asymptoti-
cally optimal error probability exists when at least one training feature vectors per label
is available.

The remainder of this paper is structured as follows. In Section 2, we formulate the
considered classification problem. In Section 3, we provide our classifier and derive an
upper bound on its error probability. In Section 4, we provide numerical examples of the
performance on the proposed classifier. Finally, Section 5 concludes the paper.

2. Problem Formulation

The machine learning model is comprised of a label X, a feature vector Yn(X) =[
Y1(X), Y2(X), . . . , Yn(X)

]
of length n mapped to the label X, and a learned label X̂,

as shown in Figure 1. In this paper, we adopt the information-theoretic style of nota-
tions and thereby random variables are denoted by capital letters and their realizations are
denoted with small letters. The feature vector Yn(X) is the input to the machine learning
algorithm whose aim is to detect the label X from the observed feature vector Yn(X).
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The performance of the machine learning algorithm is measured by the error probability
Pe = Pr

{
X 6= X̂

}
.

Figure 1. A typical structural modelling of the classification learning problem.

We adopt the modeling in [38–40] and represent the dependency between the label X
and the feature vector Yn(X) via a joint probability distribution pX,Yn(x, yn). Now, in order
to gain a better understanding of the problem, we include the joint probability distribution
pX,Yn(x, yn) into the model in Figure 1. To this end, since pX,Yn(x, yn) = pYn |X(yn|x)pX(x)
holds, instead of pX,Yn(x, yn), we can include the conditional probability distribution
pYn |X(yn|x) and the probability distribution pX(x) into the model in Figure 1, and thereby
obtain the model in Figure 2.

Figure 2. An alternative modeling of the classification learning problem.

Now, the classification learning model in Figure 2 is a system comprised of a label
generating source X according to the distribution pX (x), a feature vector generator mod-
elled by the conditional probability distribution pYn |X (y

n|x), a feature vector Yn, a classifier
that aims to detect X from the observed feature vector Yn, and the detected label X̂. Note
that the system model in Figure 2 can be seen equivalently as a communication system
comprised of a source X, a channel with input X and output Yn, and a decoder (i.e., de-
tector) that aims to detect X from Yn. The notation used in this paper, letter X for labels
and letter Y for features, is based on the notation used in information theory for modelling
communication systems. In the classification model shown in Figure 2, we assume that
the label X can take values from the set X , according to pX (x) = 1/|X |, where | · | denotes
the cardinality of a set. Next, we assume that the i-th element of the feature vector Yn,
Yi, for i = 1, 2, . . . , n, takes values from the set Y =

{
y1, y2, . . . , y|Y|

}
, according to the

conditional probability distribution pYi |X
(yi|x).

Moreover, we assume that the elements of the feature vector Yn are i.non-i.d. As a
result, the feature vector Yn takes values from the set Yn according to the conditional
probability distribution pYn |X (y

n|x) given by

pYn |X (y
n|x) = pY1,Y2,...,Yn |X

(y1, y2, . . . , yn|x)
(a)
=

n

∏
i=1

pYi |X
(yi|x)

(b)
=

n

∏
i=1

pi (yi|x), (1)

where (a) comes from the fact that elements in the feature vector Yn are mutually indepen-
dent and (b) is for the sake of notational simplicity, where pi is used instead of pYi |X

. As a
result of (1), the considered classification model in Figure 2 can be represented equivalently
as in Figure 3.
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Figure 3. An alternative modelling of the classification learning problem when the elements of Yn(X)

are mutually independent but non-identically distributed (i.non-i.d.).

Next, we assume that pi (yi|x), ∀i, and thereby pYn |X (y
n|x) are unknown to the classi-

fier. Instead, the classifier knows X , Y , and for each xi ∈ X , where i = 1, 2, . . . , |X |, it has
access to a finite set of t correctly labelled input–output pairs (xi, ŷn

i1
), (xi, ŷn

i2
), . . . ,

(xi, ŷn
it), denoted by Ti, referred to as the training set for label xi.
Finally, we assume that the following holds

n

∑
l=1

pl(y|xi) 6=
n

∑
l=1

pl(y|xj), for y ∈ Y and i 6= j. (2)

The condition in (2) means that the distribution of the feature vectors Yn(X) for label
X = i is not a perturbation of distribution of the feature vectors Yn(X) for label X = j. As
a result, the proposed classifier only applies to the subset of data vectors with i.non-i.d.
elements that satisfy (2).

For the classification system model defined above and illustrated in Figure 3, we
wish to propose a classifier that exhibits an asymptotically optimal error probability Pe =
Pr
{

X 6= X̂
}

with respect to the length of Yn, n, for any t ≥ 1, i.e., for any t ≥ 1, Pe → 0 as
n→ ∞. Moreover, we wish to obtain an analytical upper bound on the error probability of
the proposed classifier for a given t and n.

3. The Proposed Classifier and Its Performance

In this section, we propose our classifier, derive an analytical upper bound on its
error probability, and prove that the classifier exhibits an asymptotically optimal perfor-
mance when the length of the feature vector Yn, n, satisfies n→ ∞. This is conducted in
the following.

For a given vector vn = (v1, v2, . . . , vn), let the Minkowski distance r be defined as

∥∥v
∥∥

r =

( n

∑
i=1

vr
i

)(1/r)

. (3)

Moreover, for a given feature vector yk = (y1, y2, , . . . , yk), let I [yk = y] be a function
defined as

I [yk = y] =
k

∑
i=1
Z [yi = y], (4)

where Z [yi = y] is an indicator function assuming the value 1 if yi = y and 0 otherwise.
Hence, I [yk = y] counts the number of elements in Yk that have the value y.
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3.1. The Proposed Classifier

Let ŷnt
i be a vector obtained by concatenating all training feature vectors for the input

label xi as

ŷnt
i =

(
ŷn

i1 , ŷn
i2 , . . . , ŷn

it

)
. (5)

Let Pŷnt
i

be the empirical probability distribution of the concatenated training feature

vector for label xi, ŷnt
i , given by

Pŷnt
i
=

[
I
[
ŷnt

i = y1
]

nt
,
I
[
ŷnt

i = y2
]

nt
, . . . ,

I
[
ŷnt

i = y|Y|
]

nt

]
. (6)

Let yn be the observed feature vector at the classifier whose label it wants to detect
and let Pyn denote the empirical probability distribution of yn, given by

Pyn =

[
I
[
yn = y1

]
n

,
I
[
yn = y2

]
n

, . . . ,
I
[
yn = y|Y|

]
n

]
. (7)

Using the above notations, we propose the following classifier.

Proposition 1. For the considered system model, we propose a classifier with the following classifi-
cation rule

x̂ = xi, where i = arg min
i

∥∥Pyn − Pŷnt
i

∥∥
r, (8)

where r ≥ 1 and ties are resolved by assigning the label among the ties uniformly at random. (For
example, if

∥∥Pyn − Pŷnt
i

∥∥
r =

∥∥Pyn − Pŷnt
j

∥∥
r holds for, i 6= j, we set x̂ = xi or x̂ = xj uniformly

at random).

As seen from (8), the proposed classifier assigns the label xi if the empirical probability
distribution of the concatenated training feature vector mapped to label xi, Pŷnt

i
is the

closest, in terms of Minkowski distance r, to the empirical probability distribution of the
observed feature vector Pyn . In that sense, the proposed classifier can be considered as the
nearest empirical distribution classifier.

3.2. Upper Bound on the Error Probability

The following theorem establishes an upper bound on the error probability of the
proposed classifier.

Theorem 1. Let P̄j, for j = 1, 2, . . . , |X |, be a vector defined as

P̄j =
[
p̄
(
y1
∣∣xj
)
, p̄
(
y2
∣∣xj
)
, . . . , p̄

(
y|Y|

∣∣xj
)]

, (9)

where p̄(y|xj) is given by

p̄(y|xj) =
1
n

n

∑
k=1

pk (y|xj). (10)

Then, for a given r ≥ 1, the error probability of the proposed classifier is upper bounded by

Pe ≤ 2|Y|e−2nε2
+ 2|Y|e−2nt1/3ε2

, (11)
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where ε is given by

ε = min
i,j

i 6=j

∥∥Pŷnt
i
− P̄j

∥∥
r

(2 + t−1/3)|Y|1/r . (12)

Proof of Theorem 1. Without loss of generality we assume that x1 is the input to pYn |X (y
n|x)

and yn is observed.
Let Aε

k , for 1 ≤ k ≤ |Y|, be a set defined as

Aε
k =

{
yn :

∣∣∣∣I
[
yn = yk

]
n

− p̄(yk|x1)

∣∣∣∣ ≤ ε

}
. (13)

Furthermore, let Bε
k , for 1 ≤ k ≤ |Y|, be a set defined as

Bε
k =

{
ŷnt :

∣∣∣∣I
[
ŷnT = yk

]
nt

− p̄(yk|x1)

∣∣∣∣ ≤ ε
3
√

t

}
. (14)

Let Aε =
|Y|⋂
k=1
Aε

k and Bε =
|Y|⋂
k=1
Bε

k . Now, for any yn ∈ Aε, we have

( |Y|
∑
k=1

∣∣∣∣I [yn = yk]

n
− p̄(yk|x1)

∣∣∣∣r
)1/r

(a)

≤
( |Y|

∑
k=1

εr

)1/r

, (15)

where (a) follows from (13). Moreover, for ŷnt
1 ∈ Bε, we have( |Y|

∑
k=1

∣∣∣∣I [ŷnt
1 = yk]

nt
− p̄(yk|x1)

∣∣∣∣r
)1/r

(a)

≤
( |Y|

∑
k=1

(
ε
3
√

t

)r
)1/r

, (16)

where (a) follows from (14). Next, we have the following upper bound( |Y|
∑
k=1

∣∣∣∣I [yn = yk]

n
−
I [ŷnt

1 = yk]

nt

∣∣∣∣r
)1/r

=

( |Y|
∑
k=1

∣∣∣∣I [yn = yk]

n
− p̄(yk|x1)−

(I [ŷnt
1 = yk]

nt
− p̄(yk|x1)

)∣∣∣∣r
)1/r

(a)

≤
( |Y|

∑
k=1

∣∣∣∣I [yn = yk]

n
− p̄(yk|x1)

∣∣∣∣r
)1/r

+

( |Y|
∑
k=1

∣∣∣∣I [ŷnt
1 = yk]

nt
− p̄(yk|x1)

∣∣∣∣r
)1/r

, (17)

where (a) follows from the Minkowski inequality. Combining (15)–(17), we obtain( |Y|
∑
k=1

∣∣∣∣I [yn = yk]

n
−
I [ŷnt

1 = yk]

nt

∣∣∣∣r
)1/r

≤ |Y|1/rε + |Y|1/r ε
3
√

t
. (18)

Hence, the Minkowski distance between the empirical probability distribution of the
observed vector yn and the empirical probability distribution of the concatenated training
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vector for label x1 is upper bounded by the right hand side of (18). We now derive a lower
bound for ŷnt

i , where i 6= 1. For any xi, such that i 6= 1, we have

( |Y|
∑
k=1

∣∣∣∣I [yn = yk]

n
−
I [ŷnt

i = yk]

nt

∣∣∣∣r
)1/r

+

( |Y|
∑
k=1

εr

)1/r

(a)

≥
( |Y|

∑
k=1

∣∣∣∣I [yn = yk]

n
−
I [ŷnt

i = yk]

nt

∣∣∣∣r
)1/r

+

( |Y|
∑
k=1

∣∣∣∣I [yn = yk]

n
− p̄(yk|x1)

∣∣∣∣r
)1/r

(b)

≥
( |Y|

∑
k=1

∣∣∣∣I [ŷnt
i = yk]

nt
− p̄(yk|x1)

∣∣∣∣r
)1/r

, (19)

where (a) follows from (15) and (b) is again due to the Minkowski inequality. The expres-
sion in (19), can be written equivalently as( |Y|

∑
k=1

∣∣∣∣I [yn = yk]

n
−
I [ŷnt

i = yk]

nt

∣∣∣∣r
)1/r

≥
( |Y|

∑
k=1

∣∣∣∣I [ŷnt
i = yk]

nt
− p̄(yk|x1)

∣∣∣∣r
)1/r

− |Y|1/rε, (20)

where i 6= 1. Now, using the definitions of Pŷnt
i

and P̄1 given by (6) and (9), respectively,

into (20) we can replace the expression in the right-hand side of (20) by
∥∥Pŷnt

i
− P̄1

∥∥
r,

and thereby for any i 6= 1 we have( |Y|
∑
k=1

∣∣∣∣I [yn = yk]

n
−
I [ŷnt

i = yk]

nt

∣∣∣∣r
)1/r

≥
∥∥Pŷnt

i
− P̄1

∥∥
r − |Y|

1/rε. (21)

The expression in (21) represents a lower bound on the Minkowski r distance be-
tween the empirical probability distribution of the observed vector yn and the empirical
probability distribution of the concatenated training vector for any label xi, where i 6= 1.

Using the bounds in (18) and (21), we now relate the left-hand sides of (18) and (21).
As long as the following inequality holds for each i 6= 1,

|Y|1/rε

(
1 +

1
3
√

t

)
< ‖Pŷnt

i
− P̄1

∥∥
r − |Y|

1/rε, (22)

which is equivalent to the following for i 6= 1

ε <

∥∥Pŷnt
i
− P̄1

∥∥
r

(2 + t−1/3)|Y|1/r , (23)

( |Y|
∑
k=1

∣∣∣∣I [yn = yk]

n
−
I [ŷnt

1 = yk]

nt

∣∣∣∣r
)1/r

(a)

≤ |Y|1/rε

(
1 +

1
3
√

t

)
(b)

< ‖Pŷnt
i
− P̄1

∥∥
r − |Y|

1/rε

(c)

≤
( |Y|

∑
k=1

∣∣∣∣I [yn = yk]

n
−
I [ŷnt

i = yk]

nt

∣∣∣∣r
)1/r

, (24)
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where (a), (b), and (c) follow from (18), (22), and (21), respectively. Thereby, from (24), we
have the following for i 6= 1( |Y|

∑
k=1

∣∣∣∣I [yn = yk]

n
−
I [ŷnT

1 = yk]

nT

∣∣∣∣r
)1/r

<

( |Y|
∑
k=1

∣∣∣∣I [yn = yk]

n
−
I [ŷnT

i = yk]

nT

∣∣∣∣r
)1/r

. (25)

Note that the right- and left-hand sides of (25) can be replaced by the Minkowski
distance of the vectors

v1 =

[
I
[
yn = y1

]
n

−
I
[
ŷnt

1 = y1
]

nt
, . . . ,

I
[
yn = y|Y|

]
n

−
I
[
ŷnt

1 = y|Y|
]

nt

]
, (26)

and

v2 =

[
I
[
yn = y1

]
n

−
I
[
ŷnt

i = y1
]

nt
, . . . ,

I
[
yn = y|Y|

]
n

−
I
[
ŷnt

i = y|Y|
]

nt

]
, (27)

respectively. Now, (26) and (27) can be replaced by Pyn − Pŷnt
1

and Pyn − Pŷnt
i

, respectively,
by the definitions of Pyn and Pŷnt

i
given by (7) and (6), respectively. Therefore, (25) can be

written equivalently as ∥∥Pyn − Pŷnt
1

∥∥
r <

∥∥Pyn − Pŷnt
i

∥∥
r. (28)

Now, let us highlight what we have obtained. We obtained that there is an ε for which
if (23) holds for i 6= 1, and for that ε there are sets Aε and Bε for which yn ∈ Aε and
ŷnt

1 ∈ Bε then (28) holds for i 6= 1, and thereby our classifier will detect that x1 is the correct
label. Using this, we can upper bound the error probability as

Pe = 1− Pr
{

x̂1 = x1
}

≤ 1− Pr
{(

yn ∈ Aε
)
∩
(
ŷnt

1 ∈ Bε
)∣∣ε ∈ S}, (29)

where S is a set defined as

S =

{
ε : ε ≤ min

i
i 6=1

∥∥Pŷnt
i
− P̄1

∥∥
r

(2 + t−1/3)|Y|1/r

}
. (30)

In the following, we derive the expression in (29). The right-hand side of (29) can be
upper bounded as

1− Pr
{(

yn ∈ Aε
)
∩
(
ŷnt

1 ∈ Bε
)∣∣ε ∈ S} = Pr

{(
yn /∈ Aε

)
∪
(
ŷnt

1 /∈ Bε
)∣∣ε ∈ S}

(a)

≤ Pr
{

yn /∈ Aε|ε ∈ S
}
+ Pr

{
ŷnt

1 /∈ Bε
∣∣ε ∈ S}, (31)

where (a) follows from Boole’s inequality. Now, note that we have the following upper
bound for the first expression in the right-hand side of (31)
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Pr
{

yn /∈ Aε|ε ∈ S
}
= Pr

{
yn /∈

|Y|⋂
k=1

Aε
k

∣∣∣∣ε ∈ S
}

= Pr

{
yn ∈

|Y|⋃
k=1

Aε
k

∣∣∣∣ε ∈ S
}

(a)

≤
|Y|

∑
k=1

Pr
{

yn ∈ Aε
k |ε ∈ S

}
=
|Y|

∑
k=1

Pr
{∣∣∣∣I [yn = yk]

n
− p̄(yk|x1)

∣∣∣∣ > ε

∣∣∣∣ε ∈ S}

=
|Y|

∑
k=1

Pr

{∣∣∣∣∣ n

∑
j=1

Z [yj = yk]

n
− p̄(yk|x1)

∣∣∣∣∣ > ε

∣∣∣∣ε ∈ S
}

, (32)

where Aε
k is the complement of Aε

k and (a) follows from Boole’s inequality. Note that
Z [y1 = yk],Z [y2 = yk], . . . ,Z [yn = yk] in (32) are n independent Bernoulli random
variables with probabilities of success p1(yk|x1), p2(yk|x1), . . . , pn(yk|x1), respectively. Let
W [yk] be a binomial random variable with parameters

(
n, p̄(yk|x1)

)
. We proceed the proof

by introducing the following well-known Hoefdding’s Theorem from [41].

Theorem 2 (Hoeffding [41]). Assume that Z1, Z2, . . . , and Zn are n independent Bernoulli
random variables with probabilities of success p1 , p2 , . . . , and pn , respectively. Next, let Z be
defined as Z = Z1 + Z2 + . . . + Zn and, let p̄ be defined as p̄ =

(
p1 + p2 + . . . + pn

)
/n. Let

W be a binomial random variable with parameters (n, p̄). Then, for a given a and b, where
0 ≤ a ≤ np̄ ≤ b ≤ n holds, we have

Pr
{

a ≤W ≤ b
}
≤ Pr

{
a ≤ Z ≤ b

}
. (33)

In other words, the probability distribution of W is more dispersed around its mean np̄ than is the
probability distribution of Z. Except in the trivial case when a = b = 0, the bound in (33) holds
with equality if and only if p1 = . . . = pn = p̄.

Proof of Theorem 2. Please refer to [41].

Setting a = n(p̄− δ) and b = n(p̄ + δ) in (33), we obtain

Pr
{

n(p̄− δ) ≤W ≤ n(p̄ + δ)
}
≤ Pr

{
n(p̄− δ) ≤ Z ≤ n(p̄ + δ)

}
. (34)

Using (34), we have the following upper bound

Pr
{∣∣∣∣Zn − p̄

∣∣∣∣ > δ

}
= 1− Pr

{
n(p̄− δ) ≤ Z ≤ n(p̄ + δ)

}
(a)

≤ 1− Pr
{

n(p̄− δ) ≤W ≤ n(p̄ + δ)
}

= Pr
{∣∣∣∣Wn − p̄

∣∣∣∣ > δ

}
, (35)

where (a) follows from (34).
We now turn to the proof of Theorem 1. According to Theorem 2, the probability

distribution ofW [yk] is more dispersed around its mean np̄(yk|x1) than is the probability
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distribution of ∑1≤j≤n Z [yj = yk]. Therefore, we can upper bound the probability in the
last line of (32) as

Pr

{∣∣∣∣∣ n

∑
j=1

Z [yj = yk]

n
− p̄(yk|x1)

∣∣∣∣∣ > ε

∣∣∣∣ε ∈ S
}

(a)

≤ Pr
{∣∣∣∣W [yk]

n
− p̄(yk|x1)

∣∣∣∣ > ε

∣∣∣∣ε ∈ S}, (36)

where ε ∈ S is defined in (30) and (a) follows from (35). Now, let us introduce another
well-known Hoeffding’s Theorem from [42].

Theorem 3 (Hoeffding’s inequality [42]). Let W1, W2, . . . , Wn be n independent random vari-
ables such that for each 1 ≤ i ≤ n, we have Pr

{
Wi ∈ [ai, bi]

}
= 1. Then for Sn, defined as

Sn =
n
∑

i=1
Wi, we have

Pr
{

Sn −E
[
Sn
]
≥ δ

}
≤ exp

(
− 2δ2

∑n
i=1(bi − ai)2

)
, (37)

where E
[
Sn
]

is the expectation of Sn.

Proof of Theorem 3. Please refer to [42].

Back to (36), by using the result of (37) for ai = 0 and bi = 1 since the binomial random
variableW [yk] can take values 0 or 1, respectively, we have

Pr

{∣∣∣∣∣ n

∑
j=1

Z [yj = yk]

n
− p̄(yk|x1)

∣∣∣∣∣ > ε

∣∣∣∣ε ∈ S
}
≤ 2 exp

(
− 2n2ε2

∑1≤i≤n(1− 0)2

)
≤ 2e−2nε2

, (38)

where ε ∈ S is defined in (30). Inserting (38) into (32), we obtain the following upper bound

Pr
{

yn /∈ Aε|ε ∈ S
}
≤ 2|Y|e−2nε2

. (39)

Similarly, we have the following result for the second expression in the right-hand
side of (31)

Pr
{

ŷnt
1 /∈ Bε

∣∣ε ∈ S} = Pr

{
ŷnt

1 /∈
|Y|⋂
k=1

Bε
k

∣∣∣∣ε ∈ S
}

= Pr

{
ŷnt

1 ∈
|Y|⋃
k=1

Bε
k

∣∣∣∣ε ∈ S
}

(a)

≤
|Y|

∑
k=1

Pr
{

ŷnt
1 ∈ Bε

k |ε ∈ S
}

=
|Y|

∑
k=1

Pr
{∣∣∣∣I [ŷnt

1 = yk]

nt
− p̄(yk|x1)

∣∣∣∣ > ε
3
√

t

∣∣∣∣ε ∈ S}

=
|Y|

∑
k=1

Pr

{∣∣∣∣∣ nt

∑
j=1

Z [yj = yk]

nt
− p̄(yk|x1)

∣∣∣∣∣ > ε
3
√

t

∣∣∣∣ε ∈ S
}

, (40)

where again (a) follows from Boole’s inequality. Note that due to (5), for any integer number
l such that 0 ≤ l ≤ t − 1 the random variables Z [ynl+1 = yk],Z [ynl+2 = yk], . . . , and
Z [ynl+n = yk] in (40) are n independent Bernoulli random variables with the probabilities
of success p1(yk|x1), p2(yk|x1), . . . , and pn(yk|x1), respectively

(
ynl+1, ynl+2, . . . , ynl+n are

elements of ŷn
1l+1

)
. In addition, note that
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p̄(yk|x1) =
1
n

n

∑
j=1

pj(yk|x1)

=
1
nt

(
t−1

∑
l=0

n

∑
j=1

pj(yk|x1)

)
. (41)

Notice that for each 0 ≤ l ≤ t − 1, p1(yk|x1) + p2(yk|x1) + . . . + pn(yk|x1) is the
summation of the probabilities of success of the random variablesZ [ynl+1 = yk],Z [ynl+2 =
yk], . . . , and Z [ynl+n = yk]. Thereby, the last expression on the right-hand side of (41) is
the average probability of success of random variables Z [yj = yk] for 1 ≤ j ≤ nt. Now,
let W [yk] be a binomial random variable with parameters

(
nt, p̄(yk|x1)

)
. Once again,

according to Theorem 2, the probability distribution ofW [yk] is more dispersed around
its mean ntp̄(yk|x1)) than is the probability distribution of ∑1≤j≤nt Z [yj = yk]. Therefore,
the probability in the last line of (40) can be upper bounded as

Pr

{∣∣∣∣∣ nt

∑
j=1

Z [yj = yk]

nt
− p̄(yk|x1)

∣∣∣∣∣ > ε
3
√

t

∣∣∣∣ε ∈ S
}

(a)

≤ Pr
{∣∣∣∣W [yk]

nt
− p̄(yk|x1)

∣∣∣∣ > ε
3
√

t

∣∣∣∣ε ∈ S}
(b)

≤ 2 exp

(
−

2(nt)2(t−1/3ε
)2

∑1≤i≤nt(1− 0)2

)

≤ 2e−2nt
(

t−2/3ε2
)

= 2e−2nt1/3ε2
, (42)

where ε ∈ S , defined in (30), (a) follows from (35) (in which n is replaced by nt), and (b) is
the result of (37) for ai = 0 and bi = 1 since the binomial random variableW [yk] can take
values 0 or 1, respectively. Inserting (42) into (40), we have the following upper bound

Pr
{

ŷnt
1 /∈ Bε

∣∣ε ∈ S} ≤ 2|Y|e−2nt1/3ε2
. (43)

Inserting (39) and (43) into (31), and then inserting (31) into (29), we obtain the follow-
ing upper bound for the error probability

Pe ≤ 2|Y|e−2nε2
+ 2|Y|e−2nt1/3ε2

, (44)

where

ε = min
i,j

i 6=j

∥∥Pŷnt
i
− P̄j

∥∥
r

(2 + t−1/3)|Y|1/r , (45)

which is the optimal value of ε that exhibits the tightest upper bound for the error proba-
bility Pe given by (44). This completes the proof of Theorem 1.

The following corollary provides a simplified upper bound on the error probability
when t→ ∞.

Corollary 1. When the number of training vectors per label reaches infinity, i.e., when t → ∞,
which is equivalently to the case when the probability distribution p(yn|x) is known at the classifier,
the error probability of the proposed classifier is upper bounded as

Pe ≤ 2|Y|e−2nε2
, (46)
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where ε is given by

ε = min
i,j

i 6=j

∥∥P̄i − P̄j
∥∥

r
2|Y|1/r . (47)

Proof. The proof is straightforward.

As can be seen from (8) and (11), the performance of the proposed classifier depends
on r. We cannot derive the optimal value of r that minimizes the error probability since we
do not have the exact expression of the error probability, we only have its upper bound.
On the other hand, in practice, the optimal r with respect to the upper bound on the error
probability also cannot be derived since the upper bound depends on P̄j, which would be
unknown in practice due to pYn |X(yn|x) being unknown. As a result, for our numerical
examples, we consider the Euclidean distance (r = 2), which is one of the most widely
used distance metrics in practice.

The following corollary establishes the asymptotic optimality of the proposed classifier
with respect to n.

Corollary 2. The proposed classifier has an error probability that satisfies Pe → 0 as n → ∞
if |Y| ≤ O(nm), m is fixed, and r > 2m. Here, nm indicates the dimension of our space,
i.e., maximum number of alphabets each element in the feature vector yn can take. Thereby,
the proposed classifier is asymptotically optimal .

Proof. For the proof, please see Appendix A.

4. Simulation Results

In this section, we provide simulation results of the performance of the proposed
classifier for r = 2 and compare it to benchmark schemes. The benchmark schemes that we
adopt for comparison are the naive Bayes classifier and the KNN algorithm. We cannot
adopt a classifier based on a neural network since neural networks require a very large
training set, which we assume is not available. For the naive Bayes classifier, the probability
distribution pYn |X (y

n|x) is estimated from the training vectors as follows. Let again ŷnt
i be a

vector obtained by concatenating all training feature vectors for the input label xi as in (5).
Then, the estimated probability distribution of p(yj = y|xi), denoted by p̂(yj = y|xi), is
found as

p̂(yj = y|xi) =
I
[
ŷnt

i = y
]

nt
, (48)

and the naive Bayes classifier decides according to

x̂ = arg max
xi

n

∏
k=1

p̂(yk|xi). (49)

The main problem of the naive Bayes classifier occurs when an alphabet yj ∈ Y is
not present in the training feature vectors. In that case, p̂(yj|xi) in (48) is p̂(yj|xi) = 0,
∀xi ∈ X and, as a result, the right hand side of (49) is zero since at least one of the elements
in the product in (49) is zero. In this case, the naive Bayes classifier fails to provide an
accurate classification of the labels. In what follows, we see that this issue of the naive Bayes
classifier appears frequently when we have a small number of training feature vectors.
On the other hand, the KNN classifier works as follows. For the observed feature vector yn,
the KNN classifier looks for the k nearest feature vectors to yn, among all training feature
vectors ŷn

rs , for all 1 ≤ r ≤ |X | and 1 ≤ s ≤ T. Then by considering a set of K input–output
pairs (xk, ŷn

kl
), for k ∈ {1, 2, . . . , |X |} and l ∈ {1, 2, . . . , |T|}, the KNN classifier decides a

label which is the most frequent among xk-s. The optimum value of k for t = 1 is k = 1.
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In the following, we provide numerical examples where we illustrate the performance
of the proposed classifier when pYn |X (y

n|x) is artificially generated.

4.1. The I.I.D. Case with One Training Sample per Label

In the following examples, we assume that the classifiers have access to only one
training feature vector for each label, the elements of the feature vectors are generated i.i.d.,
and the alphabet size of the feature vector, |Y|, is fixed.

In Figures 4 and 5, we compare the error probability of the proposed classifier with
the naive Bayes classifier and the KNN algorithm for the case when |Y| = 6 and |Y| = 20,
respectively. In both examples, we have two different labels, i.e., |X | = 2. As a result, we
have two different probability distributions pYn |X1

(yn|x1) and pYn |X2
(yn|x2). The probability

distributions pYn |X1
(yn|x1) and pYn |X2

(yn|x2) are randomly generated as follows. We first
generate two random vectors of length 6 and length 20 for Figures 4 and 5, respectively,
where the elements of these vectors are drawn independently from a uniform probability
distribution. Then we normalize these vectors such that the sum of their elements is equal
to one. These two normalized randomly generated vectors then represent the two prob-
ability distributions pYi |X1

(yi|x1) = pY|X1
(y|x1) and pYi |X2

(yi|x2) = pY|X2
(y|x2), ∀i. Then,

pYn |Xk
(yn|xk) is obtained as pYn |Xk

(yn|xk) = ∏n
i=1 pYi |Xk

(yi|xk), for k = 1, 2. The simulation
is carried out as follows. For each n, we generate one training vector for each label, using
the aforementioned probability distributions. Then, as test samples, we generate 1000
feature vectors for each label and pass these feature vectors through our proposed classifier,
the naive Bayes classifier, and the KNN algorithm, and compute the errors. The length of
the feature vector n is varied from n = 1 to n = 100. We repeat the simulation 5000 times
and then plot the error probability. Figures 4 and 5 show that the proposed classifier outper-
forms both the naive Bayes classification and KNN. The main reason for this performance
gain is because when only one training vector per label is available, the proposed classifier
is more resilient to errors than the naive Bayes classifier, whereas the KNN algorithm has
very poor performance because of the “curse of dimensionality”. Specifically, the naive
Bayes classifier cannot perform an accurate classification for small n compared to |Y| since
the chance that an alphabet will not be present in one of the training feature vectors is
close to 1. On the other hand, the KNN algorithm cannot perform an accurate classification
for large n since the dimension of the input feature vector becomes much larger than the
training data and the “curse of dimensionality” occurs.

Figure 4. Comparison in error probability between the naive Bayes classifier, KNN, and the pro-
posed classifier.
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Figure 5. Comparison in error probability between the naive Bayes classifier, KNN, and the pro-
posed classifier.

In Figure 6, we compare the performance of the proposed classifier for different values
of r when |Y| = 6 with the derived upper bounds. As can be seen, for this example,
the derived theoretical upper bounds have similar slope as the exact error probabilities.
Moreover, we can see that for this example, the optimal r is r = 1. However, this is not
always the case and it depends on pYn |Xk

(yn|xk), |Y|, and |X |.

Figure 6. Comparison in error probability of the proposed classifier for different values of r when
|Y| = 6. The related theoretical upper bounds for each value of r are also given.

4.2. The Overlapping I.Non-I.D. Case with One Training Sample per Label

In this example, we consider the i.non-i.d. case where the probability distributions
pi (yi|xk) are overlapping for all i, as shown in Figure 7. The small orthogonal lines on the x-
axis in Figure 7 represent alphabets, i.e., the elements in Y , and the probability of occurrence
of an alphabet yi is equal to the intersection between the corresponding orthogonal line
to the represented probability distribution pi (yi|xk) for k = 1, 2. By “overlapping”, we
mean the following. Let Yv and Yu denote the set of outputs generated by pv(yv|xk) and
pu(yu|xk), respectively. If for any v and u, Yv ∩ Yu 6= ∅ holds, we say that the output
alphabets are overlapping.
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Alphabets

pn(yn|x1)pn−1(yn−1|x1)

pi (yi|x1) p2(y2|x1)
p1(y1|x1)

Alphabets

p1(y1|x2) p2(y2|x2)
pi (yi|x2) pn−1(yn−1|x2)

pn(yn|x2)

Figure 7. Illustration of the probability distributions pi (yi|x1) (upper figure) and pi (yi|x2) (lower
figure), for i = 1, 2, . . . , n.

To demonstrate the performance of our proposed classifier in the overlapping case,
we assume that we have two different labels, X = {x1, x2}, where the corresponding
conditional probability distributions pi (yi|x1) and pi (yi|x2) are obtained as follows. For a
given n, let Y =

{
− n,−n + 1, . . . , 0, . . . , n− 1, n

}
be the set of all alphabets. Note that the

size of Y grows with n. Moreover, let ui and vi (1 ≤ i ≤ n) be vectors of length 2n + 1,
given by

ui =

[
0, . . . , 0,

1
i(i + 1)

,
2

i(i + 1)
, . . . ,

i
i(i + 1)

,
i + 1

i(i + 1)
,

i
i(i + 1)

, . . . ,
1

i(i + 1)
, 0, . . . , 0

]
, (50)

vi =

[
0, . . . , 0,

1
i(i + 1)

,
1

i(i + 1)
, . . . ,

1
i(i + 1)

,
1

i(i + 1)
, 0, . . . , 0

]
. (51)

The number of zeros in each side of the vectors ui and vi is (n− i). To generate a
feature vector from label x1(x2), we generate the vector yn = (y1, y2, . . . , yn), where yk
takes values from the set Y , with a probability distribution pi (yi|x1) = ui

(
1 + 2(n + yi)

)(
pi (yi|x2) = vi

(
1 + 2(n + yi)

))
.

The simulation is carried out as follows. For each n, we generate one training feature
vector for each label. Then, we generate 1000 feature vectors for each label and pass them
through our proposed classifier, the naive Bayes classifier, and the KNN algorithm and
calculate the error probability. We change the length of the feature vector from n = 1 to
n = 100 and repeat the simulation 1000 times and then plot the error probability.

As shown in Figure 8, there is a huge difference between the performance of the two
benchmark classifiers and the proposed classifier. The error probability of the naive Bayes
classifier is almost 0.5 for all shown values of n as it is susceptible to the problem of unseen
alphabets in the training vectors. The error probability of the KNN classifier is also almost
0.5 for n > 20 as it is susceptible to the “curse of dimensionality”. However, the error
probability of our proposed classifier continuously decays as n increases.
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Figure 8. Comparison in error probability between the naive Bayes classifier, KNN, and the proposed
classifier (T = 1).

In Figure 9, we run the same experiments as in Figure 8 but with T = 100, i.e., 100 train-
ing feature vectors per label. As can be seen from Figure 9, the performance of the proposed
classifier is better than the naive Bayes classifier, for n > 15. Since |Y| = 2n + 1, for small
values of n, the naive Bayes classifier has access to many training samples and, thereby,
its performance is very close to the case when the probability distribution pYn |X (y

n|x) is
known, i.e., to the maximum-likelihood classifier, and hence it has the optimal performance.
As n increases, the number of alphabets rises, i.e., |Y| rises, and due to the aforementioned
issue of the naive Bayes classifier with unseen alphabets, our proposed classifier performs
much better classification than the naive Bayes classifier. Furthermore, note that the error
probability of our proposed classifier decays exponentially as n increases which is not the
case with the naive Bayes classifier. Moreover, Figure 9 also shows the theoretical upper
bound on the error probability we derived in (11).

Figure 9. Comparison in error probability between the naive Bayes classifier and the proposed
classifier (T = 100).

4.3. The Non-Overlapping I.Non-I.D. Case with One Training Sample for Each Label

In this example, we consider the i.non-i.d. case where the probability distributions
pj(yj|xi) are non-overlapping for all j as shown in Figure 10, where we defined “overlap-
ping” in Section 4.2. Hence, we test the other extreme in terms of possible distribution of
the elements in the feature vectors Yn.
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To demonstrate the performance of our proposed classifier in the non-overlapping case,
we assume that we have two different labels X = {x1, x2}, the corresponding conditional
probability distributions pi (yi|x1) and pi (yi|x2) are obtained as follows. For a given n,
let Y =

{
1, 2, 3, . . . , (n + 1)2 − 1

}
be the set of all alphabets of the element in the feature

vectors. Note again that the size of Y grows with n. in addition, let ui and vi for (1 ≤ i ≤ n),
be vectors of length (n + 1)2 − 1, given by

ui =

[
0, . . . , 0,

1
i(i + 1)

,
2

i(i + 1)
, . . . ,

i
i(i + 1)

,
i + 1

i(i + 1)
,

i
i(i + 1)

, . . . ,
1

i(i + 1)
, 0, . . . , 0

]
, (52)

vi =

[
0, . . . , 0,

1
i(i + 1)

,
1

i(i + 1)
, . . . ,

1
i(i + 1)

,
1

i(i + 1)
, 0, . . . , 0

]
. (53)

The number of zeros in the left-hand sides of ui and vi is i2 − 1. To generate a feature
vector from the label x1(x2), we generate the vector yn = (y1, y2, . . . , yn), where yk take
values from the set Y , with probability distribution pi (yi|x1) = ui(yi)

(
pi (yi|x2) = vi(yi)

)
.

Alphabets
. . .

p1(y1|x1)
p2(y2|x1)

. . .

pn(yn|x1)

Alphabets
. . .

p1(y1|x2)
p2(y2|x2)

. . .

pn(yn|x2)

Figure 10. Illustration of the probability distributions pi (yi|x1) (upper figure) and pi (yi|x2) (lower
figure), for i = 1, 2, . . . , n.

The simulation is carried out as follows. For each n, we generate one training feature
vector for each label. Then we generate 250 feature vectors for each label and pass it
through our proposed classifier, the naive Bayes classifier and KNN and calculate the error
probabilities. We change the length of the vector from 1 to 80 and repeat the simulation
250 times and then plot the error probability. As shown in Figure 11, there is a huge
difference between the performance of the proposed classifier and the two benchmark
classifiers. The error probability of the naive Bayes classifier is almost 0.5 for all shown
values of n as it is susceptible to the issue with unseen alphabets in the training feature
vector. The error probability of the KNN classifier is almost 0.5 for all shown values of
n > 30 as it becomes susceptible to the “curse of dimensionality”. However, the error
probability of our proposed classifier still decays continuously as n increases.

Note that, in our numerical examples, we compared our algorithm with the benchmark
schemes on two extreme cases of i.non-i.d. vectors, referred to as “overlapping” and “non-
overlapping”. Any other i.non-i.d. vector can be represented as a combination of the
“overlapping” and “non-overlapping” vectors. Since our algorithm works better than the
benchmark schemes for small t on both these cases, it will work better than the benchmark
schemes on any combination between “overlapping” and “non-overlapping” vectors,
i.e., for any other i.non-i.d. vectors.
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Figure 11. Comparison in error probability between the naive Bayes classifier and the proposed
classifier (T = 1).

5. Conclusions

In this paper, we proposed a supervised classification algorithm that assigns labels to
input feature vectors with independent but non-identically distributed elements, a statisti-
cal property found in practice. We proved that the proposed classifier is asymptotically
optimal since the error probability moves to zero as the length of the input feature vectors
grows. We showed that this asymptotic optimality is achievable even when one training
feature vector per label is available. In the numerical examples, we compared the proposed
classifier with the naive Bayes classifier and the KNN algorithm. Our numerical results
show that the proposed classifier outperforms the benchmark classifiers when the number
of training data is small and the length of the input feature vectors is sufficiency large.
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Appendix A. Proof of Corollary 2

The proof is almost identical to the proof of Theorem 1; however, here we derive a
looser upper-bound on the error-probability than that in (11), which is independent of PŷnT

i
.

Without loss of generality we assume that x1 is the input to pYn |X (y
n|x) and yn is

observed at the classifier.
Let Bε

k,l , for 1 ≤ k ≤ |Y| and 1 ≤ l ≤ |X |, be a set defined as

Bε
k,l =

{
ŷnt :

∣∣∣∣I
[
ŷnt = yk

]
nt

− p̄(yk|xl)

∣∣∣∣ ≤ ε
3
√

t

}
. (A1)
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Let Bε
l =

|Y|⋂
k=1
Bε

k,l . For ŷnt
1 ∈ Bε

1, we have

( |Y|
∑
k=1

∣∣∣∣I [ŷnt
1 = yk]

nt
− p̄(yk|x1)

∣∣∣∣r
)1/r

(a)

≤
( |Y|

∑
k=1

(
ε
3
√

t

)r
)1/r

, (A2)

Using the same derivation as (18), for any yn ∈ Aε and for ŷnt
1 ∈ Bε

1, we have:( |Y|
∑
k=1

∣∣∣∣I [yn = yk]

n
−
I [ŷnt

1 = yk]

nT

∣∣∣∣r
)1/r

≤ |Y|1/rε + |Y|1/r ε
3
√

t
. (A3)

On the other hand, the same as the derivation in (21), for each i 6= 1, we have:( |Y|
∑
k=1

∣∣∣∣I [yn = yk]

n
−
I [ŷnt

i = yk]

nt

∣∣∣∣r
)1/r

≥
∥∥Pŷnt

i
− P̄1

∥∥
r − |Y|

1/rε. (A4)

Now, for any ŷnt
i ∈ Bε

i , we have

∥∥Pŷnt
i
− P̄1

∥∥
r +

( |Y|
∑
k=1

(
ε
3
√

t

)r
)1/r

(a)

≥
( |Y|

∑
k=1

∣∣∣∣I [ŷnt
i = yk]

nt
− p̄(yk|x1)

∣∣∣∣r
)1/r

+

( |Y|
∑
k=1

∣∣∣∣I [ŷnt
i = yk]

nt
− p̄(yk|xi)

∣∣∣∣r
)1/r

(b)

≥
( |Y|

∑
k=1

∣∣p̄(yk|x1)− p̄(yk|xi)
∣∣r)1/r

, (A5)

where (a) follows from (A1) and (b) is again due to the Minkowski inequality. The expres-
sion in (A5), can be written equivalently as∥∥Pŷnt

i
− P̄1

∥∥
r ≥

∥∥P̄i − P̄1
∥∥

r − |Y|
1/r ε

3
√

t
. (A6)

where i 6= 1. Using the bounds in (A6) and (A4), for any i 6= 1 we have( |Y|
∑
k=1

∣∣∣∣I [yn = yk]

n
−
I [ŷnt

i = yk]

nt

∣∣∣∣r
)1/r

≥
∥∥P̄i − P̄1

∥∥
r − |Y|

1/rε

(
1 +

1
3
√

t

)
. (A7)

Using the bounds in (A3) and (A7), we now relate the left-hand sides of (A3) and (A7)
as follows. As long as the following inequality holds for each i 6= 1,

|Y|1/rε

(
1 +

1
3
√

T

)
< ‖P̄i − P̄1

∥∥
r − |Y|

1/rε

(
1 +

1
3
√

t

)
, (A8)

which is equivalent to the following for i 6= 1

ε <

∥∥P̄i − P̄1
∥∥

r
2(1 + t−1/3)|Y|1/r , (A9)
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we have the following for i 6= 1( |Y|
∑
k=1

∣∣∣∣I [yn = yk]

n
−
I [ŷnt

1 = yk]

nt

∣∣∣∣r
)1/r

(a)

≤ |Y|1/rε

(
1 +

1
3
√

t

)
(b)

< ‖P̄i − P̄1
∥∥

r − |Y|
1/rε

(
1 +

1
3
√

t

)
(c)

≤
( |Y|

∑
k=1

∣∣∣∣I [yn = yk]

n
−
I [ŷnt

i = yk]

nt

∣∣∣∣r
)1/r

, (A10)

where (a), (b), and (c) follow from (A3), (A8), and (A7), respectively. Thereby, from (A10),
we have the following for i 6= 1( |Y|

∑
k=1

∣∣∣∣I [yn = yk]

n
−
I [ŷnt

1 = yk]

nt

∣∣∣∣r
)1/r

≤
( |Y|

∑
k=1

∣∣∣∣I [yn = yk]

n
−
I [ŷnt

i = yk]

nt

∣∣∣∣r
)1/r

, (A11)

or equivalently as ∥∥Pyn − Pŷnt
1

∥∥
r <

∥∥Pyn − Pŷnt
i

∥∥
r. (A12)

Once again, we obtained that if there is an ε for which (A9) holds for i 6= 1 and for that
ε there are sets Aε and Bε

i for which yn ∈ Aε and ŷnt
j ∈ Bε

l for all 1 ≤ l ≤ |X |, then (A12)
holds for i 6= 1, and thereby our classifier will detect that x1 is the correct label. Using this,
we can upper-bound the error probability as

Pe = 1− Pr
{

x̂1 = x1
}

≤ 1− Pr

{(
yn ∈ Aε

)
∩
( |X |⋂

j=1

ŷnt
l ∈ B

ε
l

)∣∣∣∣ε ∈ S
}

, (A13)

where S is a set defined as

S =

{
ε : ε ≤ min

i
i 6=1

∥∥P̄i − P̄1
∥∥

r
(2 + t−1/3)|Y|1/r

}
. (A14)

The right-hand side of (A13) can be upper-bounded as

1− Pr

{(
yn ∈ Aε

)
∩
( |X |⋂

l=1

ŷnt
l ∈ B

ε
j

)∣∣∣∣ε ∈ S
}

= Pr

{(
yn /∈ Aε

)
∪
( |X |⋃

l=1

ŷnt
l /∈ Bε

l

)∣∣∣∣ε ∈ S
}

(a)

≤ Pr
{

yn /∈ Aε|ε ∈ S
}

+
|X |

∑
l=1

Pr
{

ŷnt
l /∈ Bε

l
∣∣ε ∈ S}, (A15)

Using the same derivation as (39), we have:

Pr
{

yn /∈ Aε|ε ∈ S
}
≤ 2|Y|e−2nε2

. (A16)

Similarly, we have the following result for the second expression in the right-hand
side of (A15), which is the same as the derivation in (43)

Pr
{

ŷnt
l /∈ Bε

l
∣∣ε ∈ S} ≤ 2|Y|e−2nt1/3ε2

. (A17)
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Inserting (A16) and (A17) into (A15), and then inserting (A15) into (A13), we obtain
the following upper-bound for the error probability

Pe ≤ 2|Y|e−2nε2
+ 2|X ||Y|e−2nt1/3ε2

, (A18)

where

ε = min
i,j

i 6=j

∥∥P̄i − P̄j
∥∥

r
2(1 + t−1/3)|Y|1/r , (A19)

Now, if |Y| ≤ nm, (A18) can be written as

Pe ≤ 2|Y|e−2nε2
+ 2|X ||Y|e−2nt1/3ε2

≤ 2nm exp

(
− 2n min

i,j
i 6=j

∥∥P̄i − P̄j
∥∥2

r
2(1 + t−1/3)2n2m/r

)

+ 2|X |nm exp

(
− 2nt1/3 min

i,j
i 6=j

∥∥P̄i − P̄j
∥∥2

r
2(1 + t−1/3)2n2m/r

)

≤ O
(

nm exp
(
− n1− 2m

r

))
. (A20)

According to (A20), for a fixed r > 2m, the right-hand side of (A20) moves to zero as
n→ ∞ and, thereby, the classifier is asymptotically optimal.
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