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Abstract: A major advantage of the use of passive sonar in the tracking multiple underwater targets
is that they can be kept covert, which reduces the risk of being attacked. However, the nonlinearity
of the passive Doppler and bearing measurements, the range unobservability problem, and the
complexity of data association between measurements and targets make the problem of underwater
passive multiple target tracking challenging. To deal with these problems, the cardinalized probability
hypothesis density (CPHD) recursion, which is based on Bayesian information theory, is developed
to handle the data association uncertainty, and to acquire existing targets’ numbers and states
(e.g., position and velocity). The key idea of the CPHD recursion is to simultaneously estimate the
targets’ intensity and the probability distribution of the number of targets. The CPHD recursion
is the first moment approximation of the Bayesian multiple targets filter, which avoids the data
association procedure between the targets and measurements including clutter. The Bayesian-filter-
based extended Kalman filter (EKF) is applied to deal with the nonlinear bearing and Doppler
measurements. The experimental results show that the EKF-based CPHD recursion works well in
the underwater passive multiple target tracking system in cluttered and noisy environments.

Keywords: dense clutter; data association uncertainty; passive target tracking; Doppler and bearing;
Bayesian filter; underwater; multiple targets; tracking; cardinalized probability hypothesis density

1. Introduction

The tracking of multiple underwater targets using passive sonar (e.g., bearings-only
multiple-target tracking; bearing and Doppler multiple target tracking) is receiving a great
deal of attention in practical defense and civil applications [1–3]. Passive multiple-target
tracking aims to obtain the number of expected targets in the tracking space, as well as the
states of the targets, from passive measurements such as bearing, bearing rate, Doppler,
Doppler rate, and the time arrival deference. The greatest advantage of passive multiple
target tracking systems is that passive sonar emits no signal, and thus can be kept covert
when conducting the passive measurements such as bearings measurements and Doppler
frequency measurements, avoiding the risk of being tracked [4]. In addition, passive sonar
tracking systems are simple and small in terms of configuration, and have low maintenance
costs.

The main challenges associated with passive multiple underwater target tracking are
that the passively obtained information is highly nonlinear [5–7], the targets’ range may be
unobservable, and the data association uncertainty between passive measurements and
targets is complicated.

The range unobservability for bearings-only target tracking means that the passive
sonar sensors cannot obtain accurate range information about the targets [8–11]. The
general methods to avoid the target range unobservability include the use of more than one
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stationary or maneuvering passive observation station, or the use of a single maneuvering
passive sensor. In this paper, we introduce Doppler frequency measurement to avoid
the range unobservability problem. By using the information obtained from bearing and
Doppler measurements, targets’ range state is observable even if the passive sonar is
static [8].

In order to deal with nonlinear data such as bearings and Doppler, the extended
Kalman filter (EKF) is used [11]. The EKF is a nonlinear and non-Gaussian Bayesian
filtering algorithm that locally linearizes targets’ state and measurement equations using
the first part of the Taylor expansion of the nonlinear transformations around the expected
predicted target state. The results may be unsatisfactory when the tracking system is
highly nonlinear and non-Gaussian. Another nonlinear filter method is the unscented
Kalman filter (UKF) [12,13], which is an unscented transform approximation to the tracking
system function based on deterministic sampling instead of the linear approximation
used in the EKF. The UKF has better tracking performance than the EKF to some extent,
but its computational cost is larger than that of the EKF. The other typical nonlinear
method is the particle filter (PF) [14,15], which forms the Monte Carlo approximation to
the solution of the Bayesian filter, and uses a set of particle samples to approximate the
targets’ distribution according to the targets’ probability density. The PF is used in cases
where the tracking model is highly nonlinear or non-Gaussian. One disadvantage of the PF
is its high computational cost. In this paper we apply the EKF to deal with the nonlinear
bearing and Doppler measurements.

Another difficulty associated with passive multiple underwater target tracking is the
data association uncertainties between targets and measurements [16]. The most simple
data association algorithm is the global nearest neighbor (GNN) method, which attempts
to obtain the most likely hypothesis between targets and measurements. The other tradi-
tional data association approach to solve the uncertainties problem between targets and
measurements is the joint probabilistic data association (JPDA) method [17]; its computing
cost is exponentially increased with the number of measurements, interferences, and tar-
gets. In addition, the multiple hypothesis tracking (MHT) method [18], the probabilistic
multiple hypothesis tracking (PMHT) method [19], and their improved algorithms are also
used to handle data association uncertainties between targets and measurements. The
main disadvantage of these traditional data association multiple target tracking algorithms
(GNN, JPDA, MHT, PMHT) is that they cannot deal with the time-variant and space-variant
tracking problem. Recently, the random finite set (RFS) has emerged as a promising method
which does not rely on the data association [20–26]. RFS-based methods treat multiple
target states as the state finite set. In the same way, they treat measurement data as the
measurement finite set.

One of the most popular RFS methods is probability hypothesis density (PHD) recur-
sion, which can estimate multiple targets’ states as well as the number of targets through
propagating the targets’ posterior intensity RFS to the Bayesian multiple targets filter [25].
Another popular method is cardinalized probability hypothesis density (CPHD) recur-
sion [27], which assumes the higher order on the number of targets without considering
data associations between targets and measurements, and jointly propagates the targets’
posterior probability and the number of targets’ (i.e., the cardinality) density distribu-
tion [27]. PHD and the CPHD both make all the measurements as a measurement set and
all the targets as a target set.

Information entropy theories are also used to estimate single target states and multiple
targets states. The fuzzy c-means clustering method based on maximum information
entropy combined with PDA is proposed in [28], which uses a value optimized by the
maximum information entropy to represent the measurement-to-target association proba-
bility. The multiple target tracking problem has also been solved by the maximum entropy
intuitionistic fuzzy data association algorithm [29], cross entropy [30], maximum-fuzzy-
entropy-based Gaussian clustering algorithm [31], entropy distribution and game theory
based on the random finite set probability hypothesis density (PHD) method [32], maxi-
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mum entropy fuzzy based on the fire-fly and PF [33], and the distributed cross-entropy-
based δ-generalized labeled multi-Bernoulli (δ-GLMB) filter [34].

In this paper we investigate the tracking performance of CPHD recursion in passive
underwater multiple target tracking in the two-dimensional state space under a cluttered
environment, using bearing and Doppler measurements. We also consider the case of a
single stationary passive sonar observer. In order to improve the tracking performance,
the EKF is used to deal with the nonlinear bearing and Doppler measurements with
independent Gaussian white noise. In order to avoid the range unobservability problem,
in this paper we introduce nonlinear Doppler measurement. The CPHD, which can jointly
estimate the state and number of targets, is used to handle the targets-to-measurements
data association uncertainty in the cluttered environment.

The remainder of the paper is organized as follows. The passive multiple underwa-
ter target tracking system model using Doppler and bearing measurements is given in
Section 2. Section 3 develops the recursive CPHD suitable for multiple targets tracking
under a dense clutter environment. The simulation results are given in Section 4. Lastly, a
summary is given in Section 5.

2. Signal Model and Problem Formulation
2.1. System Model

We assume that the number of targets is variable and unknown during the entire
tracking procedure in two-dimensional Cartesian space. In this paper, we consider the
dynamic nearly constant turn (CT) system model for all the targets with Gaussian process
noise [35]. Some maneuvering target tracking problems are discussed in [36,37].

The state for target m at time t is

x̃t,m =
(

xt,m,
.
xt,m, yt,m,

.
yt,m, wt,m

)T
(1)

in which wt,m is the target’s turn rate, and

xt,m =
(

xt,m,
.
xt,m, yt,m,

.
yt,m

)T
(2)

is the target’s position and velocity, where the target’s position is (xt,m, yt,m), the target’s
velocity is

( .
xt,m,

.
yt,m

)
, and t = 1, 2, · · · , T is the time index.

The targets to single stationary observer station (passive sensor) tracking scenario
using bearing and Doppler measurements information is depicted in Figure 1.

The target transition model with process noise is given by

xt,m = Ft,mxt,m + wt,m (3)

where wt,m is the system process noise.
For the nearly CT target tracking model, Ft,m is a system state transition matrix which

is given by

Ft,m =


1 sin w∆T

w∆T 0 − 1−cos w∆T
w∆T

0 cos w∆T 0 − sin w∆T
0 1−cos w∆T

w∆T 1 sin w∆T
w∆T

0 sin w∆T 0 cos w∆T

 (4)

in which ∆T is the sampling interval.
This paper supposes the tracking process noise wt,m is Gaussian white noise with

covariance

Qt,m = δ2
p


∆T4

4
∆T3

2 0 0
∆T3

2 ∆T2 0 0
0 0 ∆T4

4
∆T3

2
0 0 ∆T3

2 ∆T2

 (5)
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where δ2
p is the acceleration noise intensity.

Entropy 2021, 23, x FOR PEER REVIEW 4 of 15 
 

 

in which TΔ  is the sampling interval. 

,θt m

, , , , ,, , , ,
T

t m t m t m t m t mx x y y w   

,t mx

,t my

,θt m

,θt m

, ,cost m t my θ

, ,sint m t mx θ

 
Figure 1. An overview of the bearing and Doppler target tracking (passive sensor) geometry. 

This paper supposes the tracking process noise ,t mw
 
is Gaussian white noise with 

covariance 

4 3

3
2

2
, 4 3

3
2

 0 0
4 2

T 0 0
2

 0 0
4 2

0 0
2

t m p

T T

T

T T

T T

δ

 Δ Δ
 
 

Δ Δ 
=  

Δ Δ 
 
 Δ Δ  

Q  (5)

where 2
pδ  is the acceleration noise intensity. 

2.2. Measurement Model 

In this paper, we assume a single stationary passive sensor located at the original 
coordinates. We assume the single stationary passive sensor can only measure the targets’ 
bearings and Doppler information, which are both nonlinear with respect to the passive 
sensor and targets’ state.  

As seen in Figure 1, for target m , the measurement can be modeled as 

( ), , , , , ,= ,t m t m t m t m t m t m= +z h u h x u  (6)

where ,t mh  is the bearing and Doppler measurement function and ,t mu  is measurement 
noise. 

We assume the bearing and Doppler measurement noise ,t mu  is Gaussian white 
noise with covariance 

, ,
,

D , ,

t m
t m

t m

u
u

θ 
=  
  

R  (7)

where , ,t muθ  is bearing noise covariance and , ,D t mu  is Doppler noise covariance. 

Figure 1. An overview of the bearing and Doppler target tracking (passive sensor) geometry.

2.2. Measurement Model

In this paper, we assume a single stationary passive sensor located at the original
coordinates. We assume the single stationary passive sensor can only measure the targets’
bearings and Doppler information, which are both nonlinear with respect to the passive
sensor and targets’ state.

As seen in Figure 1, for target m, the measurement can be modeled as

zt,m = ht,m + ut,m = ht,m(xt,m, ut,m) (6)

where ht,m is the bearing and Doppler measurement function and ut,m is measurement
noise.

We assume the bearing and Doppler measurement noise ut,m is Gaussian white noise
with covariance

Rt,m =

[
uθ,t,m
uD,t,m

]
(7)

where uθ,t,m is bearing noise covariance and uD,t,m is Doppler noise covariance.
This paper assumes that the tracking process noise and measurement noise are inde-

pendent.
The bearing and Doppler measurement information function ht,m is as follows:

ht,m =

 arctan xt,m
yt,m[

1−
.
xt,m sin θt,m+

.
yt,m cos θt,m

c

]
f0

 (8)

where θt,m is the bearing of target m, c is the transmit speed of sound, and f0 is the
underwater targets’ radiant frequency.

3. CPHD Recursion Based on Bayesian Theory

This section first presents the multiple target tracking situation under the RFS frame-
work. Then, the nonlinear EKF-based CPHD recursion for bearing and Doppler multiple
target tracking is developed.
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3.1. RFS Formulation of Multiple Target Filtering

In time t, suppose that the targets’ states are xt,1, xt,2, · · · xt,M(t) ∈ χ in which M(t) is
the number of targets in time t. At the next time, some existing targets may be disappear,
and some fresh targets may enter into the tracking space. For the bearing and Doppler
measurements obtained by the passive sensor, N(t) is the number of measurements in time
t. The bearing and Doppler measurements at time t are zt,1, · · · zt,N(t) ∈ Z . The purpose
of multiple target tracking is to jointly estimate the number of targets in the surveillance
volume as well as their states from measurements with noise and clutter.

The collection of target states at time t can be modeled as a target RFS,

Xt =
{

xt,1, · · · xt,M(t)

}
∈ F (χ) (9)

The collection of bearing and Doppler measurements at time t can be modeled as a
measurement random finite set,

Zt =
{

zt,1, · · · zt,N(t)

}
∈ F (Z) (10)

in which F (χ) is the collection of all targets’ random finite subsets of χ, and F (F ) is the
collection of all measurement random finite subsets of Z .

Both the targets’ finite set Xt and the bearing and Doppler measurement finite set Zt
are out of order.

The key of RFS is to treat Xt as the multiple targets’ state, and to treat Zt as the multiple
target observation.

In this paper we model the multiple targets’ dynamics at time t as

Xt =

[
∪

xt−1∈Xt−1
St|t−1(xt−1)

]
∪Γt (11)

where Xt−1 is the multiple targets’ state at time t− 1, which, including the existing targets
at time t− 1 and the fresh targets which appear at time t, St|t−1(xt−1) is the existing target
RFS at time t, Γt is the RFS of spontaneous births at time t.

The multiple targets’ bearing and Doppler measurements, including clutter at time t,
is

Zt =

[
∪

x∈Xt
Θt(x)

]
∪Kt (12)

where Θt(x) is the bearing and Doppler measurement from target x, and Kt is the RFS of
clutter measurements.

Let ft|t−1(·|·) be the multiple targets’ transition density. Similarly, let ht|t−1(·|·) be
the multiple targets’ likelihood. The posterior density of the multiple targets’ states is
denoted by pt(·|Z1:t) The RFS formulation of multiple target Bayesian filtering propagates
the targets’ posterior probability using the following equations:

pt|t−1(Xt|Z1:t−1) =
∫

ft|t−1(Xt|X)pt−1|t−1(X|Z1:t−1)δX (13)

pt(Xt|Z1:t) =
ht(Zt|Xt)pt|t−1(Xt|Z1:t−1)∫
ht(Zt|X)pt|t−1(X|Z1:t−1)δX

(14)

where the integrals in Equations (13) and (14) are set integrals.
In practical situations, the Bayesian recursion in Equations (13) and (14) are intractable

due to the multiple integrations. Suboptimal algorithms like PHD and CPHD are used to
solve the integrals problem.
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3.2. CPHD Recursion

The key idea of the CPHD Bayesian filter is to jointly propagate the multiple targets’
intensity equation and the cardinality probability distribution [38,39].

In order to evaluate the CPHD, we assume that:

• Each expected target produces bearing and Doppler measurements independently
from one another;

• The targets’ birth RFS is independent of the surviving target RFS;
• The clutter’s RFS is independent from the true targets’ measurement RFS;
• The prior and predicted multiple targets’ RFSs are both independent and identically

distributed processes.

In order to evaluate the CPHD algorithm, we denote the following:
The binomial coefficient is given by Cl

j =
l!

j!(l−j)! , the permutation coefficient is given

by Pn
j = n!

(n−j)! , the inner product between α and β is 〈α, β〉 =
∫

α(x)β(x)dx, or 〈α, β〉 =
∞
∑

l=0
α(l)β(l), the elementary symmetric function of j for a FST Z is ej(Z) = ∑

S⊆Z,|S|=j

(
∏

ζ∈S
ζ

)
,

and e0(Z) = 1.
Let vt|t−1(x) denote the predicted targets’ intensity at time t, and pt|t−1(n) denote the

predicted targets’ cardinality at time t. Similarly, let vt|t(x) denote the targets’ posterior
intensity and pt|t(n) denote the targets’ cardinality function at time t.

Suppose one knows that the target posterior intensity is vt−1(x) and the target poste-
rior cardinality is pt−1(n); then, the predicted target intensity vt|t−1(x) and predicted target
cardinality pt|t−1(n) are:

vt|t−1(x) =
∫

pS,t|t−1(ζ) ft|t−1(x|ζ)vt−1(ζ)dζ + γt(x) (15)

pt|t−1(n) =
n

∑
j=0

pΓ,t(n− j)Πt|t−1[vt−1, pt−1](j) (16)

where

Πt|t−1[vt−1, pt−1](j) =
∞

∑
l=j

Cl
j
〈pS,t, v〉j〈1− pS,t, v〉l−j

〈1, v〉l
(17)

and where pS,t|t−1(ζ) is the probability of target existence, γt(·) is target birth intensity,
and pΓ,t(·) is target birth cardinality.

Assume that the predicted intensity vt|t−1(x) and predicted target cardinality pt|t−1(n)
are known. Then, the updated intensity vt(x) and updated cardinality distribution pt(n) at
time t are given by

vt(x) =

〈
γ1

t

[
vt|t−1, Zt

]
, pt|t−1

〉
〈

γ0
t

[
vt|t−1, Zt

]
, pt|t−1

〉 [1− pD,t(x)]vt|t−1(x) + ∑
z∈Zt

〈
γ1

t

[
vt|t−1, Zt\{z}

]
, pt|t−1

〉
〈

γ0
t

[
vt|t−1, Zt

]
, pt|t−1

〉 ψt,z(x)vt|t−1(x) (18)

pt(n) =
γ0

t

[
vt|t−1, Zt

]
(n)pt|t−1(n)〈

γ0
t

[
vt|t−1, Zt

]
, pt|t−1

〉 (19)

where

γu
t [v, Z](n) =

min(|Z|,n)

∑
j=0

(|Z| − j)pK,t(|Z| − j)pn
j+u
〈1− pD,t, v〉n−(j+u)

〈1, v〉n
ej(Ξt(v, Z)) (20)

ψt,z(x) =
〈1, κt〉
κt(z)

ht(z|x)pD,t(x) (21)
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Ξt(v, Z) = {〈v, ψt,z〉 : z ∈ Z} (22)

and where pD,t(x) is the target detection probability, κt(·) is the clutter intensity at time t,
and pK,t(·) is the clutter cardinality distribution.

Equation (19) is a Bayesian update, γ0
t

[
vt|t−1, Zt

]
(n) is the likelihood of the multiple

target observation set Zt given that there are n targets, and
〈

γ0
t

[
vt|t−1, Zt

]
, pt|t−1

〉
is the

normalizing constant.

3.3. EKF-Based CPHD Recursion

This subsection develops the EKF-based CPHD recursion to the linear Gaussian
system model in (3) and the nonlinear Gaussian measurement model (bearing and Doppler
measurement model) in (6).

According to Equations (3) and (6), the target model xt,m = Ft,mxt,m + wt,m is a linear
Gaussian model, while the bearing and Doppler measurement model zt,m = ht,m(xt,m, vt,m)
is a nonlinear Gaussian model. Due to the nonlinearities of measurement function ht,m, the
targets’ posterior function is nonlinear and non-Gaussian. Analogous to EKF, the linear and
Gaussian CPHD recursion is extended to the nonlinear model by linearizing the nonlinear
bearing and Doppler measurement function ht,m.

The linearity for the measurement function ht,m of EKF is given by

Ht,m =
∂ht,m(xm, 0)

∂xm
(23)

Next, we will develop the linear Gaussian CPHD recursion, then extend it to the
nonlinear Gaussian model of bearing and Doppler measurements.

For the linear Gaussian system and measurement model, each target and sensor
measurements are presented by a linear Gaussian function,

ft|t−1(x|ζ) = N
(

x; Ft|t−1ζ, Qt

)
(24)

ht|t−1(z|x) = N (z; Htx, Rt) (25)

where N (·; m, P) is a Gaussian distribution whose mean is m and covariance matrix is P,
and the other parameters have been defined above.

The survival probability pS,t(xt−1) and detection probability pD,t(x) are state indepen-
dent for the linear Gaussian model, that is

pS,t(xt−1) = pS,t (26)

pD,t(x) = pD,t (27)

The target birth RFS intensity for a linear Gaussian system and measurement model is
given as

γt(x) =
Jγ,t

∑
i=1

w(i)
γ,tN

(
x; m(i)

γ,t, P(i)
γ,t

)
(28)

where w(i)
γ,t is the target weight, m(i)

γ,t is the target mean, and P(i)
γ,t is the target covariance.

All of these values represent the target birth intensity distribution.
Assume the targets’ posterior probability hypothesis density vt−1(x) and the targets’

posterior cardinality pt−1(n) for a linear Gaussian system, and the bearing and Doppler
measurement model are given. The posterior probability hypothesis density vt−1(x) is as
follows:

vt−1(x) =
Jt−1

∑
i=1

w(i)
t−1N

(
x; m(i)

t−1, P(i)
t−1

)
(29)
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Then, under the condition of linear and Gaussian assumption, the predicted target
probability vt|t−1(x) and the predicted target cardinality are also Gaussian mixture, given
by

vt|t−1(x) = γt(x) + pS,t|t−1

Jt−1

∑
i=1

w(i)
t−1N

(
x; m(i)

S,t|t−1, P(i)
S,t|t−1

)
(30)

pt|t−1(n) =
n

∑
j=0

pΓ,t(n− j)
∞

∑
l=j

Cl
j pt−1(l)pj

S,t|t−1

(
1− pS,t

)l−j (31)

where the birth random finite set intensity for target γt(x) is given in (25), and

m(i)
S,t|t−1 = Ft|t−1m(i)

t−1 (32)

P(i)
S,t|t−1 = Ft|t−1P(i)

t−1FT
t|t−1 + Qt (33)

For the linear Gaussian system and measurement model, suppose that the predicted
probability hypothesis density vt|t−1(x) and the predicted target cardinality pt|t−1(n) at
time t are given, and the predicted probability hypothesis density vt|t−1(x) is a Gaussian
mixture distribution. Suppose that the target posterior probability hypothesis density vt(x)
is also Gaussian mixture at time t, and

vt(x) = [1− pD,t]

〈
Ψ1

t

[
wt|t−1,Zt

]
,pt|t−1

〉
〈

Ψ0
t

[
wt|t−1,Zt

]
,pt|t−1

〉vt|t−1(x)

+pD,t ∑
z∈Zt

Jt|t−1

∑
i=1

w(i)
t|t−1

〈
Ψ1

t

[
wt|t−1,Zt\{z}

]
,pt|t−1

〉
〈

Ψ0
t

[
wt|t−1,Zt

]
,pt|t−1

〉 q(i)t (z)N
(

x;m(i)
t (z),P(i)

t

)
κt(z)/〈1,κt〉

(34)

pt(n) =
Ψ0

t

[
wt|t−1, Zt

]
(n)pt|t−1(n)〈

Ψ0
t

[
wt|t−1, Zt

]
, pt|t−1

〉 (35)

in which

Ψu
t [w, Z](n) =

min(|Z|,n)

∑
j=0

(|Z| − j)pK,t(|Z| − j)pn
j+u
〈1− pD,t, v〉n−(j+u)

〈1, w〉j+u ej(Λt(w, Z)) (36)

Λt(w, Z) =

{
pD,tw

Tqt(z)
κt(z)/〈1, κt〉

: z ∈ Z

}
(37)

wt|t−1 =

[
w(1)

t|t−1, · · · , w
(Jt|t−1)

t|t−1

]T
(38)

qt(z) =
[

q(1)t (z), · · · , q
(Jt|t−1)

t (z)
]T

(39)

q(i)t (z) = N
(

z;η(i)
t|t−1, S(i)

t|t−1

)
(40)

η
(i)
t|t−1 = Htm

(i)
t|t−1 (41)

S(i)
t = HtP

(i)
t|t−1HT

t + Rt (42)

m(i)
t (z) = m(i)

t|t−1 + K(i)
t

(
z− η

(i)
t|t−1

)
(43)

P(i)
t =

[
I−K(i)

t Ht

]
P(i)

t|t−1 (44)

K(i)
t = P(i)

t|t−1HT
t

[
S(i)

t|t−1

]−1
(45)
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For the linear target model and the nonlinear bearing and Doppler measurement
model in this paper, the update step for the CPHD recursion is to approximate the nonlinear
bearing and Doppler measurement model. That is, predicted targets are updated by using
the first order of the Taylor extension when a nonlinear composition appeared [33]. That is,
Equations (46) and (47) are used instead of Equations (35) and (36), and Equation (48) is
used for the calculation of (46) and (47)

η
(i)
t|t−1 = ht

(
m(i)

t|t−1, 0
)

(46)

S(i)
t = H(i)

t P(i)
t|t−1

[
H(i)

t

]T
+ U(i)

t Rt

[
U(i)

t

]T
(47)

in which

H(i)
t =

∂ht(x, 0)
∂x

∣∣∣∣
x=m(i)

t|t−1

, U(i)
t =

∂ht

(
m(i)

t|t−1, v
)

∂v

∣∣∣∣∣∣
v=0

(48)

4. Simulations

This section presents a simulation of a nonlinear passive underwater multiple target
tracking scenario in a cluttered environment using bearing and Doppler measurements to
show the tracking performance of the EKF-based CPHD recursion. The multiple targets
moved with the CT model with a varying turning rate in a space of [0, 3000] m× [200, 2500] m.
The number of targets was time varying, and they appeared and disappeared at different
times and positions. The maximum number of targets was 4.

The true state for each target is given in Figure 2. There were two crossing moving
targets. The sampling period ∆t = 1 s, the total number of sampling scan is 80. Target
1 arose at the first time step and disappeared at 80 s. Target 2 appeared at 20 s and
disappeared at 80 s. Target 3 appeared at 10 s and disappeared at 66 s. Target 4 appeared at
20 s and disappeared at 75 s. The true measurement of bearing and frequency for the four
targets is shown in Figure 3.
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Figure 3. The true measurement of bearing and frequency for the four targets.

The standard deviation of the system process noise was 5 m/s2. The standard de-
viation values of the measurement noise for bearing and frequency were 0.5◦ and 3 Hz,
respectively. The clutter followed a Poisson distribution with clutter intensity λc = 0.3
over the region [−π/2, π/2]rad× [750, 795]Hz—that is, the average clutter each time was
42. For simplicity, the detection probability of all targets was assumed to be the same, and
was set to pD,t = 0.98. We assumed that all targets’ survival probabilities were the same
and they were set to pS,t = 0.99. To inspect the tracking performance of the EKF-based
CPHD recursion, the 1000 Monte Carlo process was calculated.

The scans of the targets’ estimated trajectories and true targets’ tracks in x- and
y-coordinates versus time for the EKF-based CPHD recursions and PHD recursion are
depicted in Figures 4 and 5, respectively. As seen in Figures 4 and 5, the estimated tracks in
x- and y-coordinates are similar to the true targets’ tracks for the four targets. This means
that the CPHD recursion performed well in tracking multiple targets using the bearing
and Doppler measurements. Correspondingly, the PHD algorithm’s tracking accuracy was
inferior to that of the CPHD. The calculation time for the EKF-based CPHD for the four
targets was 3.46 s per sample run over 80 time scans, implemented in MATLAB R2016a,
Intel Core i7 CPU, 16 GB.
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Figure 4. Scans of the target trajectory estimates and true target positions in x- and y-coordinates for CPHD recursion versus
time. (a) x coordinate, (b) y coordinate.
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Figure 5. Scans of the target trajectory estimates and true target positions in x- and y-coordinates for the PHD recursion
versus time. (a) x coordinate, (b) y coordinate.

The scans of the average OSPA distance for the four targets versus time for both the
EKF-based CPHD recursion and PHD recursion are shown in Figure 6. It appears that the
average OSPA distance for the CPHD and the PHD were approximately 30 m and 40 m,
respectively. The results also show that the OSPA distance was large when the number of
targets was changing, which is normal and means that the CPHD recursion can adapt to
changes in targets’ cardinality. It can also be noted that the EKF-based CPHD recursion
had a faster reaction to changes in the targets’ cardinality distribution.

The scans of the average OSPA localization for all four targets versus time for the
EKF-based CPHD recursion and PHD recursion are given in Figure 7. In terms of target
localization accuracy, Figure 7 shows that the average OSPA localizations for the EKF-based
CPHD recursion and PHD recursion were approximately 25 m and 35 m per target, respec-
tively, which demonstrates that the CPHD had a better tracking accuracy performance than
the PHD recursion.
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Figure 6. Scans of the average OSPA distance for four targets versus time for both EKF-based CPHD
recursion and PHD recursion.
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Figure 7. Scans of the average OSPA localization for four targets versus time for the EKF-based
CPHD and PHD recursion.

Figure 8 presents the Monte Carlo means of estimated cardinality for the EKF-based
CPHD recursion and the true targets’ cardinality. It can be seen that the EKF-based CPHD
recursion could distinguish the appearance of new target and the disappearance of old
targets, and it was not likely affected by the incoming bearing and Doppler measurements
or clutter.
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5. Conclusions

The aim of passive multiple underwater target tracking is to jointly obtain the number
of targets in the tracking surveillance space as well as their states (e.g., position, velocity,
acceleration) from passive sensor measurements. The greatest merits of passive sonar
target tracking are that the passive sonar tracking system is simple and low cost, and
can operate covertly due to the use of passive bearing and Doppler measurements. To
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guarantee that the target range is observable when using the passive measurements, in
this paper we employ bearing and Doppler measurements (passive measurements) to
track multiple nearly constant turn targets. CPHD is used to handle the data association
uncertainty in clutter. The EKF is applied to solve the nonlinearity of bearing and Doppler
measurements. The simulation results show that the EKF-based CPHD recursion has
accurate propagation in target cardinality due to its fast response, and the estimated tracks
in x- and y-coordinates are similar to the true tracks for all targets, indicating that the
proposed method has little error. Additionally, the tracking OSPA is small, which means
that proposed algorithm has better tracking performance for the passive multiple target
tracking problem in a cluttered environment.
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