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Abstract: Information processing is common in complex systems, and information geometric theory
provides a useful tool to elucidate the characteristics of non-equilibrium processes, such as rare,
extreme events, from the perspective of geometry. In particular, their time-evolutions can be viewed
by the rate (information rate) at which new information is revealed (a new statistical state is accessed).
In this paper, we extend this concept and develop a new information-geometric measure of causality
by calculating the effect of one variable on the information rate of the other variable. We apply the
proposed causal information rate to the Kramers equation and compare it with the entropy-based
causality measure (information flow). Overall, the causal information rate is a sensitive method for
identifying causal relations.
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1. Introduction

Entropy-related concepts and information theory [1–9] are useful for understanding
complex dynamics in equilibrium and out of equilibrium. Examples include information
(Shannon) entropy (measuring disorder, or lack of information) [1], Fisher information [2],
relative entropy [3], mutual information [10], and their microscopic versions (e.g., trajectory
entropy) [11,12], etc. In particular, while, in equilibrium, the Shannon entropy has a unique
thermodynamic meaning, this is no longer the case in non-equilibrium, with different
proposals for generalized entropies (e.g., see the review paper of Reference [13] and
references therein). Recent years have witnessed the increased awareness of information
as a useful physical concept, for instance, in resolving the famous Maxwell’s demon
paradox [14], setting various thermodynamic inequality/uncertainty relations [15–17], and
establishing theoretical and conceptual links between physics and biology [18]. Information-
related ideas are also useful to uncover unexpected relations between apparently unrelated
problems, for instance, the connections between Fisher information and Schrödinger
equation, inspiring new development in non-equilibrium statistical mechanics [19].

We have recently proposed information-geometric theory as a powerful tool to under-
stand non-equilibrium stochastic processes that often involve high temporal variabilities
and large fluctuations [20–32], as often the case of rare, extreme events. This is based on
the surprisal rate, r(x, t) = ∂ts(x, t) = −∂t ln p(x, t), where p(x, t) is a probability density
function (PDF) of a random variable x at time t, and s(x, t) = − ln p(x, t) is a local en-
tropy. r(x, t), informing how rapidly p(x, t) or r(x, t) changes in time, is especially useful
for understanding time-varying non-equilibrium processes. As the name indicates, the
surprisal rate r measures the degree of surprise when p(x, t) changes in time (no surprise
in equilibrium with r = 0). We can easily show that the average of the surprisal rate∫

dxp(x, t)r(x, t) = 0 since
∫

dxp(x, t) = 1. We note that, in this paper, averages refer to
ensemble averages, which vary with time. A non-zero value is obtained from the second
moment of r(x, t) as

E(t) = Γ2(t) =
∫

dxp(x, t)(r(x, t))2 =
∫

dxp(x, t)(∂t ln p(x, t))2, (1)
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where Γ(t) represents the information rate at which a new information is revealed (a new
statistical state is accessed) due to time-evolution. Alternatively, τ(t) = Γ(t)−1 is the
characteristic time scale over which information changes, linked to the smallest time scale
of fluctuations [17].

It is important to highlight that E , Γ, and τ have the dimensions of (time)−2, (time)−1,
and (time), respectively. In addition, we note that E is proportional to the average of an
infinitesimal relative entropy (Kullback–Leibler divergence) (e.g., see Reference [20]),

E = lim
dt→0

2
(dt)2

∫
dxp(x, t + dt) ln

[
p(x, t + dt)

p(x, t)

]
= lim

dt→0

2
(dt)2

∫
dxp(x, t) ln

[
p(x, t)

p(x, t + dt)

]
. (2)

The total change in information between the initial time 0 and the time t is then
obtained by integrating 1

τ(t) over time as L(t) =
∫ t

0
dt1

τ(t1)
which is the information length,

quantifying the total number of statistically different states that a system passes through in
time. In the limit of a Gaussian PDF where the variance is constant in time, one statistically
distinguishable state is generated when a PDF peak moves by one standard deviation since
the latter provides the uncertainty in measuring the peak position of the PDF. In a nutshell,
L is an information-geometric measure, enabling us to quantify how the “information”
unfolds in time by dimensionless distance. Unlike other information measures, E , τ, and L
are invariant under (time-independent) change of variables and are not system-specific.
This non-system-specificity is especially useful for comparing the evolution of different
variables/systems having different units.

Furthermore, L is a path-dependent dimensionless distance and is uniquely defined
as a function of time for fixed parameters and initial condition. These properties are
advantageous for quantifying correlation in time-varying data and understanding self-
organization, long memory, and hysteresis involved in phase transitions [20,24,27–30,32].
In particular, we recently investigated a non-autonomous Kramer equation by including a
sudden perturbation to the system to mimic the onset of a sudden event [32], demonstrating
that our information rate predicts the onset of a sudden event better than one of the entropy-
based measures (information flow) (see Section 5.4 for details).

The purpose of this paper is to develop an information-geometric measure of causality
(the causal information rate) by generalizing E (Γ). Like Reference [32], our intention here is
not on modeling the appearance of rare, extreme events (that are nonlinear, non-Gaussian)
themselves, but on developing a new information-geometric causality method which is
useful for predicting and understanding those events. The remainder of this paper is
organized as follows. We propose the causal information rate in Section 2 and apply it to
the Kramers equation in Section 3. One of the entropy-based methods (the information
flow) is calculated in Section 4 and is compared with our proposed method in Section 5.
Conclusions are provided in Section 6. Appendices A–C show some detailed steps involved
in our calculations. We note that, while the usual convention in statistics and probability
theory is to use upper case letters for random variables and lower case letters for their
realizations, we do not make such distinctions in this paper as their meanings should be
clear from the context.

2. Causal Information Rate

Information theoretical measures of causality are often based on entropy, joint en-
tropy, conditional entropy, or mutual information, where the causality is measured by
the improvement of the predictability of one of the variables at future time by the knowl-
edge of the other variable, the improved predictability being measured by the decrease in
entropy [16,33–41]. However, there have been questions raised as to whether predictability
improvement (e.g., as measured by the Granger causality, transfer entropy) is directly
linked to causality (e.g., Reference [39]) and the suggestion that causality is better under-
stood by performing an intervention experiment to measure the effect of the change (some
type of perturbation or intervention) in one variable on another. In particular, spurious
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causalities between the two (observed) state variables can arise through unobserved state
variables that interact with both (observed) state variables, calling for care in dealing
with a system with more than two variables. On the other hand, to deal with strongly
time-dependent data, the concepts of transfer entropy rate [34], information flow [16,40,41],
etc., are proposed.

It is not the aim of this paper to provide detailed discussions about these methods, but
to introduce a new information geometric measure of causality (see below) and to compare
our new method with one of them (information flow) (see Section 4). Our new information
geometric measure of causality focuses on how one variable affects the information rate
of another variable. To this end, we generalize Γ in Equation (1) and define the causal
information rate for multiple variables.

In order to demonstrate the basic idea required, it is instructive to consider a stochastic
system consisting of two variables X1 and X2 which have a bivariate joint PDF p(X1, t1; X2, t2)
at different times t1 and t2, its equal-time joint PDF p(X1, t; X2, t) ≡ p(X1, X2, t), and the
conditional PDFs p(X2, t2|X1, t1) = p(X2, t2; X1, t1)/p(X1, t1), as well as marginal PDFs
p(X1, t) =

∫
dX2 p(X1, X2, t) and p(X2, t) =

∫
dx1 p(X1, X2, t). Using the index notation

i, j = 1, 2, we then define causal information rate Γi→j for i 6= j from the variable Xi to Xj
as follows:

Γi→j ≡ Γ∗j − Γj, (3)

Ej ≡ Γj(t)2 =
∫

dXj p(Xj, t)
(

∂t ln (p(Xj, t)
)2

, (4)

E∗j ≡ Γ∗j (t)
2 = lim

t1→t+

∫
dXidXj p(Xj, t1; Xi, t)

(
∂t1 ln [p(Xj, t1|Xi, t)]

)2

= lim
t1→t+

∫
dXidXj p(Xj, t1; Xi, t)

(
∂t1 ln [p(Xj, t1; Xi, t)]

)2
. (5)

Here, ∂t1 p(Xi, t) = 0 for t1 6= t was used. Γi =
1

τi(t)
represents the information rate of

Xi with its characteristic timescale τi(t). Note that the subscript j in Γj denotes that the
information rate is calculated for the variable j. Since Γj contains the contribution from
the variable j itself and other variable i 6= j, we denote the (auto) contribution from j-th
itself (where the other variable i 6= j is frozen in time) by using the superscript ∗. That is,
Γ∗j represents the information rate of Xj for given (frozen) Xi. Subtracting Γj from Γ∗j in
Equation (3) then gives us the contribution of dynamic (time-evolving) Xi to Γj, signifying
how Xi instantaneously influences the information rate of Xj.

It is important to note that, as in the case of the information rate Γ or L, the calculation
of Γi→j, Γj and Γ∗j in Equations (3)–(5) does not require the knowledge of the main governing
equations (stochastic differential equations). This is because Equations (3)–(5) can be
calculated from any (numerical or experimental) data as long as time-dependent (marginal,
joint) PDFs can be constructed. For instance, we used a time-sliding window method
to construct time-dependent PDFs of different variables and then calculated E and L to
analyze numerically generated time-series data for fusion turbulence [26], time-series music
data [20], and numerically generated time-series data for global circulation model [28].
However, it is not always clear how many hidden variables are in a given data set.

It is also useful to note that, as in the case of Equation (2), Equation (5) can be shown
to be related to the infinitesimal relative entropy as

E∗j = Γ∗j
2 = 2 lim

dt→0

1
(dt)2

∫
dXidXj p(Xj, t + dt; Xi, t) ln

[
p(Xj, t + dt; Xi, t)

p(Xj, Xi, t)

]
. (6)

The method presented above is for a stochastic process with two variables. For
stochastic processes involving three or more variables (i, j = 1, 2, ..n, n ≥ 3), one way to
proceed is to calculate multivariate PDFs, and then bivariate joint PDFs p(Xj, t1; Xj, t2)
and its equal-time joint PDF p(Xi, t; Xj, t) ≡ p(Xi, Xj, t), and marginal PDFs p(Xi, t) and
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p(Xj, t), and then calculate the information rate from Xi to Xj, where i 6= j (i, j = 1, 2, ....n,
n ≥ 3), via Equations (3)–(5). This will give us an effective causal information rate. Another
way is to deal with the multivariate PDFs directly (to be reported in future work).

3. Kramers Equation

To demonstrate how the methods Equations (3)–(5) work, in this section, we inves-
tigate an analytically solvable, Kramers equation, governed by the following Langevin
equations [31,42]:

dx
dt

= v, (7)

dv
dt

= −γv−ω2x + ξ. (8)

Here, ξ is a short (delta) correlated Gaussian noise with a zero average (mean) 〈ξ〉 = 0
and the strength D with the following property:

〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′), (9)

where the angular brackets denote the average over ξ (〈ξ〉 = 0).
Assuming an initial Gaussian PDF, time-dependent PDFs remain Gaussian for all time.

Thus, the bivariate joint PDF p(x, t1; v, t2) and the marginal PDFs p(x, t) and p(v, t) are
completely determined by covariance and mean values as

p(x, t1; v, t2) =
1

(2π)
√
|Σ(t1, t2)|

exp (−1
2

Σ−1
ij (t1, t2)(Xi − 〈Xi〉)(Xj − 〈Xj〉)), (10)

p(x, t) =

√
βx

π
exp (−βx(x− 〈x(t)〉)2), (11)

p(v, t) =

√
βv

π
exp (−βv(v− 〈v(t)〉)2). (12)

Here, (X1, X2) = (x(t1), v(t2)). 〈x〉 and 〈v〉 are the mean values. Σ(t1, t2) is the
covariance matrix with the elements Σ11 = Σxx(t1) = 〈(δx(t1))

2〉 = 1
2βx(t1)

, Σ12 = Σ21 =

Σxv(t1, t2) = 〈δx(t1)δv(t2)〉, and Σ22 = Σvv(t2) = 〈(δv(t2))
2〉 = 1

2βv(t2)
, where δx(t1) =

x− 〈x(t1)〉 and δv(t2) = v(t2)− 〈v(t2)〉. Σ−1 is the inverse of Σ, while |Σ| = Σ11Σ22 − Σ2
12

is the determinant. Appendix A shows how to calculate mean values and the elements of
covariance matrix.

Entropy of the joint PDF p(x, t1; v, t2) and marginal PDFs p(x, t) and p(v, t) can easily
be shown to be

S(t1, t2) = −
∫

dxdv p(x, t1; v, t2) ln p(x, t1; v, t2) =
1
2

[
1 + ln ((2π)2|Σ(t1, t2)|)

]
, (13)

Sx(t) = −
∫

dxp(x, t) ln p(x, t) =
1
2
[
1 + ln (2πΣxx(t))

]
, (14)

Sv(t) = −
∫

dvp(v, t) ln p(v, t) =
1
2
[
1 + ln (2πΣvv(t))

]
. (15)

On the other hand, the information rates for the equal-time joint PDF and the marginal
PDFs are given by

E = Γ2 =
∫

dxdvp(x, v, t)(∂t ln p(x, v, t))2 = ∂t〈Xi〉Σ−1
ij ∂t〈Xj〉+

1
2

Tr[(Σ−1Σ̇)2], (16)

Ex = Γ2
x =

∫
dxp(x, t)(∂t ln p(x, t))2 =

1
Σxx

(
d〈x〉

dt

)2

+
1

2Σ2
xx

(
dΣxx

dt

)2
, (17)
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Ev = Γ2
v =

∫
dvp(v, t)(∂t ln p(v, t))2 =

1
Σvv

(
d〈v〉

dt

)2

+
1

2Σ2
vv

(
dΣvv

dt

)2
. (18)

It is useful to note that the first term on the RHS of Equations (17) and (18) is caused
by the temporal change in the mean values of x and v, respectively, while the second term
is due to that in the variance. Equation (16) for the joint PDF contains the contribution
from the temporal changes in the mean values of x and v and in the covariance matrix. The
derivation of Equations (16)–(18) is provided in Appendix B (also see Reference [31]).

To clarify the key idea behind the causality information rate, we provide detailed math-
ematical steps involved in the definition and calculation of Γx→v and Γv→x in Sections 3.1 and 3.2,
respectively.

3.1. Γv→x

We start with the Kramers process Equations (7)–(9), where X2 = v is frozen for
time (t, t1);

dx
dt

= v, (19)

dv
dt

= 0. (20)

Then, the bivariate Gaussian PDF in Equation (10) for a fixed v takes the following form:

p(x, t1; v, t) =
1

(2π)
√
|Σ(t1, t)|

exp (−1
2

Σ−1
ij (t1, t)(Xi − 〈Xi〉)(Xj − 〈Xj〉)), (21)

Σ(t1, t) =

[
Σxx(t1) Σxv(t1, t)

Σxv(t1, t) Σvv(t)

]
=

[
〈(δx(t1))

2〉 〈δx(t1)δv(t)〉
〈δx(t1)δv(t)〉 〈(δv(t))2〉

]
, (22)

where X1 = x(t1) and X2(t2), 〈X1〉 = 〈x(t1)〉, 〈X2〉 = 〈v(t)〉, δx(t1) = x(t1)− 〈x(t1)〉, and
δv(t) = v(t)− 〈v(t)〉.

For i = 2 and j = 1 in Equations (3) and (5), we have

Γv→x(t) = Γ∗x − Γx, (23)

E∗x (t) = Γ∗x(t)
2 = lim

t1→t+

∫
dxdv p(x, t1; v, t)(∂t1 ln p(x, t1; v, t))2, (24)

where Γx =
√
Ex. In Appendix B, we show that E∗x is given by

E∗x = lim
t1→t+

[
∂t1〈Xi〉Σ−1

ij (t1, t)∂t1〈Xj〉+
1
2

Tr[(Σ−1(t1, t)∂t1 Σ(t1, t))2]

]
. (25)

Since v is frozen during time (t, t1), limt1→t ∂t1〈Xi〉 = δi1∂t〈x(t)〉; Σvv remains con-
stant, while Σxx and Σxv change, as follows:

lim
t1→t

∂t1 Σvv(t) = 0, (26)

lim
t1→t

∂t1 Σxv(t1, t) = lim
t1→t
〈∂t1(δx(t1))δv(t)〉 = Σvv(t) ≡ Σ̇xv, (27)

lim
t1→t

∂t1 Σxx(t1) = lim
t1→t
〈∂t1(δx(t1))δx(t1)〉 = 2Σvx(t) ≡ Σ̇xx. (28)

Then, to calculate the two terms on RHS of Equation (25), we note

Σ−1(t1, t) =
1
|Σ|

[
Σvv(t) −Σxv(t1, t)
−Σxv(t1, t) Σxx(t)

]
, lim

t1→t
∂t1 Σ(t1, t) =

[
Σ̇xx Σ̇xv
Σ̇xv 0

]
, (29)
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where Σ̇xx and Σ̇xv are given in Equations (27) and (28), while Σ−1 = Σ−1(t) is the inverse
of the equal time covariance matrix. Using Equation (29), we can show that the second
term on RHS of Equation (25) becomes

lim
t1→t+

[
1
2

Tr[(Σ−1(t1, t)∂t1 Σ(t1, t))2]

]
=

1
2|Σ|2

[
(ΣvvΣ̇xx − ΣxvΣ̇xv)

2 + 2(ΣvvΣ̇xv)(−ΣxvΣ̇xx + ΣxxΣ̇xv) + (ΣxvΣ̇xv)
2
]

=
1

2|Σ|2
[
2|Σ|Σ̇2

xv + (∆vx)
2
]
. (30)

Here,

∆vx ≡ ΣvvΣ̇xx − 2Σ̇xvΣxv = 2ΣvvΣxv − 2ΣvvΣxv = 0, (31)

where Σ̇xx = 2Σxv and Σ̇xv = Σvv in Equations (27) and (28) are used. It is useful to note
that ∆vx represents the rate at which the determinant of the covariance matrix changes in
time for a fixed v and becomes zero. This is because, for a fixed v (essentially for γ = D = 0
as seen below in regard to Equation (52)), the evolution is conservative (reversible) where
the phase space volume is conserved. Thus, the contribution from the variance to the
information rate of x for a given v is solely determined by the temporal change in the
cross-correlation Σxv.

Finally, by using Equations (30) and (31) in Equation (25), we have

E∗x = Σ−1
xx 〈v(t)〉2 +

Σ̇2
xv
|Σ| . (32)

It is interesting to compare the first term (caused by the mean motion d〈x〉
dt ) on the

RHS of Equation (32) with that in Equation (17). For instance, if Σxv = 0, Σ−1
xx = Σvv

|Σ| =
1

Σxx
,

they take the same value. It should also be noted that, even when both Σxv = 0 and
d
dt Σxv = Σvv −ω2Σxx = 0 (as in equilibrium), Σ̇xv = Σvv 6= 0 (unless Σvv = 0).

Putting Equations (17) and (32) and limt1→t ∂t1〈Xi〉 = δi1∂t〈x(t)〉 in Equation (23)
gives us

Γv→x =
√
E∗x −

√
Ex

=

[
Σvv〈v(t)〉2
|Σ| +

Σ2
vv
|Σ|

] 1
2

−
[
〈v(t)〉2

Σxx
+

2Σ2
xv

Σ2
xx

] 1
2

, (33)

where we used Σ̇xv = Σvv and Σ̇xx = 2Σxv. (See Appendix A for the values for means and
covariance matrix.) Therefore, even when Σxv = 0, Equation (33) can have a non-trivial
contribution from a non-zero mean velocity.

To understand the difference between E∗x and Ex, it is useful to define the following quantify

Ev→x = E∗x − Ex =
Σ2

xv
|Σ|Σxx

〈v(t)〉2 + |Σ|
2 + Σ4

xv
|Σ|Σ2

xx
. (34)

The cross-correlation Σxv plays a more important role in Equation (34) than in Equation (33).
For instance, Σxv = 0 reduces Equation (34) into a simple form Ev→x = Σvv

Σxx
, with no

contribution from the mean velocity v. As noted above, such simplification does not occur
for Γv→x in Equation (33).

Nevertheless, if d〈x〉
dt = d〈v〉

dt = 0 and Σxv = 0, Equations (33) and (34) become

Ev→x =
Σvv

Σxx
, Γv→x =

√
Σvv

Σxx
. (35)
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For instance, in equilibrium, Σxv = 0, Σxx = D
γω2 , Σvv = D

γ ; thus, Γv→x = ω. In
Section 3.2 below, we show that the equality Γv→x = Γx→v = ω holds in equilibrium (see
the discussion below Equation (57)).

3.2. Γx→v

We now consider the Kramers equation Equations (7)–(9), where X1 = x is frozen for
time (t, t1);

dx
dt

= 0, (36)

dv
dt

= −γv−ω2x + ξ. (37)

Then, during (t, t1), the bivariate Gaussian PDF in Equation (10) for a fixed x takes
the following form:

p(x, t; v, t1) =
1

(2π)
√
|Σ(t, t1)|

exp (−1
2

Σ−1
ij (t, t1)(Xi − 〈Xi〉)(Xj − 〈Xj〉)), (38)

Σ(t, t1) =

[
Σxx(t) Σxv(t, t1)

Σxv(t, t1) Σvv(t1)

]
=

[
〈(δx(t))2〉 〈δx(t)δv(t1)〉
〈δx(t)δv(t1)〉 〈(δv(t1))

2〉

]
, (39)

where 〈X1〉 = 〈x(t)〉, 〈X2〉 = 〈v(t1)〉, δx(t) = x(t)− 〈x(t)〉, and δv(t1) = v(t1)− 〈v(t1)〉.
We define E∗v , Γ∗v =

√
E∗v , Γv =

√
Ev, and Ex→v as

Γx→v = Γ∗v − Γv, (40)

Ex→v = E∗v − Ev, (41)

E∗v (t) = Γ∗v(t)
2 = lim

t1→t+

∫
dxdvp(x, t; v, t1)(∂t1 ln p(x, t; v, t1))

2 (42)

= lim
t1→t+

[
∂t1〈Xi〉Σ−1

ij (t, t1)∂t1〈Xj〉+
1
2

Tr[(Σ−1(t, t1)∂t1 Σ(t, t1))
2]

]
, (43)

where Ev is given in Equation (18). Note that Equation (43) simply follows by replacing
Σ(t1, t) by Σ(t, t1) in Equation (25).

Since we are considering the evolution of joint PDF of v for a given x for an infinitesi-
mal time interval (t, t1) through Equations (36) and (37), Σxx remains constant, while Σxv
and Σvv evolve in time as follows:

lim
t1→t

∂t1 Σxx(t) = lim
t1→t
〈∂t1(δx(t))δx(t)〉 = 0, (44)

lim
t1→t

∂t1 Σxv(t, t1) = lim
t1→t
〈δx(t)∂t1(δv(t1))〉 ≡ Σ′xv, (45)

lim
t1→t

∂t1 Σvv(t1) = 2 lim
t1→t
〈(∂t1 δv(t1))δv(t1)〉 ≡ Σ′vv. (46)

Here, by using Equations (7)–(9), we can show (see Appendix C for comments):

Σ′vv(t) = 2〈(∂t(δv(t))δv(t)〉 = 2〈(−γδv(t)−ω2δx(t) + ξ)δv(t)〉
= 2(−γΣvv −ω2Σxv + D), (47)

Σ′xv(t) = 〈(∂t(δv(t))δx(t)〉 = 〈(−γδv(t)−ω2δx(t) + ξ)δx(t)〉 = −γΣxv −ω2Σxx. (48)

We now need to calculate the two terms on RHS of Equation (43). First, since X1 = x(t)
is frozen,

lim
t1→t+

∂t1〈Xi〉Σ−1
ij (t, t1)∂t1〈Xj〉 = Σ−1

vv (t)(∂t〈v(t)〉)2, (49)
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lim
t1→t+

∂t1 Σ(t, t1) =

[
0 Σ′xv

Σ′xv Σ′vv

]
. (50)

Secondly, using Equations (50) and (39), we can show that the second term on RHS of
Equation (43) becomes

lim
t1→t+

[
1
2

Tr[(Σ−1(t, t1)∂t1 Σ(t, t1))
2]

]
=

1
2|Σ|2

[
(ΣxxΣ′vv − ΣxvΣ′xv)

2 + 2(ΣxxΣ′xv)(−ΣxvΣ′vv + ΣvvΣ′xv) + (ΣxvΣ′xv)
2
]

(51)

=
1

2|Σ|2
[
2|Σ|Σ′2xv + (∆vx)

2
]
.

Here,

∆xv ≡ ΣxxΣ′vv − 2Σ′xvΣxv = −2γ|Σ|+ 2DΣxx, (52)

where we used Equations (47) and (48). It is useful to note that ∆xv in Equation (52),
representing the rate at which the determinant of the covariance changes in time for a fixed
x, contains the two terms involving γ (damping) and D (stochasticity) due to irreversibility.
We also note that, in equilibrium, Σvv = D

γ and Σxv = 0; thus, ∆xv = 0; d
dt Σxv = 0, but

Σ′vx = −γΣxv −ω2Σxx = −ω2Σxx 6= 0 in Equation (52), in general, contributing to E∗v in
Equation (43).

We use Equations (49), (52) and (52) in Equation (43) to obtain

E∗v = Σ−1
vv 〈∂tv(t)〉2 +

1
2|Σ|2

(
2|Σ|Σ′2xv + (∆vx)

2
)

, (53)

where Σ−1
vv = Σxx

|Σ| . Using Equation (53) and (18) in Equation (40) gives us

Γx→v =
√
E∗x −

√
Ex

=

[
〈∂tv(t)〉2

Σvv
+

1
2Σ2

vv

(
dΣvv

dt

)2
] 1

2

−
[

Σxx〈∂tv(t)〉2
|Σ| +

2|Σ|Σ′2xv + (∆vx)2

2|Σ|2

] 1
2

, (54)

where dΣvv
dt = 2(−γΣvv − ω2Σxv + D), Σ′xv = −γΣxv − ω2Σxx and ∆vx = −2γ|Σ| +

2DΣxx.
Again, to understand the difference between Ex and E∗x , we perform straightforward

but lengthy calculations using Equations (18), (41), (52), and (53) and find the following:

Ex→v = Σ−1
vv 〈∂tv(t)〉2 +

1
2|Σ|2

[
2|Σ|Σ′2xv + (∆vx)

2
]
−
[
〈∂tv(t)〉2

Σvv
+

Σ′2vv
2Σ2

vv

]

≡ Σ2
xv

|Σ|Σvv
〈∂tv(t)〉2 + Q(t). (55)

Here, Q is defined by

Q =
1

2|Σ|2
[
2|Σ|Σ′2xv + (∆vx)

2
]
− Σ′2vv

2Σ2
vv

=
1

|Σ|Σ2
vv

[
(2DΣxv − γΣxvΣvv + |Σ|ω2)2 + 2γω2Σ3

xvΣvv + Σ4
xvω4 + 2D2 Σ4

xv
|Σ|

]
. (56)
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We again note that Σxv plays a key role in Equation (55), as in the case of Equation (34).

In particular, if Σxv = 0, Q = |Σ|ω4

Σ2
vv

. If both d〈x〉
dt = d〈v〉

dt = 0 and Σxv = 0, Equations (40) and (55)
become

Γx→v = ω2
√

Σxx

Σvv
, Ex→v = ω4 Σxx

Σvv
. (57)

In equilibrium where Σxx = D
γω2 and Σvv = D

γ , Γx→v = ω and Ex→v = ω2. Thus,

we have the equality Γv→x = Γx→v = ω and Ex→v = Ev→x = ω2, as alluded to in the
discussion following Equation (35).

4. Entropy-Based Causality Measures

As noted previously, most of information theoretical measures of causality are based
on entropy, joint entropy, conditional entropy, or mutual information, etc. Specifically,
for the two dependent stochastic variables X1 and X2 with the marginal PDFs p(X1, t)
and p(X2, t) and joint PDF p(X1, t1; X2, t2), entropy S(X1), joint entropy S(X1, X2), mutual
entropy S(X1|X2), and mutual information I(X1, X2) are defined by

S(X1(t1)) = −
∫

dX1 p(X1, t1) ln p(X1, t1), (58)

S(X2(t2)) = −
∫

dX2 p(X2, t2) ln p(X2, t2), (59)

S(X1(t1), X2(t2)) = −
∫

dX1dX2 p(X1, t1; X2, t2) ln p(X1, t1; X2, t2), (60)

S(X1(t1)|X2(t2)) = S(X1(t1), X2(t2))− S(X2(t2)), (61)

I(X1(t1) : X2(t2)) = S(X1(t1))− S(X1(t1), X2(t2))

= S(X1(t1)) + S(X2(t2))− S(X1(t1), X2(t2)). (62)

For Gaussian processes, Equations (13)–(15) show that the entropy depends only on
the variance/covariance, being independent of the mean value. This can be problematic as
entropy fails to capture the effect of one variable on the mean value of another variable,
for instance, caused by rare events associated with coherent structures, such as vortices,
shear flows, etc. This is explicitly shown in Section 5.4 (see Figure 5) in regard to causality.
Although not widely recognized, it is important to point out the limitation of entropy-
based measures in measuring perturbations (in particular, caused by abrupt events) that
do not affect entropy, as shown in Reference [32]. In addition, entropy has shortcomings,
such as being non-invariant under coordinate transformations and insensitive to the local
arrangement (shape) of p(x, t) for fixed t. Similar comments are applicable to other entropy-
based measures. To demonstrate this point, in this section, we provide a detailed analysis
of information flow based on conditional entropy [16,41].

4.1. Tv→x

Information flow is based on predicting gain (or loss) of the future of subsystem 1
from the present state of subsystems 2 and defined as

Tv→x = lim
t1→t+

∂t1 I(x(t1) : v(t))

=
dS(x(t))

dt
− lim

t1→t+
∂t1 S(x(t1)|v(t)) =

dS(x(t))
dt

− lim
t1→t+

∂t1 S(x(t1), v(t)), (63)

where Equation (62) is used. Here, the first term and the second term on the RHS
represent the rate of change of the marginal entropy of x(t) and the rate of change of the
conditional entropy of x(t1) conditional on v(t) (i.e., frozen v). The difference between
these two rates then quantifies the effect of the evolution of v on the entropy of x. Note
that Tv→x can be both negative and positive; a negative Tv→x means that v acts to reduce
the marginal entropy of x (S1), as numerically observed in Reference [32].
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Using Equation (13), we have ∂t1 S(x(t1), v(t)) =
∂t1 |Σ(t1,t)|
|Σ(t1,t)| . Then, by using Equations (26)–(28)

and (29), we obtain

lim
t1→t

∂t1 |Σ(t1, t)| = Σ̇xxΣvv − 2Σ̇xvΣxv = 2ΣxvΣvv − 2ΣvvΣxv = 0, (64)

and

Tv→x =
dS(x(t))

dt
=

1
2

Σ̇xx

Σxx
=

Σxv

Σxx
. (65)

As can be seen from Equation (65), Tv→x depends only on the variance, being inde-
pendent of the mean value. Furthermore, Tv→x is proportional to the cross-correlation Σxv,
becoming zero for Σxv = 0 as in the case of equilibrium. (Note that Equation (65) is derived
using a different method in Reference [32] for the Kramers equation.)

4.2. Tx→v

Similarly, information flow is based on predicting gain (or loss) of the future of
subsystem 2 from the present state of subsystems 1 and defined as

Tx→v = lim
t1→t+

∂t1 I(x(t) : v(t1))

=
dS(v(t))

dt
− lim

t1→t+
∂t1 S(x(t)|v(t1)) =

dS(v(t))
dt

− lim
t1→t+

∂t1 S(x(t), v(t1)), (66)

where Equation (62) is used. Here, the first term and the second term on the RHS represent
the rate of change of the marginal entropy of v(t) and the rate of change of the conditional
entropy of v(t1) conditional on x(t) (i.e., frozen x). The difference between these two rates
then quantifies the effect of the evolution of x on the entropy of v. Note again that Tx→v can
be both negative and positive; a negative Tx→v means that x acts to reduce the marginal
entropy of v (S2), as numerically observed in Reference [32].

For ∂t1 S(x(t), v(t1)] =
∂t1 |Σ(t,t1)|
|Σ(t,t1)|

, we use Equations (44)–(48) and (50) to obtain

lim
t1→t

∂t1 |Σ(t, t1)| = Σ′vv(t)Σxx(t)− 2Σ′xv(t)Σxv

= γ(−2ΣxxΣvv + 2Σ2
xv) + 2DΣxx = −2γ|Σ|+ 2DΣxx. (67)

Thus,

Tx→v =
dS(v(t))

dt
− lim

t1→t+
∂t1 S(X1(t), X2(t1))

=
1
2

[
Σ′vv

Σvv
− −2γ|Σ|+ 2DΣxx

|Σ|

]
= −ω2 Σxv

Σvv
− D

(Σxv)2

Σvv|Σ|
. (68)

Again, Equation (68) is derived using a different method in Reference [32]. As in the
case of Tv→x in Equation (65), Tx→v depends only on the variance, being independent of
the mean value while being proportional to the cross-correlation Σxv, becoming zero for
Σxv = 0 as in the case of equilibrium.

5. Comparisons between Causal Information Rate and Information Flow

In this section, we compare the causal information rate in Equations (33) and (54) with
the information flow in Equations (65) and (68) for the Kramers equation by focusing on
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several interesting cases. We start by noting that if γ 6= 0, ω 6= 0, and D 6= 0, x and v evolve
to equilibrium where the covariance matrix takes the values:

Σxx =
D

γω2 , Σvv =
D
γ

, Σxv = 0. (69)

We use the same initial conditions

〈x(0)〉 = −0.5, 〈v(0)〉 = 0.5, Σxx(0) = Σvv(0) = 0.01, Σxv(0) = 0, (70)

and present various statistical quantifies in Figures 1–5, including snapshots of PDFs,
Σxx(t), Σvv(t), and Σxv(t) in panel (a); Tx→v, Tv→x, Γx→v, Γv→x in panel (b). Note that PDF
snapshots are shown for one-standard deviation, using different colors for different times.

5.1. No Stochastic Noise D = 0

It is useful to look at the deterministic case without the stochastic noise ξ = 0 in
Equations (7) and (8), where a time-dependent PDF evolves due to non-zero initial condi-
tions. Specifically, the two cases where γ = ω = 0 and γ = 0 and ω = 1 are considered in
Figures 1 and 2, respectively.
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Figure 1. Snapshots of PDFs, Σxx(t), Σvv(t), and Σxv(t) in panel (a) (PDF snapshots are shown for
one-standard deviation, using different colors for different times); Tx→v, Tv→x, Γx→v, Γv→x in panel
(b). Parameter values are D = 0, γ = 0, and ω = 0.
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Figure 2. Snapshots of PDFs, Σxx(t), Σvv(t), and Σxv(t) in panel (a) (PDF snapshots are shown for
one-standard deviation, using different colors for different times); Tx→v, Tv→x, Γx→v, Γv→x in panel
(b). Parameter values are D = 0, γ = 0, and ω = 1.

To gain a key insight into the meaning of our causal information rate, we start with the
simplest case in Figure 1, where γ = 0 = ω, with v being fixed to its initial value v(0) so that
x(t) = x(0) + v(0)t. The snapshots of the PDF and the covariance matrix in Figure 1a show
that the PDF center (peak) undergoes a drift according to 〈x(t)〉 = 〈x(0)〉+ 〈v(0)〉t, while
the PDF broadens with time in the x-direction since δx(t) = δx(0) + t δv(0). As a result,
Σxv increases linearly with time. Σxv 6= 0 causes a rapid initial increase in information
flow Tv→x 6= 0 in Figure 1b. However, as t → ∞, Tv→x → 0 since Σxx increases faster
than Σxv in time, leading to Tv→x = Σxv

Σxx
→ 0 (see Equation (65)). Thus, Tv→x fails to

reflect the feedback from v to x in the long time limit. In contrast, Γv→x monotonically
increases with time, approaching a constant value (Γv→x → 5) as t → ∞. On the other
hand, Γx→v = Tx→v = 0 at all times, reflecting the lack of the coupling from x to v at all
times, consistent with our expectation. That is, the lack of the feedback from x on v is
reflected in both Γx→v = Tx→v = 0, while the one-way coupling of v to x is captured only
by Γv→x 6= 0 at any time.

To include the feedback of x on v, we now consider the case γ = 0 and ω = 1
in Figure 2. Non-zero value of ω (= 1)—only the difference from Figure 1—now establishes
the two-way (mutual) communications between x and v, leading to the harmonic motion
(see Equations (7) and (8)). Figure 2a shows how the PDF center drifts according to this
harmonic motion, while the cross-correlation Σxv(t) = 0 at any time. The latter leads to
the information flow Tx→v = Tv→x = 0 shown in Figure 2b. In contrast, Γx→v and Γv→x
in Figure 2b exhibit oscillations with a 90 degree phase-shift between the two due to the
harmonic motion, capturing the two-way feedback between x and v. To highlight an exact
symmetry between Γx→v and Γv→x, we can consider a global, path-dependent measure
of causality by integrating Γx→v and Γv→x over the same integer multiples of the period
(2π/ω), which would give the same value. These results reveal that our causal information
rate captures the dependence between x and v even in the absence of their cross-correlation.
(We recall that zero cross-correlation does not imply independence.)
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5.2. Equilibrium: v

We now consider the Ornstein-Uhlenbeck (O-U) process of v by choosing γ = 1,
ω = 0 and D 6= 0 in Figure 3. In this case, v approaches asymptotically its equilibrium
distribution where Σvv = D

γ , while p(x, t) evolves in time. Specifically, we choose D =

Dxx(0) = Dvv(0) = 0.01 (see also Equation (70)). Figure 3a shows that the PDF broadens in
the x-direction (Σxx ∝ t), while keeping its original width in the v-direction. On the other
hand, due to the non-zero D 6= 0, the cross-correlation Σxv(t) > 0 is seen to grow in time,
approaching a constant value 0.01 as t → ∞. As in the case of Figure 2, Tx→v and Tv→x
take finite values due to non-zero Σxv 6= 0 but become zero asymptotically as t→ ∞ (due
to Σxx ∝ t), as shown in Figure 3b. On the other hand, the behavior of Γx→v and Γv→x is
quite similar.
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Figure 3. Snapshots of PDFs, Σxx(t), Σvv(t), and Σxv(t) in panel (a) (PDF snapshots are shown for
one-standard deviation, using different colors for different times); Tx→v, Tv→x, Γx→v, Γv→x in panel
(b). Parameter values are D = 0.01, γ = 1, and ω = 0.
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Figure 4. Snapshots of PDFs, Σxx(t), Σvv(t), and Σxv(t) in panel (a) (PDF snapshots are shown for
one-standard deviation, using different colors for different times); Tx→v, Tv→x, Γx→v, Γv→x in panel
(b). Parameter values are D = 0.01, γ = 1, ω = 1.

-0.5 0 0.5

-0.4

-0.2

0

0.2

0.4

0.6

0 5 10 15 20

0.01

0.01

0.01

0 5 10 15 20

0.01

0.01

0.01

0 5 10 15 20
-1

0

1

=1.00, =1.00 and D
0
=0.01

(a)

(b)
Figure 5. Snapshots of PDFs, Σxx(t), Σvv(t), and Σxv(t) in panel (a) (PDF snapshots are shown for
one-standard deviation, using different colors for different times); Tx→v, Tv→x, Γx→v, Γv→x in panel
(b). Parameter values are D = 0.01, γ = 1, ω = 1, with an impulse u(t) 6= 0 with c = 0.1 and t0 = 4.

5.3. Equilibrium: x and v

To ensure a quick evolution to the equilibrium distribution in time, we choose D =
0.01, ω = 1, and γ = 1 so that the initial and final (equilibrium) PDFs have the same
variance in Figure 4. Figure 4a shows that the PDF center undergoes a damped oscillation
without changing its shape since Σxx(t) = Σvv(t) = 0.01 and Σxv(t) = 0 at all times.
Σxv(t) = 0 leads to Tx→v = Tv→x = 0 in Figure 4b, as in the case of Figure 2b. In
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contrast, the drift of the PDF center leads to non-zero values of Γv→x and Γx→v, which
asymptotically approach 1 (see Equations (57)). The latter reveals that the equilibrium is
maintained through the two-way communications between x and v.

5.4. An Abrupt Change Introduced by an Impulse

In Reference [32], we showed that an abrupt event (modeled by an impulse function,
with a peak at a certain time) caused a sudden increase in E = Γ2 in all cases, while it
caused a sudden increase in the magnitude of the information flow |Ti→j| (i 6= j) only when
the perturbation affects entropy (variance). Furthermore, it was shown that the peak of
|Ti→j| (i 6= j) followed (not preceded) the actual impulse peak, while the peak of E = Γ2

tended to precede the impulse peak. This means that, by measuring the temporal change
in E , especially, when its peak appears, we can forecast the onset of an abrupt event (whose
peak appears later than E -peak in time). We now look at the effect of a sudden impulse on
the causal information rate.

To this end, we introduce a sudden perturbation to the Kramers equation by adding
an impulse function u(t) as a time-dependent additive force to Equation (8) as follows:

dv
dt

= −γv−ω2x + u(t) + ξ,

u(t) =
1

c
√

π
e−
(

t−t0
c

)2

. (71)

We use the analytical expressions for the mean values and covariance in Reference [32]
and choose the parameter values c = 0.1 and t0 = 4 in Equation (71) and D = ω = γ = 1
(the same as in Figure 4). The results are shown in Figure 5, where the impulse function
u(t) localized around t = 4 is shown in red dotted line, using the right y axis, in the bottom
panels in Figure 5b.

Figure 5a shows that u(t) causes a sudden drift of the PDF center with no change in
variance. Therefore, Tx→v(t) = Tv→x(t) = 0 in Figure 5b, with no influence of u(t). In
sharp contrast, Γx→v and Γv→x exhibit abrupt change around time t = 4. Furthermore,
the peak in Γx→v (or Γv→x) tends to proceed the impulse peak (in red dotted line). We
observe similar results when an impulse is applied to the covariance matrix (results not
shown). These results, thus, suggest that our causality information rate is sensitive to
the perturbation (in both mean and variance) and predicts the onset of a sudden event
very well, especially in comparison with the information flow. We emphasize that the
information flow (and other entropy-based methods) cannot detect the onset of a sudden
event that does not affect entropy (e.g., Reference [32] for different examples).

6. Conclusions

Information geometry in general concerns the distinguishability between two PDFs
(e.g., constructed from data) and is sensitive to the local dynamics (e.g., Reference [27]),
depending on a local arrangement (the shape) of the PDFs. This is different from entropy,
which is a global measure of a PDF, being insensitive to such a local arrangement. When
a PDF is a continuous function of time, the information rate and information length are
helpful in understanding far-from-equilibrium phenomena in terms of the number of
distinguishable statistical states that a system evolves through in time. Being very sensitive
to evolving dynamics, it enables us to compare different far-from-equilibrium processes
using the same dimensionless distance, as well as quantifying the relation (correlation,
self-regulation, etc.) among variables (e.g., References [27–30]).

In this paper, by extending our previous work [20–31], we introduced the causal
information rate as a general information-geometric method that can elucidate causality
relations in stochastic processes involving temporal variabilities and strong fluctuations.
The key idea was to quantify the effect of one variable on the information rate of the
other variable. The cross-correlation between the variables was shown to play a key
role in the information flow, zero cross-correlation leading to zero information flow. In
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comparison, the causal information rate can take a non-zero value in the absence of cross-
correlation. Since zero cross-correlation (measuring only the linear dependence) does not
imply independence in general, this means that the causal information rate captures the
(directional) dependence between two variables even when they are uncorrelated with
each other.

Furthermore, the causal information rate captures the temporal change in both covari-
ance matrix and mean value. In comparison, the information flow depends only on the
temporal change in the covariance matrix. Thus, the causal information rate is a sensitive
method for predicting an abrupt event and quantifying causal relations. These properties
are welcome for predicting rare, large-amplitude events. Application has been made to the
Kramers equation to highlight these points. Although the analysis in this paper is limited
to the Gaussian variables that are entirely characterized by the mean and variance, similar
results are likely to hold for non-Gaussian variables because the information rate captures
the temporal changes of a PDF itself, while entropy-based measures (e.g., information flow)
depend only on variance.

Given that causality (directional dependence) plays a crucial role in science and
engineering (e.g., References [43,44]), our method could be useful in a wide range of
problems. In particular, it could be utilized to elucidate causal relations among different
players in nonlinear dynamical systems, fluid/plasma dynamics, laboratory plasmas,
astrophysical systems, environmental science, finance, etc. For instance, in fluid/plasmas
turbulence, it could help resolving the controversy over causality in the low-to-high (L-
H) confinement transition [29,30,45,46], as well as contributing to identifying a causal
relationship among different players responsible for the onset of sudden abrupt events
(e.g., fusion plasmas eruption) (e.g., References [47,48]), with a better chance of control.
It could also elucidate causal relationships among different physiological signals, how
different parts of a human body (e.g., brain-heart-connection) are self-regulated to maintain
homeostasis (the optimal living condition for survival), and how this homeostasis degrades
with the onset of diseases.

Finally, it will be interesting to investigate the effects of coarse-graining in future
works. In Reference [49], for the information geometry given by the Fisher metric, relevant
directions were shown to be exactly maintained under coarse-graining, while irrelevant
directions contract. The analysis for more than two variables will also be addressed in
future work.
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Appendix A. Solutions to the Kramers Equations

The general solution to the Kramers equation in Equations (7)–(9) is

x(t) = xh(t) +
1
∆

∫ t

0
dt1

[
eα+t1 − eα−t1

]
ξ(t1), (A1)

v(t) = vh(t) +
1
∆

∫ t

0
dt1

[
α+eα+t1 − α−eα−t

]
ξ(t1), (A2)

where xh(t) and vh(t) are the homogeneous solution and

α± =
1
2

[
−γ±

√
γ2 − 4ω2

]
≡ 1

2
[−γ± ∆], (A3)
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where ∆ = γ2 − 4ω2. For the initial condition x(t = 0) = x0 and v(t = 0) = v0, they are

xh(t) =
1
∆

[
(−α−eα+t + α+eα−t)x(0) + (eα+t − eα−t)v(0)

]
, (A4)

vh(t) =
1
∆

[
α+α−(−eα+t + eα−t)x(0) + (α+eα+t − α−eα−t)v(0)

]
. (A5)

By taking the averages of Equations (A1) and (A2) with the help of Equations (A4) and (A5),
we obtain the evolution of the mean values as

〈x(t)〉 =
1
∆

[
(−α−eα+t + α+eα−t)〈x(0)〉+ (eα+t − eα−t)〈v(0)〉

]
, (A6)

〈v(t)〉 =
1
∆

[
α+α−(−eα+t + eα−t)〈x(0)〉+ (α+eα+t − α−eα−t)〈v(0)〉

]
. (A7)

The elements of the equal-time covariance matrix Σ(t) are obtained by subtracting
Equations (A6) and (A7) from Equations (A1) and (A2), respectively, and then by multiply-
ing and taking averages using Equation (9):

Σxx = 〈(δx(t))2〉 = 〈(δxh(t))2〉+ 2D
∆2

∫ t

0
dt1

[
eα+t1 − eα−t1

]2

= 〈(δxh(t))2〉+ D
∆2

[
1

α+
[e2α+t − 1] +

1
α−

[e2α−t − 1]− 4
α+ + α−

[e(α++α−)t − 1]
]

, (A8)

Σvv = 〈(δx(t))2〉 = 〈(δvh(t))2〉+ 2D
∆2

∫ t

0
dt1

[
α+eα+t1 − α−eα−t1

]2

= 〈(δvh(t))2〉+ D
∆2

[
α+[e2α+t − 1] + α−[e2α−t − 1]− 4α+α−

α+ + α−
[e(α++α−)t − 1]

]
, (A9)

Σxv = 〈δx(t)δv(t)〉 = 〈δxh(t)δvh(t)〉+
2D
∆2

∫ t

0
dt1

[
eα+t1 − eα−t1

][
α+eα+t1 − α−eα−t1

]
= 〈δxh(t)δvh(t)〉+

4De−γt

∆2 sinh2
(

∆t
2

)
. (A10)

Here,

〈(δxh(t))2〉 =
1

∆2

[
(−α−eα+t + α+eα−t)2Σxx(0) + (eα+t − eα−t)2Σvv(0)

+2(eα+t − eα−t)(−α−eα+t + α+eα−t)Σxv(0)

]
, (A11)

〈(δvh(t))2〉 =
1

∆2

[
α2
+α2
−(−eα+t + eα−t)2Σxx(0) + (α+eα+t − α−eα−t)2Σvv(0)

+2α+α−(−eα+t + eα−t)(α+eα+t − α−eα−t)Σxv(0)

]
, (A12)

〈δxh(t)δvh(t)〉 =
1

∆2

[
α+α−(−α−eα+t + α+eα−t)(−eα+t + eα−t)Σxx(0)

+
[
−α+α−(eα+t − eα−t)2 + (α+eα+t − α−eα−t)(−α−eα+t + α+eα−t)Σxv(0)

]
+(eα+t − eα−t)(α+eα+t − α−eα−t)Σvv(0)

]
, (A13)

where Σxx(0) = 〈(δx(0))2〉, Σvv(0) = 〈(δv(0))2〉, and Σxv(0) = 〈δx(0)δv(0)〉.
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Appendix B. Derivation of Equation (25)

We let φ = 1
2 Σ−1

ij (t1, t)(Xi − 〈Xi〉)(Xj − 〈Xj〉) so that Equation (21) becomes

p(x, t1; v, t) =
1

2π
√
|Σ(t1, t)|

exp (−φ). (A14)

Then, we have

∂t1 p
p

= −
˙|Σ|

2|Σ| − ∂t1 φ, (A15)(
∂t1 p

p

)2

=
˙|Σ|2

4|Σ|2 + ∂t1 φ
˙|Σ|
|Σ| + (∂t1 φ)2, (A16)

∫
dxdv p

(
∂t1 p

p

)2

=
˙|Σ|2

4|Σ|2 + 〈∂t1 φ〉
˙|Σ|
|Σ| + 〈(∂t1 φ)2〉, (A17)

where Σ̇ = ∂t1 Σ. Using ∂t1t1 e−φ = −(∂t1t1 φ)e−φ + (∂t1 φ)2e−φ and
∫

dxdve−φ = 2π
√
|Σ|,

we have

〈∂t1 φ〉 = − 1
2π
√
|Σ|

∂t1

∫
dxdve−φ = −

˙|Σ|
2|Σ| , (A18)

〈(∂t1 φ)2〉 = −1
4

˙|Σ|2

|Σ|2 +
1
2

¨|Σ|
|Σ| + 〈∂t1t1 φ〉. (A19)

Thus, by using Equations (A18) and (A19) in Equation (A17), we have

E∗x (t) = lim
t1→t+

1
2

∂t

(
˙|Σ|
|Σ|

)
+ 〈∂t1t1 φ〉

 = lim
t1→t+

[
1
2

Tr
[

∂t1

(
Σ−1Σ̇

)]
+ 〈∂t1t1 φ〉

]
, (A20)

where we used ˙|Σ| = |Σ|Tr
(

Σ−1Σ̇
)

. To calculate 〈∂ttφ〉, we use

∂t1 φ = ∂t1(δXi)Σ−1
ij δXj +

1
2

δXi(∂t1 Σ−1
ij )δXj, (A21)

∂t1t1 φ = ∂t1t1(δXi)Σ−1
ij δXj +

1
2

δXi(∂t1t1 Σ−1
ij )δXj + ∂t(δXi)Σ−1

ij ∂t1(δXj)

+2∂t1(δXi)∂t1(Σ
−1
ij )δXj, (A22)

where i, j = 1, 2 and the symmetry Σij = Σji is used. Since ∂t(δXi) = −〈∂tXi〉, etc., the
average of Equation (A22) is simplified as

〈∂t1t1 φ〉 = ∂t1〈Xi〉Σ−1
ij ∂t1〈Xj〉+

1
2
〈δXi(∂t1t1 Σ−1

ij )δXj〉

= ∂t〈Xi〉Σ−1
ij ∂t〈Xj〉+

1
2

Tr[(∂t1t1 Σ−1)Σ], (A23)

where 〈δXiGijδXj〉 = Tr[GΣ] is used. Then, by using ∂t1 Σ−1 = −Σ−1Σ̇Σ−1 twice in
Equation (A23), and putting the results in Equation (A20), we obtain Equation (25) in
the text.

The derivation above is general. For the equal-time joint PDF, a similar analysis, or
simply putting t1 = t in Equation (25) gives us Equation (16). Furthermore, by taking Xi
and Σ to be a scalar as Xi = xδi1 and Σ = Σxx in Equation (16), we obtain Equation (17).
Similarly, taking Xi = vδi2 and Σ = Σvv in Equation (16) gives us Equation (18).
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Appendix C. Comment on Equation (47)

In Equation (47), δv(t) consists of the homogeneous δvh(t) and inhomogeneous δvI(t)
due to initial conditions and ξ, respectively, evolving according to

∂tδvh(t) = −γδvh(t)−ω2δvh(t), (A24)

∂tδvI(t) = −γδvI(t)−ω2δvI(t) + ξ. (A25)

Thus, by using Equations (A24) and (A25), we calculate Σ′vv in Equation (47) as follows:

Σ′vv(t) = 〈(∂tδv(t))δv(t)〉 = 〈∂t[δvh(t) + δvI(t)](δvh(t) + δvI(t))〉
= 〈∂t(δvh(t))(δvh(t)))〉+ 〈∂t(δvI(t))(δvI(t))〉
= −2γΣvv,h − 2ω2Σxv,h − 2γΣvv,I − 2ω2Σxv,I + D

= −2γΣvv − 2ω2Σxv + D. (A26)

Here, we used 〈vh(t)vI(t)〉 = 0; Σvv,h = 〈(δvh(t))(δvh(t))〉, Σvv,I = 〈(δvI(t))(δvI(t))〉,
Σvv = Σvv,h + Σvv,I , and similarly for Σvx.
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