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Abstract: In this article, the “truncated-composed” scheme was applied to the Burr X distribution
to motivate a new family of univariate continuous-type distributions, called the truncated Burr
X generated family. It is mathematically simple and provides more modeling freedom for any
parental distribution. Additional functionality is conferred on the probability density and hazard
rate functions, improving their peak, asymmetry, tail, and flatness levels. These characteristics
are represented analytically and graphically with three special distributions of the family derived
from the exponential, Rayleigh, and Lindley distributions. Subsequently, we conducted asymptotic,
first-order stochastic dominance, series expansion, Tsallis entropy, and moment studies. Useful risk
measures were also investigated. The remainder of the study was devoted to the statistical use
of the associated models. In particular, we developed an adapted maximum likelihood method-
ology aiming to efficiently estimate the model parameters. The special distribution extending the
exponential distribution was applied as a statistical model to fit two sets of actuarial and financial
data. It performed better than a wide variety of selected competing non-nested models. Numerical
applications for risk measures are also given.

Keywords: truncated distributions; Burr X distribution; general family of distributions; moments;
risk measures; maximum likelihood technique; data analysis

1. Introduction

In most branches of applied sciences, the practitioner must process data to understand
all aspects of this object of study. The use of efficient statistical models is often a minimum
condition to achieve this goal. These models are based on mathematical representations,
which can be of various kinds, depending on the context and objective. One type of useful
model is based on parametric distributions with desirable properties. Logically, the more
flexible the distribution in terms of functionality, the more efficient the associated model
is for data analysis. To be usable, the distributions must also be of moderate complexity,
which depends mainly on their number of parameters and the nature of the involved
functions, even if the development of computer science has relaxed this constraint a little.

Since the turn of the millennium, a modern approach has sought to create general
families of continuous distributions that generalize or extend any referenced distribution,
referred to as the parental, baseline, or reference distribution, using specific mathematical
schemes. These schemes consist of transforming the parental cumulative distribution
function (cdf) via parametric functions. New shape or scale parameters are often involved
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in this analytical operation. An overview can be found in [1–3]. A list of recent families of
distributions is the following: truncated Fréchet generated (TF-G) family by [4], truncated
Weibull generated (TW-G) family by [5], truncated inverted Kumaraswamy generated
(TIK-G) family by [6], type II truncated Fréchet generated (TIITF-G) family by [7], trans-
muted Muth generated (TM-G) family by [8], Box–Cox gamma generated (BCG-G) family
by [9], Topp–Leone odd Fréchet generated (TLOF-G) family by [10], exponentiated power
generalized Weibull power series generated (EPGWPS-G) family by [11], xgamma gener-
ated (XG-G) family by [12], truncated Cauchy power generated (TCP-G) family by [13],
exponentiated truncated inverse Weibull generated (ETIW-G) family by [14], transmuted
odd Fréchet generated (TOF-G) family by [15], Marshall–Olkin exponentiated generalized
generated (MOEG-G) family by [16], exponentiated M generated (EM-G) family by [17],
type II power Topp–Leone generated (TIITL-G) family by [18], modified T-X generated
(MTX-G) family by [19], modified odd Weibull generated (MOW-G) family by [20], trun-
cated Burr generated (TB-G) family by [21], type II general inverse exponential generated
(TIIGIE-G) family by [22], odd generalized gamma generated (OGG-G) family by [23],
and truncated generalized Fréchet generated (TGF-G) family by [24].

Some of these families are constructed from the “truncation-composition” scheme,
such as the TF-G, TIK-G, TIITF-G, TCP-G, ETIW-G, TB-G, and TGF-G families mentioned
above. This scheme is based on the following process: first, truncate the cdf of a flexible
survival distribution over the unit interval, then compose it with a cdf of an arbitrary
parental distribution. Its main interest is to create families capable of producing simple and
original distribution functions with new modeling potential. Of course, the characteristics
and practical aspects of the family mainly depend on the choices of the cdfs involved. This
“truncation-composition” scheme will be at the center of the proposed methodology.

On another plan, the Burr X (BX) distribution was invented and developed by [25]
as a special survival function. From the mathematical point of view, its two-parameter
version is listed by the following cdf:

FBX(x; α, θ) =
[
1− e−(αx)2]θ

, x > 0, α > 0, θ > 0,

and FBX(x; α, θ) = 0 for x ≤ 0, where α and θ are scale and shape parameters, respectively.
Furthermore, the associated pdf is given by:

fBX(x; α, θ) = 2α2θxe−(αx)2[
1− e−(αx)2]θ−1

, x > 0,

and fBX(x; α, θ) = 0 for x ≤ 0. Owing to a wise compromise between simplicity and
flexibility, the BX distribution has received much attention. Important references in this
regard include [26–34]. The BX distribution has been proven to be a proper alternative to
the weighted exponential, exponentiated exponential, gamma, and Weibull distributions in
some data analysis problems. It finds many applications in reliability, agriculture, engineer-
ing, and biology. The BX distribution is also the main ingredient of the BX generated (BX-G)
family studied in depth by [35]. It is constructed from the “odd-composition” scheme; the
BX-G family is registered by the following cdf:

FBX−G(x; α, θ) = FBX

(
G(x; ω)

Ḡ(x; ω)
; α, θ

)
=
[
1− e−(αG(x;ω)/Ḡ(x;ω))

2]θ
, x ∈ R,

where G(x; ω) is a cdf of a parental distribution with a parameter vector ω and Ḡ(x; ω) =
1− G(x; ω). It has been proven that the functionalities of the BX-G family have the power
to enhance the modeling capabilities of the parental distribution (see [35,36]).

In this study, we employed the BX distribution for further modeling and application
perspectives. In light of the paragraphs above, we propose to apply the “truncation-
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composition” scheme to the BX distribution to develop a new family. Its detailed construc-
tion and main motivations are described below. First, we considered the truncated version
of FBX(x; α, θ) over the unit interval given as:

FTBX(x; α, θ) =
FBX(x; α, θ)

FBX(1; α, θ)

=
1

(1− e−α2)θ

[
1− e−(αx)2]θ

, x ∈ (0, 1), (1)

FTBX(x; α, θ) = 0 for x < 0 and FTBX(x; α, θ) = 1 for x > 1. Then, upon the composition of
Equation (1) with the cdf of a parental distribution, we define the truncated BX generated
(TBX-G) family by the following cdf:

FTBX−G(x; α, θ, ω) = FTBX(G(x; ω); α, θ)

=
1

(1− e−α2)θ

[
1− e−(αG(x;ω))2]θ

, x ∈ R. (2)

At first glance, we can notice the manageability of FTBX−G(x; α, θ, ω). From a purely
analytical point of view, it seems easier to use than the cdf of the BX-G family, which
deals with the possibly complex ratio G(x; ω)/Ḡ(x; ω). Secondly, we underline its novelty:
to our knowledge, it has not been studied in any form in the existing literature. On the
other hand, the TBX-G family has some interesting connections with well-reputed families.
When α tends to zero, FTBX−G(x; α, θ, ω) tends to G(x; ω)2θ , which defines the famous
exponentiated generated (E-G) family with parameter 2θ. In addition, the TBX-G and
TW-G families coincide under the following configuration: θ = 1 for the TBX-G family,
and for the TW-G family, the scale parameter is equal to α2 and the shape parameter to
two. The success of the TW-G family in applications is a motivation for more work on the
TBX-G family.

In this study, we develop the TBX-G family, highlighting its richness and potential
for applicability. In the first part, we introduce the main functions of the TBX-G family
and, in particular, the pdf, hazard rate function (hrf) and quantile function (qf). Then, three
special members of the family based on the exponential, Rayleigh, and Lindley distributions
are discussed. A battery of general properties of the TBX-G family is examined, including
the asymptotic action of the pdf, hrf, and qf, stochastic dominance results on the cdf,
series expansion of the exponentiated pdf, Tsallis entropy measure, and moment-type
measures. A paragraph concerns useful risk measures, with a focus on the value at risk
and expected shortfall. Then, statistical uses of the special model extending the exponential
distribution are developed through the maximum likelihood (ML) technique. It is applied
to fit two sets of actuarial and financial data. Using standard benchmarks, we reveal that
it performs better than eight selected competing models. Then, the estimation of risk
measures for the considered datasets is discussed, with a fairly satisfactory result for the
proposed methodology.

The following sections compose the article. Section 2 exhibits the pdf and hrf of the
TBX-G family, with illustrations of the three mentioned special distributions. Section 3 is
dedicated to the mathematical properties. Section 4 develops the corresponding statistical
and inferential approaches. Section 5 contains two applications for data. Section 6 is
conclusive; some endnotes and perspectives are formulated.

2. Presentation of the TBX-G Family

The TBX-G family is first and foremost characterized by the cdf given in Equation (2).
Other functions of interest can be expressed and discussed to capture the modeling capacity
of the family. This section presents these functions, with concrete examples.

2.1. Distributional Functions

Here, the general expressions of the pdf, hrf, and qf are given.
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2.1.1. Definition of the pdf

The pdf of the TBX-G family is derived from Equation (2) by differentiation; after
elementary operations, we obtain:

fTBX−G(x; α, θ, ω) =
2θα2

(1− e−α2)θ
g(x; ω)G(x; ω)e−(αG(x;ω))2[

1− e−(αG(x;ω))2]θ−1
,

x ∈ R, (3)

where g(x; ω) is the pdf derived from G(x; ω). Classically, for a random variable X with
pdf fTBX−G(x; α, θ, ω) and any function r(x), we have:

E[r(X)] =
∫
R

r(x) fTBX−G(x; α, θ, ω)dx, (4)

where E stands for expectation, provided the integral exists. Specific choices for r(x) define
useful probabilistic measures and functions. Some of them will be discussed later.

2.1.2. Definition of the hrf

Based on the functions in Equations (2) and (3), the survival analysis of the TBX-G
family can be performed through the hrf defined by:

hTBX−G(x; α, θ, ω) =
fTBX−G(x; α, θ, ω)

1− FTBX−G(x; α, θ, ω)

=
2θα2g(x; ω)

(1− e−α2)θ −
[
1− e−(αG(x;ω))2

]θ
G(x; ω)e−(αG(x;ω))2[

1− e−(αG(x;ω))2]θ−1
, x ∈ R. (5)

This function takes its full sense where the reference distribution is a survival distribution.
In this case, it finds numerous applications in various fields, such as in demography and
actuarial science, where the hrf represents the force of mortality. From the analytical
point of view, the curvature of the hrf can be of various forms: it can be monotonic, not
monotonic, or discontinuous. The diverse meanings of this diversity of forms can be found
in [37].

2.1.3. Definition of the qf

The qf of the TBX-G family is derived to Equation (2) by the standard inversion
technique; after elementary developments, we obtain:

QTBX−G(u; α, θ, ω) = F−1
TBX−G(u; α, θ, ω)

= QG

(
1
α

{
− log

[
1− u1/θ(1− e−α2

)
]}1/2

, ω

)
, u ∈ (0, 1), (6)

where QG(u; ω) = G−1(u; ω). The qf is very useful in probability and statistics, allow-
ing the definitions of various measures and functions. The importance of quantile mea-
sures/functions was highlighted in [38]. In order to understand the effects of the shape
parameters on the skewness and kurtosis of the TBX-G family, one can use the Bowley
skewness measure defined by:

SK =
QTBX−G(3/4; α, θ, ω) + QTBX−G(1/4; α, θ, ω)− 2QTBX−G(1/2; α, θ, ω)

QTBX−G(3/4; α, θ, ω)−QTBX−G(1/4; α, θ, ω)
(7)

and the Moors kurtosis measure defined by:

KU =
QTBX−G(7/8; α, θ, ω)−QTBX−G(5/8; α, θ, ω) + QTBX−G(3/8; α, θ, ω)−QTBX−G(1/8; α, θ, ω)

QTBX−G(6/8; α, θ, ω)−QTBX−G(2/8; α, θ, ω)
. (8)
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The main advantages of SK and KU are their mathematical existence under all circum-
stances and simplicity. In the case of unimodal distributions, a positive KU indicates heavy
tails and peakedness, whereas a negative KU indicates light tails and flatness.

The presented pdf, hrf, and qf are fundamental for further statistical processing of the
TBX-G family, and their relative simplicity motivates more in this regard.

2.2. Special Survival Distributions

Here, we illustrate the modeling richness of the TBX-G family by introducing three of
its survival distributions. The following parental distributions are considered: exponential,
Rayleigh, and Lindley distributions.

2.2.1. TBX Exponential Distribution

The TBX exponential (TBXE) distribution is a three-parameter survival member of the
TBX-G family. It is defined with the exponential distribution as a parent, that is ω = (β),
GE(x; β) = 1− e−βx for x > 0 and GE(x; β) = 0 for x ≤ 0 and gE(x; β) = βe−βx for x > 0
and gE(x; β) = 0 for x ≤ 0. Hence, based on Equations (2), (3), and (5), the cdf, pdf, and
hrf of the TBXE distribution are:

FTBXE(x; α, θ, β) =
1

(1− e−α2)θ

{
1− e−[α(1−e−βx)]

2
}θ

, x > 0,

and FTBXE(x; α, θ, β) = 0 for x ≤ 0,

fTBXE(x; α, θ, β) =
2θα2β

(1− e−α2)θ
e−βx(1− e−βx)e−(α(1−e−βx))

2
{

1− e−[α(1−e−βx)]
2
}θ−1

,

x > 0,

and fTBXE(x; α, θ, β) = 0 for x ≤ 0 and

hTBXE(x; α, θ, β) =
2θα2β

(1− e−α2)θ −
{

1− e−[α(1−e−βx)]
2
}θ

e−βx(1− e−βx)e−[α(1−e−βx)]
2
×

{
1− e−[α(1−e−βx)]

2
}θ−1

, x > 0,

and hTBXE(x; α, θ, β) = 0 for x ≤ 0, respectively. A visual approach of the pdf and hrf is
offered in Figure 1, showing the diversity of shapes possessed by these functions at chosen
values of the parameters.
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Figure 1. Plots of the pdf (left) and hrf (right) of the TBXE distribution for specific parameter values.

Figure 1 reveals that the pdf of the TBXE distribution can be decreasing or unimodal
and right-skewed with various roundness, tail, and asymmetric properties. For its part,
the hrf presents a wide variety of increasing and unimodal shapes. It is clear that the TBXE
distribution is more flexible than the exponential distribution; the “truncated-composed
BX scheme” has enriched the catalog of shapes of the basic exponential distribution.
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A quantile analysis of the TBXE distribution is now afforded. Based on Equation (6),
the qf of the TBXE distribution is:

QTBXE(u; α, θ, β) = − 1
β

log
(

1− 1
α

{
− log

[
1− u1/θ(1− e−α2

)
]}1/2

)
, u ∈ (0, 1). (9)

Thanks to this closed-form expression, we can express several quantile measures, such as
SK and KU, as described in Equations (7) and (8), respectively. Three-dimensional plots of
SK and KU are proposed in Figure 2 for a fixed value of β and varying values for α and θ.

theta
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Figure 2. Three-dimensional plots of SK (left) and KU (right) for the TBXE distribution for β = 1.

Figure 2 indicates that, for the fixed value β = 1, both the skewness and kurtosis of
the TBXE distribution are decreasing in θ and unimodal with respect to α. This reflects a
certain flexibility in these aspects, which is beneficial for modeling objectives.

2.2.2. TBX Rayleigh Distribution

Another member of interest in the TBX-G family is the TBX Rayleigh (TBXR) distri-
bution, which considers the Rayleigh distribution as a parent. Therefore, we set ω = (ρ),
GR(x; ρ) = 1− e−ρx2/2 for x > 0 and GR(x; ρ) = 0 for x ≤ 0 and gR(x; ρ) = ρxe−ρx2/2 for
x > 0 and gR(x; ρ) = 0 for x ≤ 0. By virtue of Equations (2), (3), and (5), the cdf, pdf, and
hrf of the TBXR distribution are:

FTBXR(x; α, θ, ρ) =
1

(1− e−α2)θ

{
1− e−

[
α
(

1−e−ρx2/2
)]2
}θ

, x > 0,

and FTBXR(x; α, θ, ρ) = 0 for x ≤ 0,

fTBXR(x; α, θ, ρ) =
2θα2ρ

(1− e−α2 )θ
xe−ρx2/2(1− e−ρx2/2)e−

[
α
(

1−e−ρx2/2
)]2
{

1− e−
[
α
(

1−e−ρx2/2
)]2
}θ−1

,

x > 0,

and fTBXR(x; α, θ, ρ) = 0 for x ≤ 0 and

hTBXR(x; α, θ, ρ) =
2θα2ρ

(1− e−α2 )θ −
{

1− e−
[
α
(

1−e−ρx2/2
)]2
}θ

xe−ρx2/2(1− e−ρx2/2)e−
[
α
(

1−e−ρx2/2
)]2

×

{
1− e−

[
α
(

1−e−ρx2/2
)]2
}θ−1

, x > 0,

and hTBXR(x; α, θ, ρ) = 0 for x ≤ 0, respectively. Figure 3 shows a sample of shapes reached
by the pdf and hrf by considering some parameter values.
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Figure 3. Plots of the pdf (left) and hrf (right) for the TBXR distribution for some parameter values.

From Figure 3, we see that the pdf of the TBXR distribution can be decreasing or
unimodal with an “almost symmetrical bell shape” and right-skewed. Furthermore, the hrf
curves can be decreasing, increasing, and N shapes. This panel of shapes is not observed
with the Rayleigh distribution.

Based on Equation (6), the qf of the TBXR distribution is:

QTBXR(u; α, θ, ρ) =

{
−2

ρ
log
(

1− 1
α

{
− log

[
1− u1/θ(1− e−α2

)
]}1/2

)}1/2
, u ∈ (0, 1). (10)

The skewness and kurtosis analyses of the TBXR distribution are performed via the quantile
measures SK and KU as defined by Equations (7) and (8), respectively, in Figure 2.

Figure 4 indicates that, for the fixed value ρ = 1, the skewness of the TBXR distribution
is unimodal in θ and α, while the kurtosis is increasing in θ and unimodal in α. This behavior,
quite complex, remains an advantage of the TBXR model to adapt to various kinds of data.
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Figure 4. Three-dimensional plots of SK (left) and KU (right) of the TBXR distribution for ρ = 1.

2.2.3. TBX Lindley Distribution

We now present the TBX Lindley (TBXL) distribution, corresponding to the member of
the TBX-G family defined via the Lindley distribution. Hence, we set ω = (a), GL(x; a) =
1 − [1 + ax/(1 + a)]e−ax for x > 0 and GL(x; a) = 0 for x ≤ 0 and gL(x; a) = a2(1 +
x)e−ax/(1 + a) for x > 0 and gL(x; a) = 0 for x ≤ 0. Hence, by virtue of Equations (2), (3),
and (5), the cdf, pdf, and hrf of the TBXL distribution are:

FTBXL(x; α, θ, a ) =
1

(1− e−α2)θ

{
1− e−[α(1−[1+ax/(1+a)]e−ax)]

2
}θ

, x > 0,

and FTBXL(x; α, θ, a ) = 0 for x ≤ 0,

fTBXL(x; α, θ, a ) =
2θα2a2

(1 + a)(1− e−α2 )θ
(1 + x)e−ax

(
1−

[
1 +

ax
1 + a

]
e−ax

)
e−[α(1−[1+ax/(1+a)]e−ax)]

2
×{

1− e−[α(1−[1+ax/(1+a)]e−ax)]
2}θ−1

, x > 0,
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and fTBXL(x; α, θ, a) = 0 for x ≤ 0 and

hTBXL(x; α, θ, a ) =
2θα2a2

(1 + a)
[
(1− e−α2 )θ −

{
1− e−[α(1−[1+ax/(1+a)]e−ax)]2

}θ
] (1 + x)e−ax×

(
1−

[
1 +

ax
1 + a

]
e−ax

)
e−[α(1−[1+ax/(1+a)]e−ax)]

2{
1− e−[α(1−[1+ax/(1+a)]e−ax)]

2}θ−1
,

x > 0,

and hTBXL(x; α, θ, a ) = 0 for x ≤ 0, respectively. Figure 5 displays some curves of the pdf
and hrf for several parameter values.
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Figure 5. Plots of the pdf (left) and hrf (right) of the TBXL distribution for chosen parameter values.

Figure 5 exposes that the pdf of the TBXL distribution can be decreasing or unimodal
and right-skewed. The hrf can decrease, increase, or be unimodal. As for the TBXE or
TBXR distribution, the TBXL distribution dominates its parental distribution in terms of
the diversity of pdf and hrf forms.

Based on Equation (6), the qf of the TBXL distribution is:

QTBXL(u; α, θ, a) =

− 1
a
− 1− 1

a
W−1

[(
1
α

{
− log

[
1− u1/θ(1− e−α2

)
]}1/2

− 1
)
(a + 1)e−1−a

]
,

u ∈ (0, 1), (11)

where W−1(x) refers to the “negative branch” of the standard Lambert function.
Thus, the quantile measures SK and KU can be expressed through Equations (7) and (8),

respectively. A graphical work on these measures is proposed in Figure 4.
Figure 6 indicates that, for the fixed value of a = 1, the skewness and kurtosis of TBXL

are both increasing in θ and unimodal in a. Here again, these flexible properties are real
assets for modeling perspectives.
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Figure 6. Three-dimensional plots of SK (left) and KU (right) of the TBXL distribution for a = 1.

To conclude this subsection, it should be mentioned that the TBXE, TBXL, and TBXR
distributions are just three arbitrary examples of the TBX-G family, demonstrating sufficient
qualities to be used in many statistical scenarios. In particular, the corresponding models
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are able to fit a plethora of skewed data to the right. Other interesting special distributions
with different support can be analyzed in a similar way.

3. Mathematical Properties of the TBX-G Family

In this section, diverse mathematical properties of the TBX-G family are investigated.
Whenever possible, the general results are applied at least to the TBXE distribution as
described in Section 2.2.1.

3.1. Asymptotic Study

We now perform an asymptotic study of the main functions of the TBX-G family
according to G(x; ω)→ 0 and G(x; ω)→ 1. When G(x; ω)→ 0, by using the equivalence
of standard functions, we obtain:

FTBX−G(x; α, θ, ω) ∼ α2θ

(1− e−α2)θ
G(x; ω)2θ

and:

fTBX−G(x; α, θ, ω) ∼ hTBX−G(x; α, θ, ω) ∼ 2θα2θ

(1− e−α2)θ
g(x; ω)G(x; ω)2θ−1.

The parameter θ has a significant effect on the rate of convergence (or divergence), more
than the parameter α, which only appears in the proportional constant.

When G(x; ω)→ 1, through the use of similar equivalence techniques, we have:

FTBX−G(x; α, θ, ω) = 1− 2α2θ

eα2 − 1
Ḡ(x; ω), fTBX−G(x; α, θ, ω) ∼ 2α2θ

eα2 − 1
g(x; ω)

and hTBX−G(x; α, θ, ω) ∼ g(x; ω)/Ḡ(x; ω), recalling that Ḡ(x; ω) = 1− G(x; ω). This last
equivalence function corresponds to the hrf of the reference distribution. Thus, in the case
of G(x; ω)→ 1, we observe that the parameters α and θ only have a “proportional constant
effect”. Furthermore, the above results show that the choice of the reference distribution is
crucial in the asymptotic behavior of functions of the TBX-G family, among others.

If we apply these results to the TBXE distribution, the following equivalences are
obtained. When x → 0, we have:

FTBXE(x; α, θ, β) ∼ α2θ

(1− e−α2)θ
β2θ x2θ

and:

fTBXE(x; α, θ, β) ∼ hTBXE(x; α, θ, β) ∼ 2θα2θ

(1− e−α2)θ
β2θ x2θ−1,

showing a polynomial rate for this extreme limit, with a threshold parameter value at
θ = 1/2. On the other hand, when x → +∞, we have:

FTBXE(x; α, θ, β) = 1− 2α2θ

eα2 − 1
e−βx, fTBXE(x; α, θ, β) ∼ 2α2θβ

eα2 − 1
e−βx

and hTBXE(x; α, θ, β) ∼ β. Thus, in all cases, fTBXE(x; α, θ, β) converges to zero with an
exponential decay, whereas hTBXE(x; α, θ, β) tends to the constant β. These results are also
useful for proving the existence of some integral quantities involving these functions, such
as those related to Equation (4).
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3.2. First-Order Stochastic Dominance Study

First-order stochastic dominance is a global concept that allows the comparison of
several distributions. We refer the reader to [39]. The TBX-G family has a first-order
stochastic dominance property, which is discussed in the following proposition.

Proposition 1. For α2 ≥ α1, θ2 ≥ θ1, and x ∈ R, we have:

FTBX−G(x; α1, θ2, ω) ≤ FTBX−G(x; α2, θ1, ω).

That is, the TBX-G family with parameter vector (x; α1, θ2, ω) first-order stochastically dominates
the TBX-G family with parameter vector (x; α2, θ1, ω).

Proof. First of all, note that we can write FTBX−G(x; α, θ, ω) = vθ with:

v =
[
1− e−(αG(x;ω))2]

/
(

1− e−α2
)
∈ [0, 1].

Therefore, FTBX−G(x; α, θ, ω) is obviously decreasing with respect to the parameter θ.
On the other hand, after some developments, we obtain:

∂

∂α
FTBX−G(x; α, θ, ω) = −2αθFTBX−G(x; α, θ, ω)

r[G(x; ω)](
eα2 − 1

)(
eα2G(x;ω)2 − 1

) ,

where r(x) = eα2x2 − x2eα2
+ x2 − 1. Thus, only the sign of r(x) requires a particular work

to determine the one of ∂FTBX−G(x; α, θ, ω)/∂α. The analysis of this function for x ∈ [0, 1]
gives: r(0) = r(1) = 0, and that r(x) is decreasing over [0, xα] and increasing over [xα, 1]

with xα =
{

log
[
(eα2 − 1)/α2

]}1/2
/α. Consequently, r(x) ≤ 0 for x ∈ [0, 1], implying that

∂FTBX−G(x; α, θ, ω)/∂α > 0. Hence, FTBX−G(x; α, θ, ω) is increasing with respect to the
parameter α. This concludes the proof. �

Proposition 1 gives the full understanding of the role of the parameters α and θ on a
certain hierarchy between the cdfs of the TBX-G family.

3.3. Series Expansion Study

The next result proposes a series expansion of the exponentiated pdf of the TBX-G
family in terms of certain manageable functions derived from the reference distribution.

Proposition 2. Let p > 0. Then, the following expansion holds:

fTBX−G(x; α, θ, ω)p = ∑
(k,`,m)∈N3

d[p]k,`,mvG(x; m, p, ω),

where N = {0, 1, 2 . . .},

d[p]k,`,m =
(2θα2)p

(1− e−α2)θp

(
p(θ − 1)

k

)(
2`+ p

m

)
(−1)k+`+m 1

`!
(k + p)`α2` (12)

and:
vG(x; m, p, ω) = g(x; ω)pḠ(x; ω)m.

Proof. Based on Equation (3), for any x ∈ R, it is clear that:

fTBX−G(x; α, θ, ω)p =
(2θα2)p

(1− e−α2 )θp g(x; ω)pG(x; ω)pe−p(αG(x;ω))2[
1− e−(αG(x;ω))2]p(θ−1)

.
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It follows from the binomial theorem (generalized version), the series expansion of the
exponential function, and the binomial theorem (generalized version) that:

fTBX−G(x; α, θ, ω)p =
(2θα2)p

(1− e−α2 )θp g(x; ω)pG(x; ω)p ∑
k∈N

(
p(θ − 1)

k

)
(−1)ke−(k+p)(αG(x;ω))2

=
(2θα2)p

(1− e−α2 )θp g(x; ω)p ∑
k∈N

(
p(θ − 1)

k

)
(−1)k ∑

`∈N

1
`!
(−1)`(k + p)`α2`G(x; ω)2`+p

=
(2θα2)p

(1− e−α2 )θp g(x; ω)p ∑
k∈N

(
p(θ − 1)

k

)
(−1)k ∑

`∈N

1
`!
(−1)`(k + p)`α2` ∑

m∈N

(
2`+ p

m

)
(−1)mḠ(x; ω)m

= ∑
(k,`,m)∈N3

(2θα2)p

(1− e−α2 )θp

(
p(θ − 1)

k

)(
2`+ p

m

)
(−1)k+`+m 1

`!
(k + p)`α2`g(x; ω)pḠ(x; ω)m

= ∑
(k,`,m)∈N3

d[p]k,`,mvG(x; m, p, ω).

Proposition 2 is proven. �

By tuning the values of p, we can apply Proposition 2 to obtain series expansions of
well-known measures and functions. In particular, by taking p = 1, the pdf of the TBX-G
family can be expanded as:

fTBX−G(x; α, θ, ω) = ∑
(k,`,m)∈N3

d[1]k,`,mvG(x; m, 1, ω),

where d[1]k,`,m = 2θα2(θ−1
k )(2`+1

m )(−1)k+`+m(k + 1)`α2`/[(1− e−α2
)θ`!] and vG(x; m, 1, ω) =

g(x; ω)Ḡ(x; ω)m. In full generality, the function vG(x; m, p, ω) is simple and remains quite
manageable for most of the standard reference distributions. In particular, in the framework
of the:

• TBXE distribution, for x > 0, we have:

vG(x; m, p, ω) = gE(x; ω)pḠE(x; ω)m = βpe−(p+m)βx;

• TBXR distribution, for x > 0, we have:

vG(x; m, p, ω) = gR(x; ω)pḠR(x; ω)m = ρpxpe−(p+m)ρx2/2;

• TBXL distribution, for x > 0, we have:

vG(x; m, p, ω) = gL(x; ω)pḠL(x; ω)m =
a2p

(1 + a)p (1 + x)p
[

1 +
ax

1 + a

]m
e−(p+m)ax

=
a2p

(1 + a)m+p

m

∑
k=0

(
m
k

)
ak(1 + x)k+pe−(p+m)ax.

The three functions above are linear combinations of polynomial-exponential functions,
which are involved in many well-mastered integral formulas.

3.4. Tsallis Entropy Study

In order to study the “random uncertainty” behind the TBX-G family, we propose to
investigate the Tsallis entropy measure. Further details on this classical entropy measure
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can be found in [40,41]. Basically, the Tsallis entropy measure of the TBX-G family at p with
p > 0 and p 6= 1 is defined as:

Tp =
1

p− 1

[
1−

∫
R

fTBX−G(x; α, θ, ω)pdx
]

=
1

p− 1

[
1− (2θα2)p

(1− e−α2)θp

∫
R

g(x; ω)pG(x; ω)pe−p(αG(x;ω))2[
1− e−(αG(x;ω))2]p(θ−1)

dx
]

.

For most of the referenced parental distributions, this integral is not easy to determine.
The integral term can be evaluated numerically by any integral approximation proce-
dure. An expression involving sums of coefficients can be derived from Proposition 2.
Indeed, by applying this proposition directly, subject to the mathematical correctness of
the exchange of the signs ∑ and

∫
, we have:∫

R
fTBX−G(x; α, θ, ω)pdx = ∑

(k,`,m)∈N3

d[p]k,`,mφ
[p]
m , (13)

where d[p]k,`,m = (2θα2)p(p(θ−1)
k )(2`+p

m )(−1)k+`+m(k + p)`α2`/[`!(1 − e−α2
)θp] and φ

[p]
m =∫

R vG(x; m, p, ω)dx. Therefore, the Tsallis entropy measure of the TBX-G family at p can be
expressed as:

Tp =
1

p− 1

1− ∑
(k,`,m)∈N3

d[p]k,`,mφ
[p]
m

.

A simple approximation can be deduced; we have Tp ≈
[
1−∑503

(k,`,m)=03
d[p]k,`,mφ

[p]
m

]
/(p− 1),

the upper limit of 50 being chosen arbitrarily large. This expansion remains manageable for
most of the referenced distributions. For instance, in the context of the TBXE distribution,
provided to (2θ − 1)p > −1, it can be applied with:

φ
[p]
m =

∫
R

vG(x; m, p, ω)dx = βp
∫
(0,+∞)

e−(p+m)βxdx =
βp−1

p + m
.

The computation of Tp becomes simple.

3.5. Moment Study

The TBX-G family is now subjected to moment analysis. We start with a random
variable X whose distribution belongs to the TBX-G family. Then, based on Equation (4),
upon the existence condition, the s-th order moment (about the origin) of X is:

µ′s = E(Xs) =
∫
R

xs fTBX−G(x; α, θ, ω)dx

=
2θα2

(1− e−α2)θ

∫
R

xsg(x; ω)G(x; ω)e−(αG(x;ω))2[
1− e−(αG(x;ω))2]θ−1

dx.

Another integral expression is given by the use of Equation (6); we have:

µ′s =
∫
(0,1)

[QTBX−G(u; α, θ, ω)]sdu

=
∫
(0,1)

[
QG

(
1
α

{
− log

[
1− u1/θ(1− e−α2

)
]}1/2

, ω

)]s
du.

As for the integral expression of the Tsallis entropy measure, for most of the reference
parental distributions, this integral is not simply expressible. A numerical approach is
always possible to obtain a suitable evaluation. A series expansion approach can be derived
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from Proposition 2. By applying this result to p = 1, subject to the mathematical correctness
of the exchanges of the signs ∑ and

∫
, we have:

µ′s = ∑
(k,`,m)∈N3

d[1]k,`,mξ
[s]
m , (14)

where d[1]k,`,m = 2θα2(θ−1
k )(2`+1

m )(−1)k+`+m(k + 1)`α2`/[`!(1− e−α2
)θ ] and:

ξ
[s]
m =

∫
R

xsvG(x; m, 1, ω)dx.

Based on this expansion, we conjecture the following approximation:

µ′s ≈
503

∑
(k,`,m)=03

d[1]k,`,mξ
[s]
m ,

which remains quite manageable as a finite sum of given coefficients. As an example of
application, within the framework of the TBXE distribution, the previous sums can be
applied with:

ξ
[s]
m =

∫
(0,+∞)

xsβe−(m+1)βxdx =
Γ(s + 1)

βs
1

(m + 1)s+1 ,

where Γ(x) refers to the standard gamma function.
Similarly, the s-th order incomplete moment of X at the threshold value t is defined

by:

µ′s(t) = E(Xs I(X ≤ t)) =
∫
(−∞,t)

xs fTBX−G(x; α, θ, ω)dx

=
2θα2

(1− e−α2)θ

∫
(−∞,t)

xsg(x; ω)G(x; ω)e−(αG(x;ω))2[
1− e−(αG(x;ω))2]θ−1

dx.

In the same spirit as Equation (14), an expansion of µ′s(t) is given by:

µ′s(t) = ∑
(k,`,m)∈N3

d[1]k,`,mξ
[s]
m (t), (15)

where ξ
[s]
m (t) =

∫
(−∞,t) xsvG(x; m, 1, ω)dx. In the context of the TBXE distribution, we

simply have:

ξ
[s]
m (t) =

∫
(0,t)

xsβe−(m+1)βxdx =
1
βs

γ(s + 1, (m + 1)βt)
(m + 1)s+1 ,

where γ(a, x) refers to the standard lower incomplete gamma function. Applications of
incomplete moments can be found in [2]. Next, we will use them to present some useful
risk measures.

3.6. Risk Measures

We now focus on some risk measures of interest defined by the TBX-G family. In full
generality, the most commonly used as a standard financial market risk measure is the value
at risk. It is also known as the quantile risk measure or the quantile premium principle.
It always depends on a certain degree of confidence, denoted by q. Mathematically, it
corresponds to the q-th quantile of the considered distribution. For the TBX-G family, based
on Equation (6), it is directly expressed as:

VaRq = QTBX−G(q; α, θ, ω) = QG

(
1
α

{
− log

[
1− q1/θ(1− e−α2

)
]}1/2

, ω

)
, q ∈ (0, 1). (16)
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It can be easily explicated for the TBXE, TBXR, and TBXL distributions through Equations (9),
(10), and (11), respectively. Another important financial risk measure is the expected short-
fall, which is often considered as a better measure than value at risk. It is defined by the
following expression:

ESq =
1
q

∫
(0,q)

VaRxdx

=
1
q

∫
(0,q)

QG

(
1
α

{
− log

[
1− x1/θ(1− e−α2

)
]}1/2

, ω

)
dx, q ∈ (0, 1). (17)

For any parental distribution, it can be determined at least numerically. As an application,
let us investigate the measures VaRq and ESq related to the TBXE distribution. For se-
lected values of the parameters, the changes in the curves of VaRq and ESq are illustrated
in Figure 7.
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Figure 7. Plots of VaRq (left) and ESq (right) of the TBXE distribution for some parameter values.

From Figure 7, it is observed that VaRq is exclusively convex with respect to q and
shows various “elbow degrees”, whereas ESq can be either concave or convex, according
to the values of the parameters. This indicates a certain flexibility in these risk measures.

To be complete, one can also mention some useful related tail measures, such as
the tail value at risk, tail variance, and tail variance premium defined by TVaRq =

[µ′1− µ′1(VaRq)]/(1− q), TVq(x) = [µ′2− µ′2(VaRq)]/(1− q)−
[
TVaRq

]2, and TVPq(X) =
TVaRq + δTVq for δ ∈ (0, 1), respectively. All these measures can be studied numerically.
Furthermore, the series expansions determined in Equations (14) and (15) can be used to
provide sum approximations of these risk measures. We refer the reader to [42,43] for a
detailed description of them.

4. Statistical and Inferential Approaches

The main purpose of the TBX-G family is to provide statistical models useful for
analyzing different types of data. The first step in this direction is the accurate estimation
of the related parameters. Here, the ML technique is employed.

4.1. Methodology

In order to introduce the ML technique adapted to the TBX-G family, let us consider
n realizations x1, . . . , xn of n independent and identically random variables with the cdf
given by Equation (2). Then, the maximum likelihood estimate (MLE) of the parameter
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vector (α, θ, ω) is given as (α̂, θ̂, ω̂) = argmax(α,θ,ω)∈D L(α, θ, ω), where D denotes the
domain of the parameters and L(α, θ, ω) denotes the likelihood function defined by:

L(α, θ, ω) =
n

∏
i=1

fTBX−G(xi; α, θ, ω)

=
n

∏
i=1

[
2θα2

(1− e−α2)θ
g(xi; ω)G(xi; ω)e−(αG(xi ;ω))2[

1− e−(αG(xi ;ω))2]θ−1
]

.

Note that the components of the MLE (α̂, θ̂, ω̂) are also called the MLEs of the corresponding
component of (α, θ, ω). Subject to mathematical correctness, one can find the MLEs through
the maximization of the log-likelihood function `(α, θ, ω) = logL(α, θ, ω), which can be
expressed as:

`(α, θ, ω) = n log(2θ) + 2n log(α)− nθ log(1− e−α2
) +

n

∑
i=1

log g(xi; ω)

+
n

∑
i=1

log G(xi; ω)− α2
n

∑
i=1

G(xi; ω)2 + (θ − 1)
n

∑
i=1

log
[
1− e−(αG(xi ;ω))2]

.

The desired MLEs can be derived in a theoretical way by manipulating the components of
the score vector (Sα,Sθ ,Sω), where:

Sα =
∂

∂α
`(α, θ, ω) =

2n
α
− 2αnθe−α2

1− e−α2 − 2α
n

∑
i=1

G(xi; ω)2

+ 2α(θ − 1)
n

∑
i=1

G(xi; ω)2e−(αG(xi ;ω))2

1− e−(αG(xi ;ω))2 ,

Sθ =
∂

∂θ
`(α, θ, ω) =

n
θ
− n log(1− e−α2

) +
n

∑
i=1

log
[
1− e−(αG(xi ;ω))2]

and, by denoting ω = (ω1, . . . , ωp), Sω = (Sω1 , . . . ,Sωp) with, for j = 1, . . . , p,

Sωj =
∂

ωj
`(α, θ, ω) =

n

∑
i=1

g′j(xi; ω)

g(xi; ω)
+

n

∑
i=1

G′j(xi; ω)

G(xi; ω)
− 2α2

n

∑
i=1

G(xi; ω)G′j(xi; ω)

+ 2α2(θ − 1)
n

∑
i=1

G(xi; ω)G′j(xi; ω)e−(αG(xi ;ω))2

1− e−(αG(xi ;ω))2 ,

with g′j(xi; ω) = ∂g(xi; ω)/∂ωj and G′j(xi; ω) = ∂G(xi; ω)/∂ωj. By solving the equations

of the following system: (Sα,Sθ ,Sω) = 0p+2 simultaneously, we obtain (α̂, θ̂, ω̂). In general,
these equations cannot be solved analytically, so statistical software is necessary to approximate
them in a precise way. Furthermore, thanks to the knowledge of the ML theory, we can
determine the standard errors (SEs) of the MLEs, as well as confidence intervals or likelihood
ratio tests for the parameters. Further details on the ML technique are available in [44].
Last but not least, based on the MLEs (α̂, θ̂, ω̂), natural estimates for the pdf and cdf of the
TBX-G family are expressed as fTBX−G(x; α̂, θ̂, ω̂) and FTBX−G(x; α̂, θ̂, ω̂), respectively. Other
unknown measures and functions can be estimated by the same substitution technique.

4.2. Simulation

Here, we provide a numerical complement to the above theory by performing a simu-
lation study on the behavior of the ML technique. Only the TBXE model was considered.
To this aim, for some selected parameter values, we generated 10,000 samples from the
TBXE distribution, each of sample size n = 30 + 50k with k = 0, 1, 2, 3, 4, 5. The assess-
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ment was based on standard benchmark measures, such as the average estimates (AEs)
of the estimates and the root mean squared errors (RMSEs). The R-Statistical Computing
Environment was used (see [45]). The results of our simulation study are given in Table 1.

From Table 1, we see that the ML technique shows consistency and is quite satisfactory;
AEs converge to expected values as the sample size increases, and RMSEs decrease as the
sample size increases.

Table 1. Actual values, AEs, and RMSEs of the simulated data from the TBXE distribution for some
parameter values.

Sample
Size Actual Values AE RMSE

n α θ β α̂ θ̂ β̂ α̂ θ̂ β̂

30 0.3 0.7 1.2 0.5537 0.8124 1.1760 0.6695 0.2679 0.3346
80 0.5279 0.7408 1.1247 0.6429 0.1302 0.2472

130 0.4911 0.7296 1.1310 0.6031 0.0989 0.2173
180 0.4759 0.7232 1.1310 0.5765 0.0818 0.1976
230 0.4587 0.7161 1.1448 0.5442 0.0721 0.1795
280 0.4276 0.7161 1.1448 0.5144 0.0642 0.1662

30 1.3 2.7 0.6 1.0669 3.4192 0.6530 0.7543 4.7441 0.1966
80 1.1540 2.7689 0.6120 0.6604 0.8594 0.1576

130 1.1975 2.6818 0.6018 0.5846 0.6084 0.1398
180 1.2315 2.6669 0.5973 0.5241 0.5153 0.1284
230 1.2481 2.6672 0.5971 0.4783 0.4576 0.1203
280 1.2640 2.6628 0.5944 0.4472 0.4174 0.1134

30 0.8 0.8 0.9 0.6695 0.9178 0.9476 0.6962 0.3263 0.2809
80 0.7074 0.8290 0.8894 0.6706 0.1497 0.2144

130 0.7187 0.8125 0.8125 0.6477 0.1135 0.1934
180 0.7339 0.8066 0.8760 0.6190 0.0952 0.1819
230 0.7268 0.8042 0.8802 0.5901 0.0846 0.1694
280 0.7380 0.8020 0.8779 0.5683 0.0761 0.1610

30 1.5 0.9 0.9 0.9432 1.0338 1.2239 0.7431 0.3945 0.4349
80 1.1262 0.9287 1.0851 0.6901 0.1767 0.3340

130 1.2224 0.9121 1.0370 0.6314 0.1347 0.3021
180 1.2828 0.9060 1.0103 0.5801 0.1152 0.2839
230 1.3237 0.8999 0.9885 0.5365 0.1001 0.2634
280 1.3556 0.8984 0.9749 0.5114 0.0924 0.2560

30 1.2 0.8 0.6 0.7988 0.8992 0.7166 0.7192 0.3198 0.2379
80 0.9468 0.8176 0.6501 0.6862 0.1493 0.1816

130 1.0275 0.8052 0.6271 0.6413 0.1133 0.1653
180 1.0539 0.7964 0.6208 0.6045 0.0944 0.1535
230 1.0804 0.7953 0.6154 0.5765 0.0847 0.1478
280 1.0974 0.7944 0.6129 0.5420 0.0766 0.1401
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Table 1. Cont.

Sample
Size Actual Values AE RMSE

n α θ β α̂ θ̂ β̂ α̂ θ̂ β̂

30 1.0 1.0 0.8 0.7735 1.1469 0.8711 0.7156 0.4412 0.2654
80 0.8561 1.0253 0.8068 0.6855 0.1976 0.2076

130 0.8889 1.0075 0.7974 0.6465 0.1514 0.1881
180 0.9068 1.0008 0.7930 0.6066 0.1279 0.1739
230 0.9156 0.9984 0.7931 0.5716 0.1137 0.1634
280 0.9347 0.9945 0.7885 0.5448 0.1036 0.1553

30 1.2 0.8 0.9 0.8092 0.9033 1.0767 0.7121 0.3203 0.3530
80 0.9476 0.8189 0.9739 0.6910 0.1504 0.2734

130 1.0226 0.8027 0.9405 0.6481 0.1143 0.2457
180 1.0763 0.7996 0.9251 0.6020 0.0951 0.2319
230 1.0842 0.7964 0.9221 0.5752 0.0844 0.2212
280 1.1167 0.7933 0.9107 0.5486 0.0764 0.2123

30 0.5 1.8 1.5 0.9069 2.3930 1.4504 0.7638 1.4810 0.3880
80 0.6344 2.0147 1.4201 0.7482 0.5264 0.2887

130 0.5924 1.9439 1.4294 0.6190 0.3896 0.2482
180 0.5499 1.9137 1.4450 0.5578 0.3264 0.2088
230 0.5349 1.8937 1.4489 0.5239 0.2821 0.1848
280 0.5096 1.8782 1.4604 0.4914 0.2556 0.1630

5. Applications to Actuarial and Financial Data

In this section, the fit power of the TBXE distribution is revealed through the analysis
of two different datasets. Furthermore, based on these data, risk measures are estimated.

5.1. Data Fitting

The first dataset, labeled as D1, is a right-skewed real dataset from the insurance field.
It represents monthly measures of unemployment insurance from July 2008 to April 2013
reported by the Maryland Department of Labor. The data consists of 21 variables, and
we analyzed, in particular, Variable Number 12. The data are available at the following
uniform resource locator: https://catalog.data.gov/dataset/unemployment-insurance-
data-july-2008-to-april-2013 (accessed on 23 May 2021).

The second dataset, labeled as D2, includes actual monthly tax revenues in Egypt
from January 2006 to November 2010. The related reference for these data is [46].

Our methodology aims to compare the goodness-of-fit results and certain measures
of discrimination of the TBXE model with those of other well-known competing models,
including the BX, exponentiated exponential (EE), exponential (E), Marshall–Olkin expo-
nential (MOE), exponentiated Weibull (EW), odd Weibull exponential (OWE), Weibull (W),
and Topp–Leone exponential (TLE) models.

To achieve this objective, the AdequacyModel package of the R-Statistical Computing
Environment was used. For each dataset, we provide the MLEs and the SEs of the MLEs of
the proposed and other competitive models. The log-likelihood function was calculated at
the obtained MLEs (ˆ̀). Some well-established goodness-of-fit statistics such as the Akaike
information criterion (AIC), consistent AIC (CAIC), Bayesian information criterion (BIC),
Hannan–Quinn information criterion (HQIC), Anderson–Darling (A∗), Cramér–von Mises
(W∗), and Kolmogorov–Smirnov (K.S) were considered for model comparison purposes.
Low values of the goodness-of-fit statistics and high K-S p-values indicate good fits.

MLEs and their respective SEs for the TBXE, BX, EE, E, MOE, EW, OWE, W and TLE
models, which were fit to D1 and D2, are reported in Table 2.

The values of the goodness-of-fit statistics are reported in Tables 3 and 4 for D1 and
D2, respectively.

https: //catalog.data.gov/dataset/unemployment-insurance-data-july-2008-to-april-2013
https: //catalog.data.gov/dataset/unemployment-insurance-data-july-2008-to-april-2013
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Table 2. MLEs and SEs of the model parameters for D1 and D2, respectively.

Model Parameters MLEs (D1) SEs (D1) MLEs (D2) SEs (D2)

TBXE α 2.6510 0.282 1.8533 0.3379
θ 10.4527 4.99 5.1464 2.0897
β 0.0152 0.0040 0.1191 0.0356

BX α 0.0200 0.0012 0.0644 0.0056
θ 1.9912 0.4252 1.0310 0.1844

EE α 0.05 0.006 0.1786 0.0232
β 16.08 5.251 5.5321 1.4350

E β 0.0142 0.0020 0.0741 0.0096
MOE α 0.0664 0.0082 0.2092 0.0308

a 72.1333 41.0232 11.5647 5.2019
EW α 0.4333 0.4872 1.5481 0.9126

β 0.6043 0.1992 0.4706 0.1308
a 130.3842 219.0512 88.6904 8.4074

OWE α 0.0028 0.0005 0.0164 0.0185
a 14.2800 7.2812 6.6161 5.4439
b 1.9155 0.1843 1.5472 1.5625

W α 0.0029 0.0006 0.0069 0.0028
β 1.3611 0.0552 1.8215 0.1339

TLE α 0.0242 0.0028 0.0893 0.0116
a 15.9758 5.1955 5.5322 1.4347

Table 3. Goodness-of-fit statistics and K.S p-value for D1.

Model − ˆ̀ AIC CAIC BIC HQIC A∗ W∗ K.S p-Value

TBXE 265.329 536.658 537.102 542.839 539.066 0.716 0.125 0.111 0.471
BX 275.364 554.728 554.947 558.849 556.334 2.416 0.444 0.182 0.044
EE 267.487 538.973 539.191 543.094 540.578 1.090 0.201 0.113 0.447
E 304.967 611.934 612.006 613.995 612.737 1.755 0.324 0.387 0.00001

MOE 274.318 552.636 552.854 556.757 554.241 2.218 0.400 0.140 0.204
EW 266.190 538.379 538.824 544.561 540.787 0.896 0.163 0.117 0.408

OWE 281.963 569.927 570.371 576.108 572.334 3.312 0.608 0.187 0.034
W 291.235 586.470 586.688 590.591 588.075 2.065 0.380 0.332 0.00001

TLE 267.487 538.973 539.191 543.094 540.578 1.091 0.202 0.113 0.445

Table 4. Goodness-of-fit statistics and K.S p-value for D2.

Model − ˆ̀ AIC CAIC BIC HQIC A∗ W∗ K.S p-Value

TBXE 265.3401 383.0907 383.5271 389.3233 385.5237 0.3621 0.0623 0.0703 0.9321
BX 275.3641 399.3927 399.6070 403.5478 401.0147 1.9904 0.3112 0.1763 0.0509
EE 267.4865 386.4471 386.6614 390.6021 388.0690 0.8708 0.1442 0.1148 0.4180
E 304.9673 611.9345 612.0060 613.9950 612.7371 1.7555 0.3236 0.3869 0.0000

MOE 274.3689 552.7378 552.9560 556.8587 554.3430 2.2232 0.4015 0.1498 0.1481
EW 266.2673 538.5346 538.9790 544.7159 540.9423 0.9065 0.1651 0.1148 0.4282

OWE 199.4381 404.8762 405.3125 411.1088 407.3091 2.1691 0.3368 0.1446 0.1694
W 197.2967 398.5934 398.8077 402.7485 400.2154 1.8483 0.2897 0.1392 0.2025

TLE 191.2235 386.4471 386.6614 390.6021 388.0690 0.8708 0.1442 0.1148 0.4183

From Tables 3 and 4, we can observe that the TBXE model gives a better fit to D1 and
D2 compared to all the other competing models, since it has the minimum values of AIC,
CAIC, BIC, HQIC, A∗, W∗, and K.S and the maximum values of K.S p-values. Despite its
relative classicism, we can consider that the EE model is the second best model.

A visual approach is given in Figures 8 and 9, where the total time on test (TTT) plots
and box plots of the data are presented, as well as the estimated pdfs of the TBXE model
over the histograms of the data and estimated cdfs of the TBXE model over the empirical
cdfs of the data, for D1 and D2, respectively.
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From Figures 8 and 9, we see that the estimated pdfs and cdfs fit the corresponding
empirical objects quite well, despite two different levels of right skewness in the data and
the presence of outliers.
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Figure 8. (a) TTT plot; (b) box plot; (c) plot of the estimated pdf over the histogram; (d) plot of the
estimated cdf over the empirical cdf for the TBXE model for D1.
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Figure 9. (a) TTT plot; (b) box plot; (c) plot of the estimated pdf over the histogram; (d) plot of the
estimated cdf over the empirical cdf for the TBXE model for D2.
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5.2. Estimation of VaRq and ESq

Here, we investigate the estimation of the risk measures VaRq and ESq for the TBXE
model based on D1 and D2. The considered estimates were based on the mathematical
expression of VaRq and ESq where the parameters were replaced by their MLEs. We
carried out a comparative study of these estimated risk measures for the TBXE model with
their homologous models, namely the BX, EE, EW, W, and E models. It should be noted
that a model with higher values of the considered risk measures is supposed to have a
heavier tail. Tables 5 and 6 provide the estimates of VaRq and ESq for D1, respectively, and
Tables 7 and 8 give the estimates of VaRq and ESq for D2, respectively.

Table 5. Estimates of VaRq for D1 for selected values of q.

q TBXE BX EE EW W E

0.55 78.32 42.40 68.33 67.06 61.48 56.43
0.60 84.53 46.69 71.52 70.33 68.02 64.76
0.65 91.98 51.44 74.99 73.95 75.17 74.20
0.70 100.92 56.81 78.84 78.04 83.13 85.09
0.75 112.17 63.03 83.23 82.80 92.21 97.98
0.80 127.27 70.52 88.43 88.57 102.89 113.75
0.85 149.78 80.02 94.94 95.99 116.11 134.08
0.90 191.17 93.20 103.85 106.51 133.86 162.74
0.95 357.62 115.42 118.67 124.94 162.42 211.72

Table 6. Estimates of ESq for D1 for selected values of q.

q TBXE BX EE EW W E

0.55 51.68 18.44 51.84 51.27 31.64 24.50
0.60 54.16 19.86 53.34 52.72 34.40 27.50
0.65 56.79 21.33 54.87 54.21 37.26 30.72
0.70 59.63 22.88 56.45 55.77 40.24 34.21
0.75 62.76 24.53 58.08 57.41 43.40 38.02
0.80 66.31 26.31 59.81 59.17 46.77 42.24
0.85 70.53 28.27 61.68 61.10 50.45 47.01
0.90 75.96 30.51 63.76 63.31 54.56 52.59
0.95 84.91 33.21 66.21 66.01 59.41 59.53

Table 7. Estimates of VaRq for D2 for selected values of q.

q TBXE BX EE EW W E

0.55 69.34 6.37 12.76 0.10 13.58 10.78
0.60 75.44 7.30 13.60 0.12 14.64 12.37
0.65 82.31 8.34 14.51 0.13 15.78 14.17
0.70 90.22 9.55 15.53 0.15 17.01 16.25
0.75 99.57 10.97 16.70 0.18 18.38 18.71
0.80 110.98 12.71 18.09 0.20 19.95 21.72
0.85 125.59 14.95 19.83 0.24 21.83 25.60
0.90 145.60 18.10 22.23 0.28 24.28 31.07
0.95 176.39 23.49 26.23 0.35 28.06 40.43
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Table 8. Estimates of ESq for D2 for selected values of q.

q TBXE BX EE EW W E

0.55 42.77 2.80 8.59 0.04 8.01 4.68
0.60 45.23 3.14 8.98 0.05 8.51 5.25
0.65 47.82 3.50 9.37 0.05 9.03 5.87
0.70 50.56 3.88 9.77 0.06 9.55 6.53
0.75 53.50 4.31 10.19 0.07 10.10 7.26
0.80 56.73 4.78 10.64 0.07 10.66 8.07
0.85 60.33 5.31 11.13 0.08 11.26 8.98
0.90 64.48 5.92 11.67 0.09 11.91 10.04
0.95 69.49 6.69 12.32 0.10 12.65 11.37

The results in Tables 5–8 show that the TBXE model has higher values for both risk
measures compared to their counterparts for the BX, EE, EW, W, and E models. This
observation is clearly visualized in Figures 10 and 11 for D1 and D2, respectively.
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Figure 10. Plots of the estimated VaRq (left) and estimated ESq (right) of the considered models
for D1.
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Figure 11. Plots of the estimated VaRq (left) and estimated ESq (right) of the considered models
for D2.

The graphical demonstration of the models in Figures 10 and 11 also reveals that
the proposed model is heavier than the BX, EE, EW, W, and E models. See [43,47]
for a detailed discussion of VaRq and ESq and their calculation using the R-Statistical
Computing Environment.

6. Concluding Notes and Perspectives
6.1. Concluding Notes

In this article, we showed how the use of the “truncated-composed” scheme applied
to the BX distribution can lead to new flexible statistical models for the analysis of right-
skewed data. Precisely, we proceeded as follows. First, we defined the TBX-G family
of distributions, discussed the motivations behind it, and studied its main properties of
interest. Three particular examples of three-parameter family-owned distributions were
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presented in depth, with an emphasis on the one having the exponential distribution
as a parent. The TBXE distribution was thus introduced and studied, revealing flexible
decreasing and unimodal shapes and various asymmetric trends on the right concerning
its pdf. Thanks to the ML technique applied to the model parameters, we demonstrated
the power of the adjustment of the TBXE model through a solid simulation study and the
analysis of two different and right-skewed datasets taken from the fields of actuarial science
and finance. In addition, we showed that the TBXE model may be a better alternative
to other famous survival models from the literature. Our results provide theoretical and
practical assurance of the accuracy of the TBXE model for various statistical purposes,
as well as the TBX-G family.

6.2. Perspectives

Other lines of research include the use of parental distributions with support on the
real line, such as normal, Laplace, and logistic distributions, the development of various
regression models, as well as the study of the multivariate version of the TBX-G family
for the treatment of multivariate data. Naturally, thanks to their modeling characteristics,
the distributions of the TBX-G family have potential applications in areas other than
actuarial science and finance. We would like to mention the insurance industry, where
there is a need for such flexible statistical models. In this regard, we may refer to the
works in [48–50]. On the other hand, the proposed distributions may be useful in modeling
tribo-fatigue systems and new materials. In particular, they can be involved in (i) a method
of experimental study of friction in an active system, (ii) the state of volumetric damage
of a tribo-fatigue system, (iii) the spatial stress–strain state of a tribo-fatigue system in
the roll–shaft contact zone, (iv) modeling of the damaged state by the finite-element
method on the simultaneous action of contact and noncontact loads, (v) the tribo-fatigue
behavior of austempered ductile iron monica as a new structural material for a rail–wheel
system, (vi) research on the tensile behavior of the new structural material monica, and
(vii) measurement and real-time analysis of local damage in wear-and-fatigue tests. In this
regard, we may refer the reader to [51–53].
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