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Abstract: Multi-label learning is dedicated to learning functions so that each sample is labeled with a
true label set. With the increase of data knowledge, the feature dimensionality is increasing. However,
high-dimensional information may contain noisy data, making the process of multi-label learning
difficult. Feature selection is a technical approach that can effectively reduce the data dimension. In
the study of feature selection, the multi-objective optimization algorithm has shown an excellent
global optimization performance. The Pareto relationship can handle contradictory objectives in the
multi-objective problem well. Therefore, a Shapley value-fused feature selection algorithm for multi-
label learning (SHAPFS-ML) is proposed. The method takes multi-label criteria as the optimization
objectives and the proposed crossover and mutation operators based on Shapley value are conducive
to identifying relevant, redundant and irrelevant features. The comparison of experimental results on
real-world datasets reveals that SHAPFS-ML is an effective feature selection method for multi-label
classification, which can reduce the classification algorithm’s computational complexity and improve
the classification accuracy.

Keywords: multi-label learning; feature selection; multi-objective optimization; Shapley value

1. Introduction

Classification is an important technical task in pattern recognition. Traditional super-
vised learning mainly involves single-label classification. However, real-world problems
are more complicated. Every sample is labeled with multiple labels. In order to study
such objects, research on multi-label learning has emerged over the years. Multi-label
learning methods were first used in text classification [1], and they have been applied to
new applications such as image annotation [2,3], and biological information [4,5] with the
development of research.

The process of multi-label learning is difficult, the size of the label set is uncertain
and there is a certain correlation between the labels [6]. Multi-label learning methods are
roughly divided into two categories: problem conversion and algorithm adaptation [7].
The original data is converted to problems that can be solved with single-label classifiers in
the problem conversion method, such as label power-set method (LP) and binary relevance
method (BR) [8]. The algorithm adaptation method does not need to transform the original
data but improves the single-label learning methods to adapt to multi-label data, such as a
lazy learning approach (MLKNN) [9] and a kernel method (RankSVM) [10]. The algorithm
adaptation method does not destroy the original data and better consider the correlation
between labels.

The combination of features is critical to the quality of the classification results. The
original feature set may contain redundant features and irrelevant features. If the original
features are directly input into the classifier, it may interfere with the classification decision
of the classifier [11]. The objective of feature selection is to remove redundant features
and irrelevant features, thereby reducing the dimensionality of the data and improving

Entropy 2021, 23, 1094. https://doi.org/10.3390/e23081094 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e23081094
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23081094
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23081094?type=check_update&version=2


Entropy 2021, 23, 1094 2 of 26

the classification accuracy [12]. Therefore, feature selection is able to avoid the disaster of
dimensionality in single-label and multi-label data.

At present, most of the feature selection research focuses on single-label learning and
has been integrated into practical problems. For example, Stai et al. used a weighted
network graph structure to represent multimedia content features and feature weights [13].
The proposed framework structure can identify effective features through a relevance
feedback mechanism and provide suitable recommendations. Hs et al. proposed a novel
feature selection method that combines three different measurements. This method can
qualitative information and can be effectively applied to intrusion detection scenarios [14].
Rauber et al. employed a feature extraction algorithm to extract features with strong
discriminative information for bearing fault classification, and then used a greedy algorithm
to remove irrelevant and redundant features. This framework has the potential to be
extended to the industrial field [15].

Similarly, feature selection methods for multi-label data roughly fall into filter model,
wrapper model and embedded model [16]. The filter model does not include a classifier
in the evaluation process [17]. Different measurement methods are used to mine feature
and label information, such as information entropy [18], correlation [19] and consistency
measures [20]. Researchers apply the idea of feature selection study for single-label learning
to multi-label task and many excellent algorithms such as multi-label feature selection
based on max-dependency and min-redundancy (MDMR) [21], information gain based on
the BR approach (IG_BR) [22] and multi-label informed feature selection method (MIFS) [6]
are proposed. They are extensions of feature selection based on the maximum relevance
and minimum redundancy criterion (mrmr) [23], feature selection via maximizing global
information gain (IG) [24] and feature selection based on mutual information (MI) [25]
respectively. There are also feature selection methods specifically designed for multi-label
learning, such as manifold-based constraint Laplacian score (MCLS) [26] and manifold
regularized discriminative multi-label feature selection algorithm MDFS [27]. Embedded
model completes the feature reduction in multi-label learning [28,29].

Compared with filter feature selection, the wrapper type is better in classification ac-
curacy, because the classification result is directly utilized to assess the feature subsets [30].
The evolutionary-based feature selection algorithms are popular because evolutionary
algorithms have strong global optimization capabilities and can consider the combina-
tion of features. In feature selection, smaller-scale features are expected to obtain higher
classification accuracy. However, traditional evolutionary algorithms can only set one
fitness function, so multi-objective evolutionary algorithms have attracted attention, which
can balance the relationship between multiple objectives [31]. The relationship between
these objectives may be contradictory. Different from single-label learning, the assessment
indicators of multi-label learning are intricate. Therefore, the classification accuracy cri-
terion is specially used for multi-label data in the wrapper multi-label feature selection
optimization algorithms.

A wrapper feature selection algorithm is proposed to decrease the features of the
original multi-label samples in this paper. A classic multi-objective algorithm which is
called the third generation of non-dominated genetic algorithm (NSGA III) [32] is employed
to optimize three objectives of Hamming loss, average precision, and the scale of feature
subset. The original NSGA III was first proposed for consecutive applications, but feature
selection corresponds to the discrete optimization scenario. To cope with this problem,
we have made improvements on the encoding method, crossover operator and mutation
operator of NSGA III. In order to effectively identify irrelevant and redundant features, we
introduce Shapley value to assess the contribution of the features and propose a crossover
operator and a mutation operator based on Shapley value to make the global search and
local search in a balanced state, thereby increasing the accuracy of the classifier results and
improving the algorithm’s convergence speed. The main contributions of this work are
presented as follows:
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• Shapley value and multi-objective multi-label feature selection are fused from two
sides: feature and individual.

• Two improved operators are proposed, which adaptively adjust the crossover and mu-
tation probability by evaluating the features’ contribution and equate the algorithm’s
global and local search.

• An improved archive maintenance strategy is put forward to increase the convergence
performance of the multi-objective optimization method.

• Experiments on datasets of different scales prove the validity and adaptability of the
proposed algorithm.

The rest of the paper is presented as follows: Section 2 analyzes the research status of
multi-label feature selection and Shapely value in feature selection. Section 3 describes the
basic knowledge of multi-objective optimization, Shapley value and multi-label learning.
Section 4 introduces the objective functions, mutation operator, crossover operator, archive
set maintenance strategy and the flow chart of the proposed algorithm SHAPFS-ML.
Section 5 shows the experimental results on seven multi-label datasets. Section 6 gives a
summary of this paper.

2. Related Works

The search ability of feature selection algorithm is an important factor that deter-
mines the quality of selected feature subsets. The exhaustive search selects the optimal
feature subset by enumerating the possible combinations of features. Mnich et al. used
multidimensional exhaustive analysis of the mutual information between features and
labels [33]. This method requires a large number of samples and has a high computational
cost. Although exhaustive searching can find the global optimal solution, it is inefficient.
Heuristic search uses heuristic information to reduce the search range of the feature space.
Hua et al. proposed an improved modified strong approximate Markov blanket method to
remove redundant features, and then used sequential forward selection (SFS) method to
remove irrelevant features [34]. Fa et al. proposed a backward selection (SBS) approach to
eliminate a set of features that are not helpful for classification [35]. Both SFS and SBS are
greedy algorithms which selects the current best solution and are can easily fall into the
local optimum. Evolutionary computing technology belongs to the heuristic search. Such
methods use a random search with heuristic information, which can obtain approximate
optimal solutions. Common evolutionary computing methods include genetic algorithm
(GA), particle swarm optimization (PSO), differential evolution (DE), etc. Therefore, we
use evolutionary computing theory as the methodology in this paper.

In recent years, multi-objective optimization has been a research hotspot in the field
of evolutionary computing, and it has been successfully applied to solve the problem of
feature selection. Bing et al. proposed a multi-objective differential evolution algorithm
to optimize the two objectives of reducing the number of selected features and the clas-
sification error rate [36]. Experimental results showed that the proposed algorithm can
give a more trade-off solution set and improve the quality of the solution compared with
single-objective optimization methods. Liam et al. proposed a binary multi-objective PSO
algorithm for filter feature selection based on rough set theory [37]. The performance of this
method is better than the traditional single-objective PSO. Nouri-Moghaddam et al. used
a novel forest optimization algorithm (FOA) algorithm and designed multiple concepts
to deal with the feature selection problem in a multi-objective optimization manner [38].
The experimental results showed that the proposed method performs better than other
single-objective and multi-objective optimization methods.

Nowadays, compared with multi-label feature selection algorithms, there are more
studies on single-label feature selection algorithms [39]. The investigation on multi-
objective optimized multi-label feature selection algorithm has been proposed only recently,
benefitting from the successful application of multi-objective optimization methods in
single-label feature selection. In 2014, Yin et al. analyzed the contradictions between
the two types of multi-label classification indicators and used the second generation of
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non-dominated genetic algorithm (NSGA II) to optimize Hamming loss and average preci-
sion [40]. The proposed algorithm performed better compared with other methods. In 2017,
Zhang et al. presented a multi-objective particle swarm optimization method to cover the
multi-label feature selection problem [41]. In order to enhance the multi-objective optimiza-
tion algorithm’s performance, they proposed two operation operators. And the crowding
distance mechanism was used for the maintenance of archives. The results showed the
exploration ability of the proposed algorithm is better than that of NSGA II. In 2021, Bidgoli
et al. proposed a discrete differential evolution method for multi-label feature selection
and proposed a binary mutation operator to improve the multi-objective optimization’s
global search capabilities [42]. The proposed method’s performance is verified from the
assessment of the multi-objective algorithm and the accuracy for classification.

To assess features’ importance for classification, Shapley value in cooperative game
theory is introduced. In 2005, Cohen et al. put forward a feature selection algorithm using
the Shapley value. It utilized the Shapley value to iteratively calculate the validity of
the feature, and features were selected through forward and backward elimination [43].
The forward elimination method achieved the highest accuracy among the experimental
comparison algorithms. In 2016, Mokdad et al. designed a feature selection algorithm
structure derived from the Shapley value [44]. First, the rank of N groups of features
was obtained by N feature selection algorithms, and then the Borda Coun method was
adopted to determine the ultimate feature rank. The experimental results showed the
validity of this algorithm. In 2020, Chu et al. decomposed the Shapley value into high-
order interactive components to reasonably evaluate features’ contribution and proposed
to evaluate feature subsets by discarding unselected features [45]. The above methods are
non-optimized algorithms. Some studies combine the Shapley value with evolutionary
algorithms. Deng et al. put forward a feature selection method that combines the Shapley
value and particle swarm optimization [46]. The Shapley value was utilized to remove
useless features in the local search and select fewer features. Guha et al. proposed a
cooperative genetic algorithm for feature selection [47]. The fitness function combined the
classification result, the feature subset size and the Shapley value score in a multi-objective
fashion. However, this method is essentially single-objective optimization and cannot
obtain multiple non-dominated solutions.

As far as we know, Shapley value has not been introduced into the multi-label feature
selection algorithm. We merge Shapley value and a multi-objective multi-label feature
selection method. This combination possesses the following two advantages: First, the
Shapley value method focuses on the contribution of each feature, and the multi-objective
optimization method focuses on the combination of features. Appropriate fusion can
prevent a feature from being eliminated due to its poor performance in the feature subset,
but the feature is useful for classification. Second, due to the huge search space, the search
process at the beginning of the evolutionary algorithm has some randomness. The Shapley
value method is conducive to the algorithm to search for potential spaces and to improve
the convergence speed.

3. Preliminaries
3.1. Multi-Objective Optimization

In reality, many optimization problems involve multiple objectives, moreover, there
may be contradictions or other relationships between the objectives. It is hard for people
to acquire the best solution for each objective and determine the importance of different
objectives. The multi-objective algorithm can balance the relationship between multi-
ple objectives so that the obtained solution can be approximately optimal on multiple
objectives.

The multi-objective optimization problem with M optimization objectives is formally
defined as Equation (1):

minimize f (x) = ( f1(x), f2(x), . . . fM(x)) (1)
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where x ∈ Ω, Ω represents the decision space, x = (x1, x2, . . . , xnm) ∈ Ω ⊆ Rn, x is a
decision variable of length nm, fi(x) (i = 1, . . . , M) is the i-th optimized function.

In a multi-objective optimization problem, for two solutions y, z ∈ Ω, y dominates
z, donated by y ≺ z, if ∀k: fi(y) ≤ fi(z) ∧ ∃k : fi(y) < fi(z), k ∈ [1, M]. x∗ ∈ Ω is
defined as a Pareto optimal solution if there is no other solution x 6= x∗ ∈ Ω dominates
x∗. A Pareto set consists of all the Pareto optimal solutions. The front obtained by mapping
the Pareto set to the objective space is known as the Pareto front.

3.2. Shapley Value

Game theory mainly includes two types of cooperative games and non-cooperative
games [48,49]. The main feature of cooperative games is that participants cooperate with
each other and form alliances to maximize the overall benefits. The collective benefits are
more important than the individual benefits. Cooperative games emphasize collective ra-
tionality [50], while non-cooperative games emphasize individual rationality [51]. Feature
selection can be regarded as a cooperative game, which satisfies the forming conditions of
the cooperative game:

(1) The total personal income is less than the alliance’s income.
(2) Compared with not joining the alliance, every participant is able to gain a higher profit.

The Shapley value calculates the weighted sum of the participants’ marginal contri-
butions in the cooperative game [52]. It’s a fair and reasonable method of distributing
benefits for participants. In feature selection, Shapley value can be utilized to calculate the
feature’s contribution.

Suppose that the set of individuals participating in the cooperative game is
P = {p1, p2, . . . , pns}, pi is the i-th participant, and ns is the number of individuals. S is
the set of all subsets that do not contain pi in P. v is a real-valued function, which can map
the alliance to the benefits obtained by the cooperation of participants in the alliance. The
Shapley value of participant pi is calculated as follows:

φi = ∑S⊆P\{pi}
|S|!(|P| − |S| − 1)!

|P|! [v(S ∪ {pi})− v(S)] (2)

Specifically, in the feature selection problem, P is the original feature set, pi is the
i-th feature, S is all feature subsets that do not contain feature pi, and the function v is
represented by the classification result of the selected features under the classifier.

3.3. Multi-Label Learning

In order to better illustrate the difference between multi-label learning and traditional
single-label learning, we give an example of an image. As shown in Figure 1, (a) is the
original image, and (b) is the annotated image of (a). First, the meaning of the traditional
single-label classification is explained. When we judge that the water area in (a) is a sea, a
lake or a river, we can see that it belongs to the sea, and it cannot belong to the lake and
the river at the same time, because these three categories are in conflict. This problem is
a single-label multi-classification problem, that is, there are three categories of sea, lake
and river under the label of water description. However, an image often contains more
than one object. As shown in (b), the image can be annotated with three labels including
sky, sea and sand beach. Each label can be divided into two categories, 0 and 1, meaning
including the object and not including the object. Obviously, these two categories are
contradictory. However, the three labels can exist at the same time, and there is a certain
connection between the three labels. For example, if an image contains sea water, then the
image may also include sky and sand beach, which is in line with the objective laws of
the world. Therefore, multi-label classification is close to real life. The classification in (b)
can be regarded as a multi-label binary classification problem. The multi-label multi-class
problem corresponds to multiple labels, and each label has multiple categories of problems.
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The original single-label learning method cannot be directly used in multi-label learn-
ing [53], because every sample of multi-label data is labeled with one or more labels
simultaneously. Moreover, the relationship between the labels may be related. The defini-
tion of multi-label learning is as follows:

Let X = {x1, x2, . . . , xN} be the d-dimensional input variable on the real number
field, and Y =

{
y1, y2, . . . , yq

}
be the label space. D = {(xi, Yi), 1 ≤ i ≤ N} is the training

dataset, and Yi is the true label set of training data xi. During the training process, the
algorithm learns the function h : X → 2q based on the training data. Given test data set
H =

{(
xj, yj

)
|1 ≤ j ≤ t

}
, when the test data xj ∈ X is input, the predicted labels closest to

the proper labels of xj are obtained through the function h.
Multi-label classification has unique evaluation means to analyze the quality of the

classification results, which is divided into examples-based criteria and labels-based crite-
ria [54]. In this paper, we mainly introduce the six criteria involved in the experiment:

• Ranking Loss: It evaluates the fraction that an irrelevant label is ranked before a
related label. yi is the complementary set of yj.

RL(h,H) = 1
t

t
∑

j=1
{ 1
|yj||yi |

|(k, l) ∈
(
yj × yi

)
, s.t.h

(
xj, k

)
≤ h

(
xj, l
)
} (3)

• Average Precision: It measures the average instances’ correlated labels, and these
labels are ranked higher than the preset labels. rankh is the descending rank function.

AP(h,H) = 1
t

t
∑

j=1

1
|yj | ∑

y∈yj

|{y′ |rankh(x,y′)≤ rankh(xj ,y),y′∈yj}|
rankh(xj ,y)

(4)

• Coverage: It records the minimum number of steps that need to be moved to cover
the true labels associated with the sample from the sample’s classification prediction
labels list.

CV(h,H) = 1
t

t
∑

j=1
maxy∈yj rankh

(
xj, y

)
− 1 (5)

• Hamming loss: It measures the proportion of misclassified label pair.

HL(h,H) = 1
t

t
∑

j=1

∣∣h(xj
)⊕

yj
∣∣ (6)

where
⊕

represents the symmetric difference of the predicted label set and true
label set.
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• Macro-F1: It is a label-based index that takes into account the average F-measure of
every label.

MaF( f ,F ) = 1
q

q
∑

j=1

2 ∑t
i=1 yijhj(xi)

∑t
i=1 yij+∑t

i=1 hj(xi)
(7)

• Micro-F1: It is a label-based index that takes into account the average F-measure of
the prediction matrix.

MiF(h,H) =
2 ∑t

j=1|h(xj)∩yj|
∑t

j=1|yj|+∑t
j=1|h(xj)| (8)

4. The Proposed Method
4.1. Objective Function

Generally, the number of objectives for multi-objective optimization does not exceed
three, and problems with more than three objectives can be defined as many-objective
optimization problems. This paper sets three optimization objectives including AP, HL
and the number of selected features. The calculation methods of AP and HL are shown in
Equations (4) and (6). The larger the value of AP, the better, and the smaller the value of
HL and the number selected features, the better. The relationship between three objectives
is complicated. First, the classification index and the number of features are contradictory
in most situations. It is difficult to obtain high classification accuracy with a small number
of features. Second, the literature [40] pointed out that AP and HL are contradictory. The
single-objective optimization method is difficult to deal with the complex relationship
between the objectives, so the multi-objective optimization algorithm is adopted as the
basic optimization method.

4.2. Mutation Operator

Like the traditional genetic algorithm, NSGA III requires the crossover and mutation
operators to produce offspring. Traditional NSGA III suites for continuous optimization
matters, which means that the algorithm uses the real number encoding method and
operators such as simulate binary crossover and polynomial mutation. Feature selection
is a discrete optimization problem, and every feature corresponds to a bit. In the genetic
algorithm, for a dataset with d-dimensional features, the population is composed of multi-
ple chromosomes composed of 0 and 1 with length d, and each chromosome represents a
solution. 0 means the feature corresponding to the bit is not selected, 1 means selected.

In order to effectively identify the relevant features, redundant features and irrelevant
features, the Shapley value is fused with the multi-objective optimization algorithm. A
mutation operator and a crossover operator based on Shapley value are proposed so that the
improved NSGA III algorithm can resolve the multi-label feature selection problem well.

In the real world, many problems involve with high dimensions. The high-dimensional
characteristics of the data increase the decision variables of the evolutionary algorithm,
resulting in a huge search space, and the algorithm’s optimization ability and speed are
affected. At the beginning, the algorithm’s randomness may lead to the wrong search
direction for certain features. For example, suppose that there are m individuals in a
population, the length of each individual is d, the i-th feature is relevant, and the j-th
feature is irrelevant. Then in the early stage of the iteration, the following two situations
may occur:

(a) The number of individuals who choose the i-th feature is u, m
2 ≤ u < m, and the

number of individuals who do not choose the i-th feature is m− u.
(b) The number of individuals who choose the j-th feature is w, m

2 ≤ w < m, and the
number of individuals who do not choose the j-th feature is m−w.

When u and w are large, it indicates that most individuals have not selected the
relevant feature i, or that most individuals have selected the irrelevant feature j. The
offspring of similar chromosomes are close to the parent individuals. In this case, it is
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requisite to carry out mutation operations on the bits with the above-mentioned conditions
with greater probability.

However, it is difficult to know the relevance or irrelevance of features. Therefore,
we introduced the Shapley value to evaluate the feature’s contribution. Given that three
objectives are optimized in this paper, including two multi-label evaluation criteria, the
Shapley value of the feature is defined as follows:

φi = ∑S⊆P\{pi}
|S|!(|P|−|S|−1)!

|P|! [v1(S ∪ {pi})− v1(S) + v2(S ∪ {pi})− v2(S)] (9)

where v1 is the HL value obtained by the feature subset S under the multi-label classifier,
and v2 is the AP value. HL and AP are calculated as shown in Equation (6) and Equation (4).

When the unbalanced search situation no longer occurs, it means that the relevant
features have basically been selected, and the irrelevant features are discarded. In order
to further judge the redundant features, more attention should be paid to the features
near the Shapley value of 0. Because the contribution of such features hardly contribute to
classification, whether to choose these features basically does not affect the classification
result. The specific mutation procedure is shown in Algorithm 1.

Algorithm 1 Mutation probability calculation

Input: Population pop; Population scale Np; Feature dimension d; Default mutation rate η;
Parameter maker t.
Output: Mutation probability Pmu
1: for i = 1: Np
2: A(i) = Fit(pop(i));//Calculate the fitness of every individual in pop.
3: end
4: for i = 1: d
5: ϕi = Shapley(A);//Calculate the Shapley value of the i-th feature.
6: number1(i) = Select(pop(:,i));//Record the number of individuals with selected the i-th feature.
7: number2(i) = Unselect(pop(:,i));//Record the number of individuals with unselected the i-th
feature.
8: end
9: for i = 1: d
10: if t = 0
11: if ϕi < 0 && (number1(i)/number2(i)) < 1/2

12: Pmu(i) = η + η ∗
(

1− number1(i)
number2(i)

)
;

13: t = 1;
14: elseif ϕi > 0 && (number2(i)/number1(i)) < 1/2

15: Pmu(i) = η + η ∗
(

1− number2(i)
number1(i)

)
;

16: t = 1;
17: else
18: Pmu(i) = η;
19: end
20: end
21: if t = 0
22: if abs(ϕi ) < max(abs(ϕ))/2

23: Pmu(i) = η + η ∗
(

1− abs(ϕi)
max(abs(ϕ))

)
;

24: else
25: Pmu(i) = η;
26: end
27: end
28: end

Algorithm 1 shows the process of determining the mutation probability of each gene.
When a population is initialized, the fitness value of each individual can be calculated through
the objective functions (lines 1–3). Then measure the Shapley value of each feature according
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to Equation (2) and record the number of individuals that selected and unselected a certain fea-
ture in the population (lines 4–8). Next, the calculation of mutation probability is divided into
two cases. The first is to search for relevant features and irrelevant features under the condi-
tion

{
ϕi < 0&&

(
number1(i)
number2(i)

)
≤ 1/2

}
|{ϕi > 0&&(number2(i)/number1(i)) ≥ 1/2}. In this

case, the i-th feature may be wrongly selected or abandoned by most individuals. There-
fore, it is necessary to increase the probability of mutation of the i-th feature. The more
unbalanced the current feature’s search, the greater the probability of mutation. When the
population no longer satisfies the above conditions in the later period of evolution, the
search for redundant features is performed. The smaller the absolute Shapley value of the
feature means the greater the probability that it is a redundant feature, thereby increasing
the probability of mutation.

After obtaining the mutation probability of each gene, mutation operation will be
performed in the population. The uniform mutation is adopted in this paper, and the
specific procedure is shown in Algorithm 2.

Algorithm 2 Mutation operation

Input: Population pop; Population mutation ratio Pmr; Mutation probability Pm; Population scale
Np; Feature dimension d.
Output: Mutation population popm
1: n = Np ∗ Pmr;
2: for i = 1: n
3: for j = 1: d
4: if rand(1) > (1 − Pm(j))
5: popm(i, j) = abs(pop(i, j) − 1);
6: else
7: popm(i, j) = pop(i, j);
8: end
9: end
10: end

4.3. Crossover Operator

The uniform crossover operator is adopted in this paper. The exact process is shown
in Algorithm 3.

Algorithm 3 Crossover operation

Input: Population pop; Population crossover ratio Pcr; Crossover probability Pc; Population scale
Np; Feature dimension d.
Output: Crossover population popc
1: n = Np ∗ Pcr;
2: m = 0;
3: for i = 1 : n
4: i1 = rand(1, n);//Generate a random number from 1 to n.
5: i2 = rand(1, n);
6: m = 2 ∗ i− 1;
7: for j = 1: d
8: if rand(1) > rand(0.5, Pc)
9: popc(m, j) = pop(i2, j);
10: popc(m + 1, j) = pop(i1, j);
11: else
12: popc(m, j) = pop(i1, j);
13: popc(m + 1, j) = pop(i2, j);
14: end
15: end
16: end
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In the mutation operation, the Shapley value represents a single feature’s contribution.
In the crossover operation, we employ Shapley value to evaluate individuals. The average
of the sum of the selected features’ Shapley values is defined as the individual’s Shapley
value. Given that the Shapley value vector of all the features is ϕ, and the chromosome
of individual i is pop(i, :), then the Shapley value φi of individual i is φi =

pop(i,:)×ϕ′

|pop(i,:)|1
. The

calculation method of the crossover probability Pc is as follows:

pc =

{
0.5 , i f t = 1

|φi1−φi2|
max(φ)−min(φ) , i f t = 0

(10)

Similar to the mutation probability, the calculation of the crossover probability is
divided into two stages. When t = 1, the algorithm is in the early stage of the iteration.
At this time, the global search of the algorithm is necessary, so the probability of each
individual crossover is equal. When t = 0, the algorithm performs a local search for
redundant features. If individuals with large fitness gaps are selected for crossover, it
may affect the inheritance of excellent genes. The non-dominated individuals are at the
same level and cannot be ranked in the multi-objective problem. Therefore, we use the
individual’s Shapley value to approximately assess the individual’s quality. When t = 0, if
the difference between the two individuals’ Shapley values is large, then the possibility of
swapping genes is reduced.

4.4. The Improved Niche Preservation Mechanism

NSGA III employs a set of pre-set reference points to associate non-dominated so-
lutions, and the niche preservation mechanism is employed to select non-dominated
individuals from the critical front into the archive. Assume that there are ρj individuals
associated with the j-th reference point. The selection process is as follows:

First, randomly select a reference point j with the smallest ρj from the set of reference
points. When ρj = 0, it means that there is no individual associated with it. Therefore,
if there is an individual in the critical front that is associated with j, then the individual
closest to the reference line of j is selected to the archive. If no individual is associated with
j, then reconsider other reference points.

ρj 6= 0 indicates that there are one or more individuals associated with j. If the number

of individuals associated with j is zero in the critical front, the next reference point is
reconsidered. If the number of individuals associated with j is non-zero in the critical front,
an individual is randomly selected to associate with j.

In this paper, we can obtain the Shapley value of each individual, which was intro-
duced in Section 4.2. We sort the individuals in the critical front in descending order
according to the individuals’ Shapley value. When ρj 6= 0, the first-ranked individual
in the critical front is selected and added to the archive if there are individuals in the
critical front that are associated with j. The individual with the highest Shapley value
indicates that the features selected by the individual has a higher average contribution to
the classification, which means that the individual may be a promising solution. Sorting
instead of random selection helps to improve the convergence of the algorithm.

4.5. The Overall Flow of the Algorithm

In order to more clearly illustrate the specific process of the proposed algorithm,
Figure 2 shows the flow chart of SHAPFS-ML.

First, the population is initialized. All individuals are binary-coded and the length
of the chromosome is the feature dimension of the input data. Then, the fitness values
of the individuals in the population are calculated. The multi-label classifier MLKNN is
used to evaluate the AP and HL values of the feature subset, and AP, HL and the size
of the feature subset are used as the fitness values of the individual. After obtaining the
fitness values matrix of the population, the Shapley value of each feature is calculated.
Then the crossover probability and mutation probability are determined, and the evolution
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operation is executed. The regenerated populations are stratified through non-dominated
relations. Because the capacity of the archive set is limited, the archive set is maintained
by an improved maintenance strategy and the non-dominated solutions in the archive
set are updated. If the stop condition is not met, the above process is repeated, and all
non-dominated solutions in the archive set are finally output.
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We can analyze how the framework is improved from two perspectives. From the
perspective of features, each feature acts as a participant to cooperate with other features.
The Shapley value can feedback the benefits of the alliances the feature participates in and
the alliances that the feature does not participate in. The way of feedback is to adjust the
cross probability and mutation probability of the feature, which will affect the probability
of the feature appearing in the next iteration, so that the algorithm heuristically searches for
potential areas. From the perspective of the population, the fitness function quantifies the
quality of each individual. The population evolves through reproduction so that excellent
genes are retained in each iteration, disadvantaged individuals are eliminated, and the
entire population evolves in a better direction.

5. Experiments
5.1. Experiment Settings

The experiments are conducted on seven multi-label datasets including flags, emotions,
yeast, virus, Languagelog, genbase and medical. Flags, emotions, yeast, genbase and
medical are available on MULAN. MULAN is an open-source library for multi-label
learning [55]. Languagelog are chosen from MEKA [56], an extended version of WEKA [57]
in multi-label learning and evaluation. Virus is available in [58]. Table 1 shows the summary
of seven datasets. A classic multi-label classification algorithm ML-KNN [9] is employed
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as the multi-label classifier. K indicates the number of nearest neighbors, which is set
to 10 as suggested in [9]. The parameter η is 0.3 and the size of population is 20. The
experiments are conducted on a laptop equipped with an Intel(R) Core (TM) i7-9750H CPU
and 16 GB memory.

Table 1. Description of datasets.

Dataset Features Domain Labels Samples Training Testing

flags 19 images 7 194 129 65
emotions 72 music 6 593 300 293

yeast 103 biology 14 2417 1500 917
virus 749 biology 6 207 124 83

languagelog 1004 biology 75 1459 1167 292
genbase 1185 biology 27 662 463 199
medical 1449 text 45 978 333 645

5.2. Comparing Methods

In this section, six comparison methods are employed to demonstrate the usefulness
of the proposed algorithm. The traditional NSGA III is compared with SHAPFS-ML
to analyze the effectiveness of the improved NSGA III algorithm. Similarly, the coding
method of NSGA III is modified to binary, uniform crossover and uniform mutation are
adopted as the methods of crossover and mutation. SHAPFS-ML and NSGA III algorithms
have been independently run 20 times on each data set. A non-dominated solution set is
randomly selected from the running results, and the solution with the smallest sum of all
objective function values is selected as the final result. MDFS constructs a low-dimensional
embedding method to seek discriminative features [27]. MCLS is a manifold-based method
that can transform the original label space and constrain the samples [26]. MIFS exploits the
label correlations and decomposes the multi-label information [6]. MDDM maximizes the
reliance of features and the associated labels, proj is the irrelated projection dimensionality
reduction of MDDM, spc is an unrelated projection feature selection method [59].

5.3. Evaluation of Experimental Results on Multi-Label Classification

Tables 2–7 show the comparison results on seven datasets under six multi-label
learning criteria, which are introduced in Section 3.3. ↑ means the value should be the
bigger the better. ↓means the value should be the smaller the better. Generally speaking,
the performance of SHAPFS-ML is the best (In bold). Avg.Rank is the average ranking
value of each algorithm on all datasets. The smaller the Avg.Rank value, the better the
performance of the algorithm. In detail, SHAPFS-ML has obtained the best results on
three indicators average precision, coverage and Hamming loss. According to ranking
loss, SHAPFS-ML obtained the optimal results in addition to the dataset Languagelog.
SHAPFS-ML ranked second on Languagelog, but the difference between SHAPFS-ML
and MCLS is small. On MicroF and MacroF indicators, MCLS is better than SHAPFS-ML
on the data set genbase. Although SHAPFS-ML did not rank first on both indicators,
SHAPFS-ML is significantly better than other non-optimized methods on other data sets
except genbase. For example, on the emotions dataset, the value of SHAPFS-ML on the
MicroF indicator is 0.6446, while the values of the other five non-optimized methods are
0.4636, 0.5114, 0.5156, 0.5829 and 0.5860, respectively, which are all behind SHAPFS-ML.
Similarly, on the flags dataset, SHAPFS-ML obtained 0.6546 on the MacroF indicator, while
in other methods, the lowest value of MDFS is 0.4777, and the highest value of MCLS
is 0.5657. This observation reveals that SHAPFS-ML has a remarkable improvement. In
terms of average ranking, SHAPFS-ML ranked first, followed by NSGA III. It is observed
that the classification results of SHAPFS-ML are improved compared to the traditional
NSGA III. Moreover, the multi-objective optimization-based method is more advantageous
compared with other non-optimized algorithms, and the performance is relatively stable
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on different scale datasets. Among the non-optimized methods, MCLS performed best,
and MDDM_proj performed worst.

Table 2. Comparison results of multi-label feature selection in terms of Ranking Loss ↓.

Methods Flags Emotions Yeast Virus Languagelog Genbase Medical Avg. Rank

SHAPFS-ML 0.1915 0.1686 0.1705 0.0146 0.1629 0.2028 0.0627 1.1429
NSGA III 0.2056 0.1839 0.1751 0.0157 0.1720 0.2044 0.0677 2.8571

MDFS 0.2372 0.2778 0.1794 0.0443 0.1692 0.2131 0.0749 5.1429
MCLS 0.1982 0.2186 0.1765 0.0297 0.1627 0.2100 0.0862 3.5714
MIFS 0.2015 0.2546 0.1913 0.0306 0.1706 0.2064 0.1449 4.8571

MDDM_proj 0.2056 0.2050 0.1902 0.0668 0.1779 0.2088 0.0844 5.1429
MDDM_spc 0.2056 0.2013 0.1854 0.1250 0.1810 0.2112 0.0819 5.2857

Table 3. Comparison results of multi-label feature selection in terms of Average precision ↑.

Methods Flags Emotions Yeast Virus Languagelog Genbase Medical Avg. Rank

SHAPFS-ML 0.8454 0.8002 0.7566 0.9749 0.3158 0.3774 0.8365 1.0000
NSGA III 0.8225 0.7848 0.7504 0.9703 0.3109 0.3749 0.8138 2.4286

MDFS 0.7929 0.7002 0.7484 0.9291 0.2920 0.3572 0.7412 5.1429
MCLS 0.8284 0.7505 0.7535 0.9478 0.3120 0.3570 0.7022 3.4286
MIFS 0.8154 0.7212 0.7322 0.9438 0.3056 0.3608 0.4149 5.1429

MDDM_proj 0.8182 0.7579 0.7307 0.9000 0.2896 0.3511 0.6940 5.7143
MDDM_spc 0.8182 0.7594 0.7381 0.8275 0.2808 0.3585 0.6988 5.0000

Table 4. Comparison results of multi-label feature selection in terms of Coverage ↓.

Methods Flags Emotions Yeast Virus Languagelog Genbase Medical Avg. Rank

SHAPFS-ML 3.6308 1.8960 6.3108 0.2892 13.1370 6.2111 3.5488 1.0714
NSGA III 3.7385 2.0248 6.4046 0.2892 13.7295 6.2412 3.7364 2.9286

MDFS 3.8462 2.4653 6.4526 0.4337 13.5445 6.4271 4.1380 5.0000
MCLS 3.7231 2.1485 6.4820 0.3614 13.1849 6.3920 4.6698 4.2143
MIFS 3.6923 2.3020 6.6249 0.3614 13.6130 6.3065 7.3752 4.6429

MDDM_proj 3.7231 2.0842 6.5540 0.5542 14.0274 6.3618 4.6465 4.9286
MDDM_spc 3.7231 2.0842 6.5267 0.8554 14.5582 6.4171 4.5085 5.2143

Table 5. Comparison results of multi-label feature selection in terms of Hamming Loss ↓.

Methods Flags Emotions Yeast Virus Languagelog Genbase Medical Avg. Rank

SHAPFS-ML 0.2352 0.2129 0.1993 0.0301 0.0157 0.0491 0.0137 1.0000
NSGA III 0.2681 0.2170 0.1998 0.0321 0.0158 0.0493 0.0139 2.1429

MDFS 0.3011 0.2921 0.2050 0.3207 0.0162 0.0497 0.0184 4.9286
MCLS 0.2440 0.2639 0.2013 0.2979 0.0163 0.0503 0.0189 4.2857
MIFS 0.2703 0.2698 0.2113 0.3070 0.0159 0.0495 0.0278 5.0000

MDDM_proj 0.3033 0.2409 0.2107 0.3298 0.0162 0.0519 0.0194 6.0000
MDDM_spc 0.3033 0.2343 0.2098 0.3055 0.0160 0.0516 0.0186 4.6429

Table 6. Comparison results of multi-label feature selection in terms of MicroF ↑.

Methods Flags Emotions Yeast Virus Languagelog Genbase Medical Avg. Rank

SHAPFS-ML 0.7563 0.6446 0.6335 0.9223 0.0853 0.0149 0.7246 1.4286
NSGA III 0.7150 0.6362 0.6240 0.9149 0.0649 0.0075 0.7183 2.8571

MDFS 0.6761 0.4636 0.6187 0.7978 0.0201 0.0148 0.5968 5.2857
MCLS 0.7388 0.5114 0.6268 0.8830 0.0165 0.0357 0.5929 3.5714
MIFS 0.7036 0.5156 0.6001 0.8601 0.0492 0.0000 0.0218 5.2857

MDDM_proj 0.7000 0.5829 0.5943 0.6848 0.0484 0.0211 0.5751 5.0000
MDDM_spc 0.7000 0.5860 0.6160 0.5122 0.0539 0.0212 0.5627 4.4286
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Table 7. Comparison results of multi-label feature selection in terms of MacroF ↑.

Methods Flags Emotions Yeast Virus Languagelog Genbase Medical Avg. Rank

SHAPFS-ML 0.6546 0.6193 0.3649 0.7589 0.2308 0.1518 0.2932 1.4286
NSGA III 0.5279 0.5674 0.3482 0.7062 0.2237 0.1500 0.2778 3.2857

MDFS 0.4777 0.3946 0.3367 0.5084 0.2166 0.1515 0.2144 5.4286
MCLS 0.5657 0.4300 0.3641 0.6115 0.2165 0.1551 0.2183 3.5714
MIFS 0.5528 0.4544 0.3033 0.6870 0.2217 0.1481 0.0911 4.8571

MDDM_proj 0.5402 0.4965 0.2950 0.4782 0.2213 0.1521 0.2076 4.5714
MDDM_spc 0.5402 0.5228 0.3227 0.3002 0.2213 0.1521 0.1835 4.4286

Table 8 shows the ratio of the size of selected features by different methods to the
size of the full feature set. It can be seen that SHAPFS-ML can remove at least 60% of the
features on the flags, emotions and virus data sets, and can remove more than 50% of the
features on other data sets. Although the size of features selected by SHAPFS-ML is not the
least, it has the best performance on the classification results. Through the above discussion,
we can draw a conclusion that SHAPFS-ML is competitive among the well-established
comparison methods.

Table 8. The proportion of selected features.

Methods Flags Emotions Yeast Virus Languagelog Genbase Medical

SHAPFS-ML 0.2632 0.4583 0.2816 0.3605 0.4781 0.4051 0.4465
NSGA III 0.2105 0.3889 0.2427 0.3712 0.4094 0.4203 0.3823

MDFS 0.2632 0.2639 0.2816 0.1669 0.4452 0.0793 0.4272
MCLS 0.3684 0.4306 0.4466 0.1696 0.2241 0.0194 0.4976
MIFS 0.6316 0.4583 0.4951 0.2377 0.3924 0.0270 0.4341

MDDM_proj 0.1053 0.2500 0.4951 0.4099 0.3466 0.4473 0.5003
MDDM_spc 0.1053 0.4583 0.5146 0.4686 0.2510 0.3983 0.5003

The average ranking of SHAPFS-ML is better than that of NSGA III under six multi-
label learning criteria. The main difference between the two is the crossover and mutation
operators. Crossover and mutation operators are related to the global search and lo-
cal search capabilities of the algorithm. The two types of searches cooperate with each
other to achieve a balanced state. There are two main advantages of SHAPFS-ML. First,
the crossover and mutation operators proposed in this paper adaptively calculates the
crossover probability and mutation probability of the gene locus corresponding to the
feature according to the Shapley value during the evolution process. The two operators
cooperate and compete with each other to enhance the exploitation of feature space and
the ability to explore local features. Secondly, the multi-objective optimization algorithm
can consider the combination effect of features, and the introduction of the Shapley value
method can measure the effect of a single feature. Feature combinations involving well-
performing features may be more competitive and potential. Therefore, in the problem of
multi-label feature selection, the optimization ability of SHAPFS-ML is stronger than that
of traditional NSGA III. Therefore, the optimization ability of SHAPFS-ML is stronger than
that of traditional NSGA III in the problem of multi-label feature selection.

5.4. The Comparison on Hypervolume Indicator

To quantify the quality of the Pareto set obtained by SHAPFS-ML, Hypervolume (HV)
index is introduced into the evaluation of experimental results. HV is a commonly used
index for multi-objective algorithms [60]. The larger the value of HV, the better the multi-
objective algorithm’s capability. HV calculates the volume of the hypercube formed by the
reference points and the non-dominated solution set. HV value can reflect the distribution
and convergence of the algorithm. Therefore, the obtained HV value is different if the
non-dominated solution set is different. We have run the algorithms SHAPFS-ML and
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NSGA III 20 times to calculate the average, best and worst values of HV. As shown in
Table 9, SHAPFS-ML can obtain a higher average HV value and the best HV value, which
shows that the search ability of SHAPFS-ML’s multi-objective optimization is improved
compared with the traditional NSGA III algorithm, and it can obtain a widely distributed
and uniform Pareto solution set.

Table 9. HV values of multi-objective algorithms.

Methods
Flags Emotions

Average Best Worst Average Best Worst

SHAPFS-ML 0.6301 0.7693 0.5375 0.7326 0.7781 0.7176
NSGA III 0.5835 0.6237 0.4800 0.5928 0.7453 0.5668

Methods
Yeast Virus

Average Best Worst Average Best Worst

SHAPFS-ML 0.7264 0.7758 0.6749 0.5667 0.6170 0.4612
NSGA III 0.6929 0.7246 0.6184 0.5124 0.5488 0.4392

Methods
Languagelog Genbase

Average Best Worst Average Best Worst

SHAPFS-ML 0.4286 0.4515 0.4192 0.3847 0.3864 0.3807
NSGA III 0.3971 0.4206 0.3734 0.3755 0.3834 0.3506

Methods
Medical

Average Best Worst

SHAPFS-ML 0.4217 0.4702 0.3984
NSGA III 0.3953 0.4410 0.3705

5.5. Shapley Value Analysis

To further analyze the validity of the application of Shapley value to multi-label feature
selection, we sort the features’ Shapley values calculated in the last iteration of SHAPFS-ML,
and gradually select the features for classification according to the order of contribution
from the largest to the smallest. NSGA III is a global optimization algorithm, and the
number of features cannot be determined arbitrarily. Therefore, NSGA III is not used as
a comparison algorithm in this section. The non-optimized algorithms including MDFS,
MCLS, MIFS, MDDM_proj and MDDM_spc as mentioned in Section 5.3 are compared
for analysis.

The main purpose of this section is to verify whether the Shapley value method can
reasonably analyze the contribution of features. This study is meaningful for feature se-
lection. Because features with a high degree of contribution can be regarded as relevant
features, which can help the sample to be correctly classified. And features with low contri-
butions can be regarded as irrelevant features, which will interfere with the classification
process and may even reduce the classification accuracy. The contribution degree of the
feature also reflects the importance of the feature. Other non-optimized methods essentially
use different measurement methods to quantify the importance of the feature. Therefore, it
is reasonable to compare the feature results based on the Shapley value ranking with other
non-optimized methods.

Figures 3–9 show the values of the six algorithms on the seven datasets as the number
of features increases on different indicators. From the observation, we can see that SHAPFS-
ML has a significant improvement on six indicators compared with other methods on
emotions, virus and medical. As the number of features increases, SHAPFS-ML tends
to stabilize after reaching a certain maximum value. On yeast and Languagelog, the
performance of MCLS is closest to SHAPFS-ML, but SHAPFS-ML can basically obtain
the optimal value. On the flags dataset, except for Coverage and MacroF, SHAPFS-ML is
slightly inferior to MCLS. On the genbase data set, SHAPFS-ML can obtain the optimal
value in addition to the two indicators of MicroF and MacroF.
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Through the above analysis, it can be seen that the Shapley value of SHAPFS-ML
can effectively evaluate features and identify effective features. In general, non-optimized
multi-label feature selection algorithms are more difficult to determine the optimal value,
especially for multi-label learning. Under different indicators, the number of features that
can obtain the optimal value is different. For a dataset with d dimensions, it is essential to
run the classification algorithm d times to obtain the value corresponding to the number of
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different features on an index. In contrast, the optimization algorithm has excellent global
search capabilities and can obtain approximately optimal solutions in one run. According
to the experimental results, the features selected by SHAPFS-ML perform better under
different multi-label indicators and have better stability.

5.6. Complexity Analysis

In this section, the computational complexity of the proposed algorithm is analyzed.
When the population size is set to Np and the number of objectives is M, population initial-
ization, crossover operator, mutation operator, and individual fitness calculations all require
O
(

Np
)

basic operations. The non-dominated sort requires O
(

NplogM−2Np
)

basic opera-
tions. The selection operation of non-dominated individuals requires O

(
MNp

2), so the final
computational complexity of the proposed algorithm is max

{
O
(

NplogM−2Np
)
, O
(

MNp
2)}.

5.7. Comparison of Running Time

The running time of the wrapper feature selection algorithm based on the evolutionary
optimization depends on the evolutionary algorithm, the size of the data set and the classi-
fication algorithm, so it is difficult to measure the actual running time of the evolutionary
algorithm [41]. Therefore, we compare the running time of SHAPFS-ML and NSGA III in
this section. The running time is the average time of 20 independent runs of each algorithm.
It can be seen from Table 10 that the running time of the two algorithms is relatively close,
especially on the flags, emotions and virus data sets. SHAPFS-ML is improved on the basis
of NSGA III. Both the improved and traditional crossover and mutation operators require
linear time.

Table 10. The running time of SHAPFS-ML and NSGA III. (S).

Methods Flags Emotions Yeast Virus

SHAPFS-ML 85.8350 422.3640 7168.8290 129.0880
NSGA III 89.6130 422.0730 7375.0450 117.2760

Methods Languagelog Genbase Medical

SHAPFS-ML 5569.5000 1112.0010 1840.4340
NSGA III 5728.6390 1072.4730 1759.2850

6. Conclusions

Multi-label classification problems are common in real life. In recent years, there have
been more studies in the field of multi-label feature selection, but there are few methods
based on multi-objective optimization. A wrapper multi-objective optimization feature
selection algorithm for multi-label learning fused with Shapley value (SHAPFS-ML) is
proposed in this work. This method has two notable properties. First, the idea of Shapley
value in game theory is combined with feature selection. We regard feature selection as the
process of a cooperative game between features, and an excellent combination of features
is selected by evaluating both features and individuals. Secondly, the mutation operator
and crossover operator based on Shapley value are proposed to balance the algorithm’s
exploration capability and exploitation capability. The experimental results compared with
other well-established multi-label feature selection methods on multi-label datasets prove
the validity of SHAPFS-ML.

In future work, we will use the Shapley value method to realize feature visualization,
and further distinguish relevant features, redundant features and irrelevant features. This
research will improve the interpretability of multi-label feature selection algorithms. And
we will apply the multi-label feature selection algorithm to a specific problem, such as
image annotation.
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