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Abstract: We present a universal framework for quantum error-correcting codes, i.e., a framework
that applies to the most general quantum error-correcting codes. This framework is based on the
group algebra, an algebraic notation associated with nice error bases of quantum systems. The
nicest thing about this framework is that we can characterize the properties of quantum codes by the
properties of the group algebra. We show how it characterizes the properties of quantum codes as
well as generates some new results about quantum codes.
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1. Introduction

Quantum error-correcting codes provide a key approach to a scalable quantum com-
puter that is resilient against decoherence and operational noise. Quantum errors can be
expressed in terms of unitary error bases [1–9]. A particularly useful class of unitary error
bases, called nice error bases, was introduced by Knill in [10], which is the foundation
of the theory of quantum error-correcting codes [11]. Almost all of the quantum codes
constructed so far are stabilizer or additive codes [3]. These are not the most general
quantum codes, and there exist nonadditive quantum codes that are strictly better than
any additive code [12]. Up to now, all good codes known have fallen into the class of what
have been called pure quantum codes [11]. However, there are still some interesting and
important problems about impure quantum codes [13]. Nearly all known quantum codes
are constructed over finite fields [11]. However, it has been recognised that quantum codes
can be constructed over finite rings as well [14].

When a new physical problem occurs, it is always desirable to find an appropriate
framework for it, such as quantum mechanics for quantum physics. Since the occurrence
of quantum codes, almost all researches are carried out on the specific types of quantum
codes, for example, mainly on stabilizer codes, pure codes and codes over finite fields. In
this paper, we are mainly interested in a universal framework for quantum codes, i.e., a
framework that applies to all codes, no matter whether they are pure or not, stabilizer
codes or not, over finite field or not. Firstly, we recall the properties of nice error bases.
Then, we give the definitions of the group algebra and characters associated with nice
error basis. Finally, based on the group algebra, we establish a universal framework for
quantum codes. Through the discussion we show that this framework can characterize the
properties of quantum codes as well as generate some new results about quantum codes. It
is a powerful tool for use in future works on quantum codes.

2. Preliminaries

Quantum information can be protected by encoding it into a quantum error-correcting
code. An ((n, K, d))m quantum code is a K-dimensional subspace of the state space of n
quantum systems with m levels that can detect all errors affecting less than d quantum
systems, but cannot detect some errors affecting d quantum systems.
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LetH = Cm be an m-level quantum system and let G be an additive group of order
m2 with identity element 0. A nice error basis of H is a set E =

{
Eg
∣∣g ∈ G

}
of unitary

operators onH such that

(i) E0 is the identity operator,
(ii) trEg = 0 for all nonzero g ∈ G,
(iii) EgEh = ωg,hEg+h for all g, h ∈ G,

where complex numbers ωg,h have modulus 1. G is called the index group of E . More-

over, En , E⊗n =
{

Eg , Eg1 ⊗ · · · ⊗ Egn

∣∣∣g = (g1, . . . , gn) ∈ Gn
}

is a nice error basis of n

quantum systemsH⊗n.

Lemma 1. If the index group G is Abelian, we have

∑
g∈G

ωg,hωh,g = 0

for any nonzero h ∈ G.

Proof. By (iii) in the definition of nice error bases, it follows that

EaEbEh = (ωb,hωh,b)EaEhEb = (ωa,hωh,a)(ωb,hωh,b)EhEaEb

and

EaEbEh = ωa,bEa+bEh = ωa,b(ωa+b,hωh,a+b)EhEa+b = (ωa+b,hωh,a+b)EhEaEb

which means
(ωa,hωh,a)(ωb,hωh,b) = ωa+b,hωh,a+b (1)

Now, let Gh =
{

ωg,hωh,g

∣∣∣g ∈ G
}

. Then, from (1) Gh is a subgroup of a cyclic group since
all ωg,h generate a cyclic group [15]. Thus, Gh itself is a nontrivial cyclic group for any
nonzero h ∈ G. �

In the next section, we provide the concept of the group algebra based on the nice
error basis with the Abelian index group. For simplicity, we assume throughout the paper
that the index group G is Abelian. This assumption is reasonable since such nice error basis
exists for any finite dimensional quantum system [10].

3. Group Algebra

We are going to describe the elements of En by formal polynomials in z1, . . . , zn. In
general, Eg = Eg1 ⊗ · · · ⊗ Egn is represented by zg1

1 zg2
2 · · · z

gn
n , which we abbreviate zg. We

create the convention that zgi
i zhi

i = zgi+hi
i . This forms the set of all zg into a multiplicative

group denoted by Z. Thus, Gn and Z are isomorphic groups, with addition in Gn

g + h = (g1, . . . , gn) + (h1, . . . , hn) = (g1 + h1, . . . , gn + hn)

corresponding to multiplication in Z

zgzh = zg1
1 · · · z

gn
n · zh1

1 · · · z
hn
n = zg1+h1

1 · · · zgn+hn
n = zg+h

Definition 1. The group algebra CZ of Z over the complex numbers C consists of all formal sums

∑
g∈Gn

agzg,→ ag ∈ C, zg ∈ Z
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Addition and multiplication of elements of CZ are defined in the natural way by

∑
g∈Gn

agzg + ∑
g∈Gn

bgzg = ∑
g∈Gn

(ag + bg)zg

r ∑
g∈Gn

agzg = ∑
g∈Gn

ragzgr ∈ C

and
∑

g∈Gn
agzg · ∑

h∈Gn
bhzh = ∑

g,h∈Gn
agbhzg+h

To each h ∈ Gn we associate the mapping χh from Z to the complex numbers given by

χh(zg) = trE†
hE†

gEhEg/mn

χh is called a character of Z. χh is extended to act on CZ by linearity

χh( ∑
g∈Gn

agzg) = ∑
g∈Gn

agχh(zg) = ∑
g∈Gn

agtrE†
hE†

gEhEg/mn

Note that

χh(zg) =
n

∏
i=1

ωhi ,gi
ωgi ,hi

(2)

Let
C = ∑

g∈Gn
cgzg

be an arbitrary element of the group algebra CZ, with the property that

M = ∑
g∈Gn

cg 6= 0

Definition 2. The transform of C is the element C′ of CZ given by

C′ =
1
M ∑

h∈Gn
χh(C)zh

where χ was defined above.

Suppose
C′ = ∑

h∈Gn
c′hzh

Then,

c′h =
1
M

χh(C) =
1
M ∑

g∈Gn
cgtrE†

hE†
gEhEg/mn h ∈ Gn (3)

And c′0 = 1. Now, we describe several weight enumerators of the group algebra CZ. Let
the elements of G be denoted by α0 = 0, α1, . . . , αm2−1, in some fixed order.

The first weight enumerator to be considered specifies the group algebra completely
by introducing enough variables. In general, the variables zij means that the ith place in
the vector g is the jth element αj of G. The vector g = (αa1 , αa2 , . . . , αan) is described by the
polynomial

f (g) = z1a1 z2a2 · · · znan

Thus, g is uniquely determined by f (g). This requires the use of nm2 variables zij,
1 ≤ i ≤ n, 0 ≤ j ≤ m2 − 1.
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What we shall call the exact enumerator of C is then defined as

EC = ∑
g∈Gn

cg f (g)

Then, the exact enumerator of C′ is

EC′ = ∑
h∈Gn

c′h f (h)

Theorem 1.

EC′(z10, . . . , zir, . . . , zn(m2−1)) =
1
M

EC

(
m2−1

∑
s=0

ωαs ,α0 ωα0,αs z1s, . . . ,
m2−1

∑
s=0

ωαs ,αr ωαr ,αs zis, . . . ,
m2−1

∑
s=0

ωαs ,αm2−1
ωαm2−1,αs zns

)

Proof. From (2) and (3), the LHS is equal to

∑
h∈Gn

c′h f (h) =
1
M ∑

g∈Gn
cg ∑

h∈Gn
χh(zg) f (h) =

1
M ∑

g∈Gn
cg

m2−1

∑
s1=0

m2−1

∑
s2=0
· · ·

m2−1

∑
sn=0

n

∏
i=1

ωαsi ,gi ωgi ,αsi
zisi

=
1
M ∑

g∈Gn
cg

n

∏
i=1

m2−1

∑
s=0

ωαs ,gi ωgi ,αs zis

which is equal to the RHS. �

The next weight enumerator to be considered classifies vectors g in Gn according to
the number of times each group element αi appears in g.

Definition 3. The composition of g = (g1, . . . , gn), denoted by comp(g), is (s0, s1, . . . , sm2−1)
where si = si(g) is the number of components gj equal to αi. Clearly

m2−1

∑
i=0

si = n

We call the set {A(t)} the complete weight distribution of C where A(t) is the sum of
cg with comp(g) = t = (t0, . . . , tm2−1). We also define the complete weight enumerator of
C to be

WC(z0, . . . , zm2−1) = ∑
t

A(t)zt0
0 · · · z

tm2−1
m2−1 = ∑

g∈Gn
cgzs0

0 · · · z
sm2−1
m2−1

Then, the complete weight distribution of C′ is {A′(t)}, where A′(t) is the sum of c′h
with comp(h) = t = (t0, . . . , tm2−1), and the complete weight enumerator of C′ is

WC′(z0, . . . , zm2−1) = ∑
t

A′(t)zt0
0 · · · z

tm2−1
m2−1

Theorem 2.

WC′(z0, . . . , zr, . . . , zm2−1) =
1
M
WC

(
m2−1

∑
s=0

ωαs ,α0 ωα0,αs zs, . . . ,
m2−1

∑
s=0

ωαs ,αr ωαr ,αs zs, . . . ,
m2−1

∑
s=0

ωαs ,αm2−1
ωαm2−1,αs zs

)
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Proof. Set zij = zj for 1 ≤ i ≤ n, 0 ≤ j ≤ m2 − 1 in Theorem 1. �

By setting certain variables equal to each other in the complete weight enumerator,
we obtain the Lee and Hamming weight enumerators, which give progressively less and
less information about the group algebra, but become easier to handle.

Definition 4. Suppose now that m2 = 2δ + 1 is odd, and let the elements of G be labeled
α0 = 0, α1, . . . , αδ, αδ+1, . . . , αm2−1, where αm2−i = −αi for 1 ≤ i ≤ δ. The Lee composition of a
vector g ∈ Gn, denoted by Lee(g), is (l0, l1, . . . , lδ) where l0 = s0(g), li = si(g) + sm2−i(g) for
1 ≤ i ≤ δ.

We call the set {L(t)} the Lee weight distribution of C where L(t) is the sum of cg
with Lee(g) = t = (t0, . . . , tδ). We also define the Lee weight enumerator of C to be

LC(z0, . . . , zδ) = ∑
t

L(t)zt0
0 zt1

1 · · · z
tδ
δ = ∑

g∈Gn
cgzl0

0 zl1
1 · · · z

lδ
δ

Then the Lee weight distribution of C′ is {L′(t)}, where L′(t) is the sum of c′h with
Lee(h) = t = (t0, . . . , tδ), and the Lee weight enumerator of C′ is

LC′(z0, . . . , zδ) = ∑
t

L′(t)zt0
0 zt1

1 · · · z
tδ
δ

Theorem 3. The Lee enumerator for the transform C′ is obtained from the Lee enumerator of C by
replacing each zi by

z0 +
δ

∑
s=1

(ωαs ,αi ωαi ,αs + ωαs ,αi ωαi ,αs)zs

and dividing the result by M.

Proof. Set zm2−i = zi for 1 ≤ i ≤ δ in Theorem 2. �

The Hamming weight, or simply the weight, of a vector g = (g1, . . . , gn) ∈ Gn is the
number of nonzero components gi, and is denoted by wt(g).

We call the set {Ai} the Hamming weight distribution of C where Ai is the sum of cg
with wt(g) = i. We also define the Hamming weight enumerator of C to be

WC(x, y) =
n

∑
i=0

Aixn−iyi = ∑
g∈Gn

cgxn−wt(g)ywt(g)

Then, the Hamming weight distribution of C′ is {A′ i}, where A′ i is the sum of c′h
with wt(h) = i, and the Hamming weight enumerator of C′ is

WC′(x, y) =
n

∑
i=0

A′ ixn−iyi

Theorem 4.
WC′(x, y) =

1
M

WC(x + (m2 − 1)y, x− y)

Proof. In Theorem 2, put z0 = x, z1 = z2 = · · · = zm2−1 = y, and use Lemma 1. �
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4. Universal Framework for Quantum Codes

In this section, we establish the universal framework for quantum codes based on the
group algebra defined in the last section.

Given an arbitrary quantum code C = ((n, K, d))m, let P = ∑K
i=1 |vi〉〈vi| be the orthog-

onal projection onto C where {vi} is an orthonormal basis of C, and let G be the index group
of any nice error basis E of the quantum system with m levels. Then, we can formulize the
quantum code C as an element C = ∑g∈Gn cgzg from the group algebra CZ where

cg =
1

K2 (trEgP†)(trE†
gP) =

1
K2

∣∣∣∣∣ K

∑
i=1
〈vi|Eg|vi〉

∣∣∣∣∣
2

(4)

We call C the element associated with the quantum code C in the group algebra CZ.
From (3), the transform of C is given by C′ = ∑h∈Gn c′hzh where

c′h = 1
M ∑

g∈Gn

1
K2 (trEgP†)(trE†

gP)trE†
hE†

gEhEg/mn

= mn

K2 M trE†
hP

†EhP = mn

K2 M

K
∑

i=1

K
∑

j=1

∣∣〈vi|Eh
∣∣vj
〉∣∣2 (5)

where M = ∑g∈Gn cg. Since c′0 = 1, from (5), we obtain M = mn/K. Thus,

c′h =
1
K

K

∑
i=1

K

∑
j=1

∣∣〈vi|Eh
∣∣vj
〉∣∣2 (6)

From (4) and (6), and using the Cauchy–Schwartz inequality, we deduce that cg ≤ c′g for
all g ∈ Gn. Furthermore, from the definition of the minimum distance d we obtain that if
K > 1 then cg = c′g for all g satisfying wt(g) < d and there exist some g with wt(g) = d
such that cg 6= c′g; if K = 1 then cg = c′g for all g ∈ Gn and the minimum nonzero weight
of g such that cg 6= 0 is d.

So far we have established the universal framework for quantum codes:
For arbitrary quantum code C = ((n, K, d))m we can characterize it as the element

C = ∑g∈Gn cgzg of the group algebra CZ, called the element associated with the quantum
code C, and the transform C′ = ∑h∈Gn c′hzh of C so that

(1) the dimension K of C equals mn/M where M = ∑g∈Gn cg,
(2) the minimum distance d of C equals the minimum weight of g such that cg 6= c′g if

K > 1; the minimum nonzero weight of g such that cg 6= 0 if K = 1.

5. Conclusions

The nicest thing about the framework is that we can characterize the properties of
quantum codes by the properties of the group algebra. So the problems about unfamiliar
quantum codes can be transformed into those about familiar classical group algebra.

For example, we can define the weight distributions of the quantum code C as the
weight distributions of the element C associated with C in the group algebra CZ and define
the dual weight distributions of C as the weight distributions of the transform C′ of C. Then,
for any quantum code, its weight distributions and dual weight distributions must satisfy
the identities in Theorems 1, 2, 3 and 4. Note that the results about exact enumerators,
complete enumerators and Lee enumerators of quantum codes are completely new. For
Hamming weight enumerators, the binary version was first proved for quantum stabilizer
codes by Calderbank et al. in [16], and later generalized by Rains in [17]. The nonbinary
version for stabilizer codes was proved by Ketkar et al. in [18]. The result given here is a
generalization to the most general quantum codes.
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Again, the purity of quantum codes can also be characterized by the group algebra.
For arbitrary quantum code C = ((n, K, d))m, let C = ∑g∈Gn cgzg be the element associated
with C in the group algebra CZ. Then C is pure if, and only if, cg = 0 for 0 < wt(g) < d.

Finally if C is a quantum stabilizer code, from the definition of stabilizer codes, the
element associated with C in the group algebra CZ can be written as C = ∑g zg where the
summation is over all such g that the operator Eg belongs to the stabilizer of C. In addition,
the transform of C can be written as C′ = ∑h zh where the summation is over all such h that
the operator Eh belongs to the normalizer of C. Both forms imply the relationship between
quantum stabilizer codes and classical codes.

Next, we will give some examples to illustrate the above conclusions. For qubits, it is
well known that Pauli operators {I, X, Y, Z} constitute a nice error basis where

I =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
In our terminology, the underlying Abelian index group of this nice error basis is
G = {0, x, y, z} satisfying x + x = y + y = z + z = 0 and x + y = z, and the nice er-
ror basis can be denoted as

{
E0, Ex, Ey, Ez

}
where E0 = I, Ex = X, Ey = Y, Ez = Z.

Example 1. A nine-qubit code with a basis

|v1〉 = (|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)
|v2〉 = (|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)

For this code, from (4) and (6), one can verify that cg = c′g for all g with weight < 3, for example,
czz0000000 = c′zz0000000 = 1, and cg 6= c′g for some g with weight = 3, for example, cz00z00z00 = 0
but c′z00z00z00 = 1. Thus, the minimum distance d = 3. Moreover, since there exists nonzero g
with weight < d and cg 6= 0, the code is impure. In fact, this code is the well-known ((9, 2, 3))2
stabilizer code [1].

Example 2. A seven-qubit code with a basis

|v1〉 = |0000000〉+ (|1011100〉)cyc

|v2〉 = |1111111〉+ (|0100011〉)cyc

where the subscript “cyc” indicates that all cyclic shifts occur. For this code, from (4) and (6), one
can verify that c0000000 = c′0000000 = 1, cg = c′g = 0 for all nonzero g with weight < 3, and
cg 6= c′g for some g with weight = 3, for example, c0x000xx = 0 but c′0x000xx = 1. Thus, the
minimum distance d = 3. Moreover, since cg = 0 for all nonzero g with weight < d, the code is
pure. In fact, this code is the well-known ((7, 2, 3))2 CSS code [19].

Example 3. A five-qubit code with a basis

|00000〉 − (|00011〉)cyc + (|00101〉)cyc − (|01111〉)cyc

together with all five cyclic shifts of

|00001〉 − |00010〉 − |00100〉 − |01000〉 − |10000〉
+ |10011〉+ |00111〉 − |01110〉 − |11100〉+ |11001〉
+ |10110〉 − |01101〉+ |11010〉 − |10101〉 − |01011〉
− |11111〉

For this code, from (4) and (6), one can verify that c0000000 = c′0000000 = 1, cg = c′g = 0 for all
nonzero g with weight = 1, and cg 6= c′g for some g with weight = 2, for example, czz000 = 0 but
c′zz000 = 1

3 . Thus, the minimum distance d = 2. Moreover, since cg = 0 for all nonzero g with
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weight < d, the code is pure. In addition, since c′zz000 = 1
3 , the code must be nonadditive by the

above conclusion. In fact, this code is the first nonadditive code ((5, 6, 2))2 [12].

To sum up, we have presented a universal framework for quantum codes and shown
how it characterizes the properties of quantum codes as well as generates new results
about quantum codes. We can assert that this framework is a very useful and potential tool
in studying the problems about quantum error-correcting codes. In fact, the idea of this
framework has been used to solve the problem about the classification of perfect quantum
codes [20]. Recently, we realized that this tool might have potential application in finding
out various bounds on the parameters of the most general quantum error-correcting codes.
We plan to develop this application further, among others, in our future works.
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