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Abstract: Stochastic spatio-temporal processes are prevalent across domains ranging from the mod-
eling of plasma, turbulence in fluids to the wave function of quantum systems. This letter studies
a measure-theoretic description of such systems by describing them as evolutionary processes on
Hilbert spaces, and in doing so, derives a framework for spatio-temporal manipulation from funda-
mental thermodynamic principles. This approach yields a variational optimization framework for
controlling stochastic fields. The resulting scheme is applicable to a wide class of spatio-temporal
processes and can be used for optimizing parameterized control policies. Our simulated experiments
explore the application of two forms of this approach on four stochastic spatio-temporal processes,
with results that suggest new perspectives and directions for studying stochastic control problems
for spatio-temporal systems.

Keywords: stochastic spatio-temporal systems; stochastic partial differential equations; stochastic
control; variational optimization; optimization in Hilbert space

1. Introduction and Related Work

Many complex systems in nature vary spatially and temporally, and are often repre-
sented as stochastic partial differential equations (SPDEs). These systems are ubiquitous
in nature and engineering, and can be found in fields such as applied physics, robotics,
autonomy, and finance [1–9]. Examples of stochastic spatio-temporal processes include the
Poisson–Vlassov equation in plasma physics, heat, Burgers’ and Navier–Stokes equations
in fluid mechanics, and Zakai and Belavkin equations in classical and quantum filter-
ing. Despite their ubiquity and significance to many areas of science and engineering,
algorithms for stochastic control of such systems are scarce.

The challenges of controlling SPDEs include significant control signal time delays,
dramatic under-actuation, high dimensionality, regular bifurcations, and multi-modal
instabilities. For many SPDEs, existence and uniqueness of solutions remains an open
problem; when solutions exist, they often have a weak notion of differentiability, if
at all. Their performance analysis must be treated with functional calculus, and their
state vectors are often most conveniently described by vectors in an infinite-dimensional
time-indexed Hilbert space, even for scalar one-dimensional SPDEs. These and other
challenges together represent a large subset of the current-day challenges facing the fluid
dynamics and automatic control communities, and present difficulties in the development
of mathematically consistent and numerically realizable algorithms.

The majority of computational stochastic control methods in the literature have been
dedicated to finite-dimensional systems. Algorithms for decision making under uncertainty
of such systems typically rely on standard optimality principles, from the stochastic optimal
control (SOC) literature, namely the dynamic programming (or Bellman) principle, and
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the stochastic Pontryagin maximum principle [10–12]. The resulting algorithms typically
require solving the Hamilton–Jacobi–Bellman (HJB) equation: a backward nonlinear partial
differential equation (PDE) of which solutions are not scalable to high dimensional spaces.

Several works (e.g., [13,14] for the Kuramoto–Sivashinsky SPDE) propose model pre-
dictive control based methodologies for reduced order models of SPDEs based on SOC
principles. These reduced order methods transform the original SPDE into a finite set of
coupled stochastic differential equations (SDEs). In SDE control, probabilistic represen-
tations of the HJB PDE can solve scalability via sampling techniques [15,16], including
iterative sampling and/or parallelizable implementations [17,18]. These methods have
been explored in a reinforcement learning context for SPDEs [19–21].

Recently, a growing body of work considers deterministic PDEs, and utilize finite
dimensional machine learning methods, such as deep neural network surrogate models
that utilize standard SOC-based methodologies. In the context of fluid systems, these
approaches are increasingly widespread in the literature [22–26]. A critical issue in applying
controllers that rely on a limited number of modes is that they can produce concerning
emergent phenomena, including spillover instabilities [27,28] and failing latent space
stabilizability conditions [25].

Outside the large body of finite dimensional methods for PDEs and/or SPDEs are a
few works that attempt to extend the classical HJB theory for systems described by SPDEs.
These are comprehensively explored in [29] and include both distributed and boundary
control problems. Most notably, [30] investigates explicit solutions to the HJB equation
for the stochastic Burgers equation based on an exponential transformation, and [31]
provides an extension of the large deviation theory to infinite dimensional spaces that
creates connections to the HJB theory. These and most other works on the HJB theory for
SPDEs mainly focus on theoretical contributions and leave the literature with algorithms
and numerical results tremendously sparse. Furthermore, the HJB theory for boundary
control has certain mathematical difficulties, which impose limitations.

Alternative methodologies are derived, using information theoretic control. The basis
of a subset of these methods is a relation between free energy and relative entropy in statistical
physics, given by the following:

Free Energy ≤Work− Temperature× Entropy (1)

This inequality is an instantiation of the second law in stochastic thermodynamics: increase
in entropy results in minimizing the right hand side of the expression. In finite dimensions,
connections between Equation (1) and dynamic programming motivate these methods.
Essentially, there exist two different points of view on decision making under uncertainty
that overlap for fairly general classes of stochastic systems, as depicted in Figure 1.

These connections are extended to infinite-dimensional spaces [32] (see also Appendix F)
and are leveraged in this letter to develop practical algorithms for distributed and boundary
control of stochastic fields. Specifically, we develop a generic framework for control of
stochastic fields that are modeled as semi-linear SPDEs. We show that optimal control of
SPDEs can be cast as a variational optimization problem and then solved, using sampling of
infinite dimensional diffusion processes. The resulting variational optimization algorithm
can be used in either fixed or receding time horizon formats for distributed and boundary
control of semilinear SPDEs and utilizes adaptive importance sampling of stochastic fields.
The derivation relies on non-trivial generalization of stochastic calculus to arbitrary Hilbert
spaces and has broad applicability.

This manuscript presents an open loop and model predictive control methodology
for the control of SPDEs related to fluid dynamics, which are grounded on the theory
of stochastic calculus in function spaces, which is not restricted to any particular finite
representation of the original system. The control updates are independent of the method
used to numerically simulate the SPDEs, which allows the most suitable problem depen-
dent numerical scheme (e.g., finite differences, Galerkin methods, and finite elements) to
be employed.
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Figure 1. Connection between the free energy-relative entropy approach and stochastic Bellman
principle of optimality.

Furthermore, deriving the variational optimization approach for optimal control en-
tirely in Hilbert spaces overcomes numerical issues, including matrix singularities and
SPDE space-time noise degeneracies that typically arise in finite dimensional representa-
tions of SPDEs. Thus, the work in this letter is a generalization of information theoretic
control methods in finite dimensions [33–36] to infinite dimensions and inherits crucial
characteristics from its finite dimensional counterparts.

However, the primary benefit of the information theoretic approach presented in this
work is that the stochasticity inherent in the system can be leveraged for control. Namely, The
inherent system stochasticity is utilized for exploration in the space of trajectories of SPDEs
in Hilbert spaces, which provide a Newton-type parameter update on the parametrized
control policy. Importance sampling techniques are incorporated to iteratively guide the
sampling distribution, and result in a mathematically consistent and numerically realizable
sampling-based algorithm for distributed and boundary controlled semi-linear SPDEs.

2. Preliminaries and Problem Formulation

At the core of our method are comparisons between sampled stochastic paths used
to perform Newton-type control updates as depicted in Figure 2. Let H, U be separable
Hilbert spaces with inner products 〈·, ·〉H and 〈·, ·〉U , respectively, σ-fields B(H) and B(U),
respectively, and probability space (Ω, F ,P) with filtration Ft, t ∈ [0, T]. Consider the
controlled and uncontrolled infinite-dimensional stochastic systems of the following form:

dX = A Xdt + F(t, X)dt +
1
√

ρ
G(t, X)dW(t), (2)

dX = A Xdt + F(t, X)dt + G(t, X)

(
U (i)(t, X; θ)dt +

1
√

ρ
dW(t)

)
, (3)

where X(0) is an F0-measurable, H-valued random variable, and A : D(A ) ⊂ H → H
is a linear operator, where D(A ) denotes here the domain of A . F : [0, T]×H → H and
G : [0, T]×U → H are nonlinear operators that satisfy properly formulated Lipschitz
conditions associated with the existence and uniqueness of solutions to Equation (2) as
described in ([2] Theorem 7.2). The term U (i)(t, X; θ) is a control operator on Hilbert space
H parameterized by a finite set of decision variables θ. We view these dynamics in an
iterative fashion in order to realize an iterative method. As such, the superscript (i) refers
to the iteration number.

The term W(t) ∈ U corresponds to a Hilbert space Wiener process, which is a gener-
alization of the Wiener process in finite dimensions. When this noise profile is spatially
uncorrelated, we call it a cylindrical Wiener process, which requires the added assumptions
on A in ([2] Hypothesis 7.2) in order to form a contractive, unitary, linear semigroup,
which is required to guarantee the existence and uniqueness of Ft-adapted weak solutions
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X(t), t ≥ 0. A thorough description of the Wiener process in Hilbert spaces, along with its
various forms, can be found in Appendix A. For generality, Equations (2) and (3) introduce
the parameter ρ ∈ R, which acts as a uniform scaling of the covariance of the Hilbert space
Wiener process. This parameter also appears as a “temperature” parameter in the context
of Equation (1).

In what follows, 〈·, ·〉S denotes the inner product in a Hilbert space S and C([0, T]; H)
denotes the space of continuous processes in H for t ∈ [0, T]. Define the measure on
the path space of uncontrolled trajectories produced by Equation (2) as L and define the
measure on the path space of controlled trajectories produced by Equation (3) as L(i).
The notation EL denotes expectations over paths as Feynman path integrals.

Many physical and engineering systems can be written in the abstract form of Equa-
tion (2) by properly defining operators A , F and G along with their corresponding do-
mains. Examples can be found in our simulated experiments, as well as Table 1, with more
complete descriptions in ([2] Chapter 13)). The goal of this work is to establish control
methodologies for stochastic versions of such systems.

Control tasks defined over SPDEs typically quantify task completion by a measurable
functional J : C([0, T]; H)→ R referred to as the cost functional, given by the following:

J
(
X(·, ω)

)
= φ

(
X(T), T

)
+
∫ T

t
`
(
X(s), s

)
ds, (4)

where X(·, ω) ∈ C([0, T]; H) denotes the entire state trajectory, φ
(
X(T), T

)
is a terminal

state cost and `
(
X(s), s

)
is a state cost accumulated over the time horizon s ∈ [t, T].

With this, we define the terms of Equation (1). More information can be found in Appendix B.
Define the free energy of cost function J(X) with respect to the uncontrolled path

measure L and temperature ρ ∈ R as follows [32]:

V(X) := −1
ρ

lnEL
[

exp
(
− ρJ(X)

)]
. (5)

Additionally, the generalized entropy of controlled path measure L(i) with respect uncon-
trolled path measure L is defined as follows:

S
(
L̃||L

)
:=

{
−
∫

Ω
dL(i)
dL ln dL(i)

dL dL, if L(i) << L,
+∞, otherwise,

(6)

where “<<” denotes absolute continuity [32].
The relationship between free energy and relative entropy was extended to a Hilbert

space formulation in [32]. Based on the free energy and generalized entropy definitions,
Equation (1) with temperature T = 1

ρ becomes the so-called Legendre transformation,
and takes the following form:

− 1
ρ

lnEL
[

exp(−ρJ)
]
≤
[
EL(i)(J)− 1

ρ
S
(
L(i)

∣∣∣∣L)], (7)

with equilibrium probability measure in the form of a Gibbs distribution as follows:

dL∗ = exp(−ρJ)dL∫
Ω exp(−ρJ)dL

, (8)

The optimality of L∗ is verified in [32]. The statistical physics interpretation of inequality
Equation (7) is that maximization of entropy results in a reduction in the available energy.
At the thermodynamic equilibrium, the entropy reaches its maximum and V = E− TS.
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Table 1. Examples of commonly known semi-linear PDEs in a fields representation with subscript
x representing partial derivative with respect to spatial dimensions and subscript t representing
partial derivatives with respect to time. The associated operators A and F(t, X) in the Hilbert space
formulation are colored blue and violet, respectively.

Equation Name Partial Differential Equation Field State

Nagumo ut = εuxx + u(1− u)(u− α) Voltage
Heat ut = εuxx Heat/temperature
Burgers (viscous) ut = εuxx − uux Velocity
Allen–Cahn ut = εuxx + u− u3 Phase of a material
Navier–Stokes ut = ε∆u−∇p− (u · ∇)u Velocity
Nonlinear Schrodinger ut =

1
2 iuxx + i|u|2u Wave function

Korteweg–de Vries ut = −uxxxx − 6uux Plasma wave
Kuramoto–Sivashinsky ut = −uxxxx − uxx − uux Flame front

The free energy-relative entropy relation provides an elegant methodology to derive
novel algorithms for distributed and boundary control problems of SDPEs. This relation is
also significant in the context of SOC literature, wherein optimality of control solutions rely
on fundamental principles of optimality, such as the Pontryagin maximum principle [10]
or the Bellman principle of optimality [11]. Appendix F shows that by applying a properly
defined Feynman–Kac argument, the free energy is equivalent to a value function that satis-
fies the HJB equation. This connection is valid for general probability measures, including
measures defined on path spaces induced by infinite-dimensional stochastic systems.

Our derivation is general in the context of [30], wherein they apply a transformation
that is only possible for state-dependent cost functions. The proof given in Appendix E is
novel for a generic state and a time-dependent cost to the best knowledge of the authors.
The observation that the Legendre transformation in Equation (7) is connected to optimality
principles from SOC motivates the use of Equation (8) for the development of stochastic
control algorithms.

Flexibility of this approach is apparent in the context of stochastic boundary control
problems, which are theoretically more challenging due to the unbounded nature of the
solutions [29,37]. The HJB theory for these settings is not as mature, and results are
restricted to simplistic cases [38]. Nonetheless, since Equation (7) holds for arbitrary
measures, the difficulties of related works are overcome by the proposed information
theoretic approach. Hence, in either the stochastic boundary control or distributed control
case, the free energy represents a lower bound of a state cost plus the associated control
effort. Despite losing connections to optimality principles in systems with boundary control,
our strategy in both distributed and boundary control settings is to optimize the distance
between our parameterized control policies and the optimal measure in Equation (8) so that
the lower bound of the total cost can be approached by the controlled system. Specifically,
we look for a finite set of decision variables θ∗ that yield a Hilbert space control input U (·)
that minimizes the distance to the optimal path measure as follows:

θ∗ = argmax
θ

S
(
L∗||L(i)

)
(9)

= argmax
θ

[
−
∫

Ω

dL∗

dL(i)
ln

dL∗

dL(i)
dL(i)

]
. (10)

3. Stochastic Optimization in Hilbert Spaces

To optimize Equation (9), we apply the chain rule for the Radon-Nikodym derivative
twice. While this is necessary on the right term for our control update, this is applied to
the left term for importance sampling, which enhances algorithmic convergence. In each
instance, the chain rule has the form:

dL∗

dL(i)
=

dL∗
dL

dL
dL(i)

. (11)
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Note that the first derivative is given by Equation (8), while the second derivative
is given by a change of measure between control and uncontrolled infinite dimensional
stochastic dynamics. This change in measure arises from a version of Girsanov’s Theo-
rem, provided with a proof in Appendix C. Under the open-loop parameterization, the
following holds:

U (t, x; θ) =
N

∑
`=1

m`(x)u`(t) = m(x)>u(t; θ), (12)

Girsanov’s theorem yields the following change of measure between the two SPDEs:

dL
dL(i)

= exp
(
−√ρ

∫ T

0
u(t)>m̄(t)+

ρ

2

∫ T

0
u(t)>Mu(t)dt

)
, (13)

with

m̄(t) :=
[
〈m1, dW(t)〉U0 , ..., 〈mN , dW(t)〉U0

]>
∈ RN , (14)

M ∈ RN×N , (M)ij := 〈mi, mj〉U , (15)

where x ∈ D ⊂ Rn denotes the localization of actuators in the spatial domain D of the
SPDEs and m` ∈ U are design functions that specify how actuation is incorporated into the
infinite dimensional dynamical system. This parameterization can be used for both open-
loop trajectory optimization as well as for model predictive control. In our experiments
we apply model predictive control through re-optimization and turn Equation (12) into an
implicit feedback-type control. Optimization using Equation (9) with policies that explicitly
depend on the stochastic field is also possible and is considered, using gradient-based
optimization in [19–21].

To simplify optimization in Equation (9), we further parameterize u(t; θ) as a simple
measurable function. In this case, the parameters θ consist of all step functions {ui}.
With this representation, we arrive at our main result—an importance sampled variational
controller of the following form:

Lemma 1. Consider the controlled SPDE in (3) and a parameterization of the control as specified
by (12), with θ consisting of step functions {ui}. The iterative control scheme for solving the
stochastic control problem

u∗ = argmax S(L∗||L̃). (16)

is given by the following expression:

uj
(i+1) = uj

(i) +
1
√

ρ∆t
M−1EL(i)

[
exp(−ρJ(i))

EL(i)
[

exp(−ρJ(i))
] ∫ tj+1

tj

m̄(i)(t)

]
, (17)

where J(i) := J +
1
√

ρ

L

∑
j=1

u(i)>
j

∫ tj+1

tj

m̄(i)(t) +
∆t
2

L

∑
j=1

u(i)>
j Mu(i)

j , (18)

m̄(i)(t) :=
[
〈m1, dW(i)(t)〉U , ..., 〈mN , dW(i)(t)〉U

]>
∈ RN , (19)

and W(i)(t) := W(t)−√ρ
∫ t

0
U (i)(s)ds. (20)

Proof. See Appendix D.
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Figure 2. Overview of architecture for the control of spatio-temporal stochastic systems, where dWr
j

denotes a cylindrical Wiener process at time step j for simulated system rollout r. See Equations (17)
and (18) and related explanations for a more complete explanation. Although the rollout images
appear pictorially similar, they represent different realizations of the noise process dWt.

Lemma 1 yields a sampling-based iterative scheme for controlling semilinear SPDEs,
and is depicted in Figure 2. An initial control policy, which is typically initialized by zeros,
is applied to the semilinear SPDE. The controlled SPDE then evolves with different realiza-
tions of the Wiener process in a number of trajectory rollouts. The performance of these roll-
outs is evaluated on the importance sampled cost function in Equation (18). These are used
to calculate the Gibbs averaged performance weightings exp(−ρJ(i))/E(i)

L [exp(−ρJ(i)]. Fi-
nally, the outer expectation in Equation (17) is evaluated, and used to produce an update
to the control policy.

This procedure is repeated over a number of iterations. In the open-loop setting,
the procedure considers the entire time window [0, T], and the entire control trajectory
is optimized in a “single shot”. In contrast, in the MPC setting, a shorter time window
[tsim, Tsim] is considered for I iterations; the control at the current time step uI(tsim) is
applied to the system; and the window recedes backward by a time step ∆t. This procedure
is explained in greater detail in Appendix J.

For the purposes of implementation, we perform the approximation as follows:

∫ tj+1

tj

〈ml , dW(t)〉U0 ≈
R

∑
s=1
〈ml , es〉U∆β

(i)
s (tj), (21)

where ∆β
(i)
s (tj) are Brownian motions sampled from the zero-mean Gaussian distribution

∆β
(i)
s (tj) ∼ N (0, ∆t), and {ej} form a complete orthonormal system in U. This is based on

truncation of the cylindrical Wiener noise expansion as follows:

W(t) =
∞

∑
j=1

β j(t)ej. (22)

We note that the control of SPDEs with cylindrical Wiener noise, as shown above, can
be extended to the case in [30] in which G(t, X) is treated as a trace-class covariance operator√

Q of a Q-Wiener process dWQ(t). See Appendix H for more details. The resulting iterative
control policy is identical to Equation (17) derived above.
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4. Comparisons to Finite-Dimensional Optimization

In light of recent work that applied finite dimensional control after reducing the SPDE
model to a set of SDEs or ODEs, we highlight the critical advantages of optimizing in
Hilbert spaces before discretizating. The main challenge with performing optimization-
based control after discretization is that SPDEs typically reduce to degenerate diffusion
process for which importance sampling schemes are difficult. Consider the following finite
dimensional SDE representation of Equation (2):

dX̂ = AX̂dt +F (t, X̂)dt + G(t, X̂)

(
Mu(t; θ)dt +

1
√

ρ
Rdβ(t)

)
, (23)

where X̂ ∈ Rd is a d-dimensional vector comprising the values of the stochastic field at
particular basis elements. The terms A, F , and G are matrices associated with their respec-
tive Hilbert space operators. The matrixM ∈ Rd×k, where k is the number of actuators
placed in the field. The vector dβ ∈ Rm collects noise terms andR collects associated finite
dimensional basis vectors of Equation (22). The matrixR ∈ Rd×m is composed of d rows,
which is the number of basis elements used to spatially discretize the SPDE Equation (2),
and m columns, which is the number of expansion terms of Equation (22) that are used.

Girsanov’s theorem for SDEs of the form Equation (23) requires the matrix R to be
invertible as seen in the resulting change of measure:

dL
dL(i)

= exp
(
−√ρ

∫ T

0

〈
R−1Mu(s, θ), dW(s)

〉
U

+
ρ

2

∫ T

0

〈
R−1Mu(s, θ),R−1Mu(s, θ)

〉
Uds

) (24)

Deriving the optimal control in the finite dimensional space requires that (a) the noise
term is expanded to at least as many terms as the points on the spatial discretization
d ≤ m, and (b) the resulting diffusion matrix R in Equation (23) is full rank. Therefore,
increasing finite dimensional approximation accuracy increases the complexity of the
sampling process and optimal control computation. This is even more challenging in the
case of SPDEs with Q-Wiener noise, where many of the eigenvalues in the expansion of
W(t) must be arbitrarily close to zero.

Other finite dimensional approaches, as in [39], utilize Gaussian density functions
instead of the measure theoretic approach. These approaches are not possible firstly due to
the need to define the Gaussian density with respect to a measure other than the Lebesgue
measure, which does not exist in infinite dimensions. Secondly, an equivalent Euler–
Maruyama time discretization is not possible without first discretizing spatially. Finally,
after spatial discretization, the use of transition probabilities based on density functions
requires the invertibility of RRT (see Appendix I). These characteristics make Gaussian
density-based approaches not suitable for deriving optimal control of SPDEs.

5. Numerical Results

Performing variational optimization in the infinite dimensional space enables a general
framework for controlling general classes of stochastic fields. It also comes with algorithmic
benefits from importance sampling and can be applied in either the open loop or MPC
mode for both boundary and distributed control systems. Critically, it avoids feasibility
issues in optimizing finite dimensional representations of SPDEs. Additional flexibility
arises from the freedom to choose the model reduction method that is best suited for the
problem without having to change the control update law. Details on the algorithm and
more details on each simulated experiment can be found in Appendixes J and K.
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5.1. Distributed Control of Stochastic PDEs in Fluid Physics

Several simulated experiments were conducted to investigate the efficacy of the
proposed control approach. The first explores control of the 1D stochastic viscous Burgers’
equation with non-homogeneous Dirichlet boundary conditions. This advection–diffusion
equation with random forcing was studied as a simple model for turbulence [40,41].

The control objective in this experiment is to reach and maintain a desired velocity
at specific locations along the spatial domain, depicted in black. In order to achieve the
task, the controller must overcome the uncontrolled spatio-temporal evolution governed
by an advective and diffusive nature, which produces an apparent velocity wave front that
builds across the domain as depicted on the bottom left of Figure 3.

Figure 3. Infinite dimensional control of the 1D Burgers SPDE: (top) Velocity profiles averaged over
the 2nd half of each time horizon over 128 trials. (bottom left) Spatio-temporal evolution of the
uncontrolled 1D Burgers SPDE with cylindrical Wiener process noise. (bottom right) Spatio-temporal
evolution of 1D Burgers SPDE, using MPC.

Both open-loop and MPC versions of the control in Equation (17) were tested on the
1D stochastic Burgers’ equation and the results are depicted in the top subfigure of Figure 3.
Their performance was compared by averaging the velocity profiles for the 2nd half of each
experiment and repeated over 128 trials. The simulated experiment duration was 1.0 s.
For the open-loop scheme, 100 optimization iterations with 100 sampled trajectory rollouts
per iteration were used. In the MPC setting, 10 optimization iterations were performed at
each time step, each using 100 sampled trajectory rollouts.

The results suggest that both the open-loop and MPC schemes have comparable
success in controlling the stochastic Burgers SPDE. The open-loop setting depicts the
apparent rightward wavefront that is not as strong in the MPC setting. There is also quite a
substantial difference in variance over the trajectory rollouts. The open-loop setting depicts
a smaller variance overall, while the MPC setting depicts a variance that shrinks around
the objective regions. The MPC performance is desirable since the performance metric
only considers the objective regions. The root mean squared error (RMSE) and variance
averaged over the desired regions is provided in Table 2.
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Table 2. Summary of Monte Carlo trials for the stochastic viscous Burgers equation.

RMSE Average σ
Targets Left Center Right Left Center Right

MPC 0.0344 0.0156 0.0132 0.0309 0.0718 0.0386
Open-loop 0.0820 0.1006 0.0632 0.0846 0.0696 0.0797

The stochastic Nagumo equation with homogeneous Neumann boundary conditions
is a reduced model for wave propagation of the voltage in the axon of a neuron [42]. This
SPDE shares a linear diffusion term with the viscous Burgers equation as depicted in Table 1.
However, as shown in the bottom left subfigure of Figure 4, the nonlinearity produces a
substantially different behavior, which propagates the voltage across the axon with our
simulation parameters in about 5 s. This set of simulated experiments explores two tasks:
accelerating the rate at which the voltage propagates across the axon, and suppressing the
voltage propagation across the axon. This is analogous to either ensuring the activation of
a neuronal signal, or ensuring that the neuron remains inactivated.

These tasks are accomplished by reaching either a desired value of 1.0 or 0.0 over
the right end of the spatial region for acceleration and suppression, respectively. In both
experiments, open-loop and MPC versions of Equation (17) were tested, and the results are
depicted in Figures 4 and 5. For the open-loop scheme, 200 optimization iterations with
200 sampled trajectory rollouts per iteration were used. In the MPC setting, 10 optimization
iterations were performed at each time step, each using 100 sampled trajectory rollouts.
State trajectories of both control schemes were compared by averaging the voltage profiles
for 2nd half of each time horizon and repeated over 128 trials.

Figure 4. Infinite dimensional control of the Nagumo SPDE—acceleration task: (top) voltage profiles
averaged over the 2nd half of each time horizon over 128 trials, (bottom left) uncontrolled spatio-
temporal evolution for 5.0 s, and (bottom right) accelerated activity with MPC within 1.5 s.
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Figure 5. Infinite dimensional control of the Nagumo SPDE—suppression task: (top) voltage profiles
averaged over the 2nd half of each time horizon over 128 trials, (bottom left) uncontrolled spatio-
temporal evolution for 5.0 s, and (bottom right) suppressed activity with MPC for 5.0 s.

The results of the two stochastic Nagumo equation tasks suggest that both control
schemes achieve success on both the acceleration and suppression tasks. While the perfor-
mance appears substantially different outside the target region, the two control schemes
have very similar performance on the desired region, which is the only penalized region in
the optimization objective. In the top subfigures of Figures 4 and 5, the desired region is
zoomed in on. The zoomed in views depict a higher variance in the state trajectories of the
open-loop control scheme than the MPC scheme.

As in the stochastic viscous Burgers experiment, there is an apparent trade-off between
the two control schemes. The MPC scheme yields a desirable lower variance in the region
that is being considered for optimization, but produces state trajectories with very high
variance outside the goal region. The open loop control is understood as seeking to
achieve the task by reaching low variance trajectories everywhere, while the MPC scheme
is understood as acting reactively (i.e., re-optimizes based on state measurements) to a
propagating voltage signal. The RMSE and variance averaged over the desired region of
128 trials of each experiment are given in Table 3.

Table 3. Summary of Monte Carlo trials for Nagumo acceleration and suppression tasks.

Task Acceleration Suppression
Paradigm MPC Open-Loop MPC Open-Loop

RMSE 6.605 × 10−4 0.0042 0.0021 0.0048
Avg. σ 0.0059 0.0197 0.0046 0.0389

The next simulated experiment explores scalability to 2D spatial domains by consider-
ing the 2D stochastic heat equation with homogeneous Dirichlet boundary conditions. This
experiment can be thought of as attempting to heat an insulated metal plate to specified
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temperatures in specified regions while the edges remain at a temperature of 0 at some
scale. The desired temperatures and regions associated with this experiment are depicted
in the left subfigure of Figure 6. This experiment tests the MPC scheme.

Figure 6. Infinite dimensional control of the 2D heat SPDE under homogeneous Dirichlet boundary
conditions: (first) desired temperature values at specified spatial regions, (second) random initial
temperature profile, (third) temperature profile half way through the experiment and (fourth)
temperature profile at the end of experiment.

Starting from a random initial temperature profile, as in the second subfigure of
Figure 6, and using a time horizon of 1.0 s, the MPC controller is able to achieve the desired
temperature profile toward the end of the time horizon as shown in the fourth subfigure of
Figure 6. The third subfigure of Figure 6 depicts the middle of the time horizon. The MPC
controller used 5 optimization iterations at every timestep and 25 sampled trajectories
per iteration.

This result suggests that in this case, this approach can handle the added complexity
of 2D stochastic fields. As depicted in the right subfigure of Figure 6, the proposed
MPC control scheme solves the task of reaching the desired temperature at the specified
spatial regions.

5.2. Boundary Control of Stochastic PDEs

The control update in Equation (17) describes control of SPDEs by distributing actua-
tors throughout the field. However, our framework can also handle systems with control
and noise at the boundary. A key requirement is to write such dynamical systems in the
mild form as follows:

X(t) = etAξ +
∫ t

0
e(t−s)AF1(t, X)ds

+ (λI −A)
[ ∫ t

0
e(t−s)AD

(
F2(t, X) + G(t, X)U (t, X; θ)

)
ds

+
∫ t

0
e(t−s)ADB(t, X)dV(s)

]
, P a.s.

(25)

where the operator D corresponds to the boundary conditions of the problem, and is
called the Dirichlet map (Neumann map, respectively) for Dirichlet (Neumann, respectively)
boundary control/noise. These maps take operators defined on the boundary Hilbert
space Λ0 to the Hilbert space H of the domain. λ is a real number also associated with
the boundary conditions. The operator dV describes a cylindrical Wiener process on the
boundary Hilbert space Λ0. For further details, the reader can refer to the discussion in [29]
Section 2.5, Appendix C.5, and Appendix G.

Studying optimal control problems with dynamics, as in Equation (25), is rather
challenging. HJB theory requires additional regularity conditions, and proving convergence
of Equation (25) becomes nontrivial, especially when considering Dirichlet boundary
noise. Numerical results are limited to simplistic problems. Nevertheless, Equation (17) is
extended to the case of boundary control by similarly using tools from Girsanov’s theorem
to obtain the change of measure as follows:

dL
dL(i)

= exp
(
−
∫ T

0

〈
B−1GU , dV(s)

〉
Λ0

+
1
2

∫ T

0
||B−1GU||2Λ0

ds
)

, (26)
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which was also utilized in reference [43] for studying solutions of SPDEs, similar to Equa-
tion (25). Using the control parameterization of the distributed case above results in the
same approach described in Equation (17) with inner products taken with respect to the
boundary Hilbert space Λ0 to solve stochastic boundary control problems.

The stochastic 1D heat equation under Neumann boundary conditions was explored
to conduct simulated experiments that investigate the efficacy of the proposed framework
in stochastic boundary control settings. The objective is to track a time-varying profile
that is uniform in space by actuation only at the boundary points. The MPC scheme
of Equation (17), with 10 optimization iterations per time step is depicted in the left
subfigure of Figure 7. The random sample of the controlled state trajectory, depicted in a
violet to red color spectrum, remains close to the time-varying desired profile, depicted in
magenta. The associated bounded actuation signals acting on the two boundary actuators
are depicted in the right subfigure of Figure 7.

Figure 7. Boundary control of stochastic 1D heat equation: (left) temperature profile over the
1D spatial domain over time. The magenta surface corresponds to the spatio-temporal desired
temperature profile. Colors that are more red correspond to higher temperatures, and colors that are
more violet correspond to lower temperature. (right) Control inputs at the left boundary in black
and the right boundary in green entering through Neumann boundary conditions.

As suggested by the results of the simulated experiments, the authors note a clear
empirical iterative improvement of the control policy on each of the experiments. This ne-
cessitates a deeper theoretical analysis of the convergence of the proposed algorithm, and is
influenced by several of the parameters that appear in Algorithms A1 and A2. The parame-
ter ρ, which appears in the controlled and uncontrolled dynamics in Equations (2) and (3)
as well as in the Legendre transformation Equation (7), influences the intensity of the
stochasticity and the relative weightings of the terms in Equation (18), which in general
leads to an exploration–exploitation trade off. The number of rollouts also has a significant
effect on the empirical performance. In general, a larger number of rollouts is advantageous
due to a more representative sampling of state space, as well as a better approximation
of the expectation, yet can lead to a larger computational burden. In the MPC setting,
the time horizon has a significant effect on the empirical performance. This is typical of
MPC methods, as a short receding window can cause the algorithm to be myopic, while a
large receding window recovers the “single shot” or open-loop performance. Finally, the
spatial and temporal discretization size has a significant effect on algorithmic performance,
due to the errors introduced in large spatial or temporal steps in the resulting discrete
equations, which may ultimately fail the Courant–Friedrichs–Lewy conditions of the SPDE.

The above experiments were designed to cover stochastic SPDEs with nonlinear
dynamics, multiple spatial dimensions, time-varying objectives, and systems with both
distributed and boundary actuation. This range explores the versatility of the proposed
framework to problems of many different types. Throughout these experiments, the control
architecture produces state trajectories that solve the objective with high probability for the
given stochasticity.
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6. Conclusions

This manuscript presented a variational optimization framework for distributed and
boundary controlled stochastic fields based on the free energy–relative entropy relation.
The approach leverages the inherent stochasticity in the dynamics for control, and is valid
for generic classes of infinite-dimensional diffusion processes. Based on thermodynamic
notions that have demonstrated connections to established stochastic optimal control
principles, algorithms were developed that bridge the gap between abstract theory and
computational control of SPDEs. The distributed and boundary control experiments
demonstrate that this approach can successfully control complex physical systems in a
variety of domains.

This research opens new research directions in the area of control of stochastic fields
that are ubiquitous in the domain of physics. Based on the use of forward sampling,
future research on the algorithmic side will include the development of efficient methods
for the representation and propagation of stochastic fields, using techniques in machine
learning, such as deep neural networks. Other directions include explicit feedback param-
eterizations and, in the context of boundary control, HJB approaches in the information
theoretic formulation.
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Appendix A. Description of the Hilbert Space Wiener Process

In this section, we provide formal definitions of various forms of the Hilbert space
Wiener process. Some of these statements can be found in [2], Section 4.1.

Definition A1. LetH denote a Hilbert space. AH-valued stochastic process W(t) with probability
law L

(
W(·)

)
is called a Wiener process if the following hold:

(i) W(0) = 0
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(ii) W has continuous trajectories.
(iii) W has independent increments.
(iv) L

(
W(t)−W(s)

)
= N

(
0, (t− s)Q

)
, t ≥ s ≥ 0

(v) L
(
W(t)

)
= L

(
−W(t)

)
, t ≥ 0

Proposition A1. Let {ei}∞
i=1 be a complete orthonormal system for the Hilbert Space H. Let Q

denote the covariance operator of the Wiener process W(t). Note that Q satisfies Qei = λiei, where
λi is the eigenvalue of Q that corresponds to eigenvector ei. Then, W(t) ∈ H has the following
expansion:

W(t) =
∞

∑
j=1

√
λjβ j(t)ej, (A1)

where β j(t) are real valued Brownian motions that are mutually independent of (Ω,F ,P).

Definition A2. Let {ei}∞
i=1 be a complete orthonormal system for the Hilbert spaceH. An operator

A on H with the set of its eigenvalues {λi}∞
i=1 in a given basis {ei}∞

i=1 is called a trace-class
operator if the following holds:

Tr(A) :=
∞

∑
n=1

〈
Aen, en

〉
=

∞

∑
i=1

λi < ∞. (A2)

The two primary Wiener processes that are typically used to model spatio-temporal
noise processes in the SPDE literature are the cylindrical Wiener process and the Q-Wiener
process. These are both referred to in the main text, and are defined in the following
two definitions.

Definition A3. A Wiener process W(t) onH with covariance operator Q is called a cylindrical
Wiener process if Q is the identity operator I.

Definition A4. A Wiener process W(t) on H with covariance operator Q is called a Q-Wiener
process if Q is of trace-class.

An immediate fact following Definition A3 is that the cylindrical Wiener process
acts spatially everywhere on H with equal magnitude. One can easily conclude that for
a cylindrial Wiener process, the eigenvalues {λi}∞

i=1 of the covariance operator Q are all
unity, thus the following holds:

∞

∑
i=1

λi = ∞. (A3)

However, we note that in this case, the series in (A1) converges in another Hilbert space
U1 ⊃ U when the inclusion ι : U → U1 is Hilbert–Schmidt. For more details, see [2].

On the other hand, immediately following Definition A4 is the fact that a Q-Wiener
process must not have a spatially equal effect everywhere on the domain. More precisely,
one has the following proposition.

Proposition A2. Let W(t) be a Q-Wiener process onH with covariance operator Q. Let {λi}∞
i=1

denote the set of eigenvalues of Q in the complete orthonormal system {ei}∞
i=1. Then, the eigenvalues

must fall into one of the following three cases:
(i) For any ε > 0, there are only finitely many eigenvalues λi of covariance operator Q such

that |λi| > ε. That is, the set {i ∈ N+ : |λi| > ε}, where N+ is the positive natural
numbers, has finite elements.

(ii) The eigenvalues λi of covariance operator Q follow a bounded periodic function such that
|λi| > 0 ∀ i ∈ N+ and ∑∞

i=1 λi = 0.

(iii) Both case (i) and case (ii) are satisfied. In this case, the eigenvalues follow a bounded and
convergent periodic function with limi→∞ λi = 0.
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Appendix B. Relative Entropy and Free Energy Dualities in Hilbert Spaces

In this section, we provide the relation between free energy and relative entropy.
This connection is valid for general probability measures, including measures defined
on path spaces induced by infinite-dimensional stochastic systems. In what follows, Lp

(1 ≤ p < ∞) denotes the standard Lp space of measurable functions and P denotes the set
of probability measures.

Definition A5. (Free Energy) Let L ∈P a probability measure on a sample space Ω, and consider
a measurable function J : Lp → R+. Then, the following term,

V :=
1
ρ

loge

∫
Ω

exp(ρJ)dL(ω), (A4)

is called the free energy of J with respect to L and ρ ∈ R. The function loge denotes the natural
logarithm

Definition A6. Generalized entropy: Let L, L̃ ∈P , then the relative entropy of L̃ with respect to
L is defined as follows.

S
(
L̃||L

)
:=

{
−
∫

Ω
dL̃(ω)
dL(ω)

loge
dL̃(ω)
dL(ω)

dL(ω), if L̃ << L,
+∞, otherwise,

where “<<” denotes absolute continuity of L̃ with respect to L. We say that L̃ is absolutely
continuous with respect to L and we write L̃ << L if L(B) = 0⇒ L̃(B) = 0, ∀B ∈ F .

The free energy and relative entropy relationship is expressed by the following theorem:

Theorem A1. Let (Ω, F ) be a measurable space. Consider L, L̃ ∈P and Definitions A5 and
A6. Under the assumption that L̃ << L, the following inequality holds:

− 1
ρ

loge EL
[

exp(−ρJ)
]
≤
[
EL̃(J)− 1

ρ
S
(
L̃
∣∣∣∣L)], (A5)

where EL,EL̃ denote expectations under probability measures L, L̃, respectively. Moreover, ρ ∈ R+

and J : Lp → R+. The inequality in (A5) is the so-called Legendre transformation.

By defining the free energy as temperature T = 1
ρ , the Legendre transformation has

the following form:
V ≤ E− TS, (A6)

and the equilibrium probability measure has the classical form:

dL∗(ω) =
exp(−ρJ)dL(ω)∫
Ω exp(−ρJ)dL(ω)

, (A7)

To verify the optimality of L∗, it suffices to substitute (A7) in (A5) and show that the
inequality collapses to an equality [35]. The statistical physics interpretation of inequal-
ity (A6) is that maximization of entropy results in a reduction in the available energy. At the
thermodynamic equilibrium, the entropy reaches its maximum and V = E− TS.
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Appendix C. A Girsanov Theorem for SPDEs

Theorem A2 (Girsanov). Let Ω be a sample space with a σ-algebra F . Consider the following
H-valued stochastic processes:

dX =
(
A X + F(t, X)

)
dt + G(t, X)dW(t), (A8)

dX̃ =
(
A X̃ + F(t, X̃)

)
dt + B̃(t, X̃)dt + G(t, X̃)dW(t), (A9)

where X(0) = X̃(0) = x and W ∈ U is a cylindrical Wiener process with respect to measure P.
Moreover, for each Γ ∈ C([0, T]; H), let the law of X be defined as L(Γ) := P(ω ∈ Ω|X(·, ω) ∈
Γ). Similarly, the law of X̃ is defined as L̃(Γ) := P(ω ∈ Ω|X̃(·, ω) ∈ Γ). Assume

EP
[
e

1
2
∫ T

0 ||ψ(t)||
2dt] < +∞, (A10)

where
ψ(t) := G−1(t, X(t)

)
B̃
(
t, X(t)

)
∈ U0. (A11)

Then, the following holds:

L̃(Γ) = EP
[

exp
( ∫ T

0 〈ψ(s), dW(s)〉U − 1
2

∫ T
0 ||ψ(s)||

2
Uds

)
|X(·) ∈ Γ

]
. (A12)

Proof. Define the process:

Ŵ(t) := W(t)−
∫ t

0
ψ(s)ds. (A13)

Under the assumption in (A10), Ŵ is a cylindrical Wiener process with respect to a measure
Q determined by the following:

dQ(ω) = exp
( ∫ T

0
〈ψ(s), dW(s)〉U −

1
2

∫ T

0
||ψ(s)||2Uds

)
dP

= exp
( ∫ T

0
〈ψ(s), dŴ(s)〉U +

1
2

∫ T

0
||ψ(s)||2Uds

)
dP.

(A14)

The proof for this result can be found in ([2], Theorem 10.14). Now, using (A13), (A8) can
be rewritten as the following:

dX =
(
A X + F(t, X)

)
dt + G(t, X)dW(t) (A15)

=
(
A X + F(t, X)

)
dt + B(t, X)dt + G(t, X)dŴ(t) (A16)

Notice that the SPDE in (A16) has the same form as (A9). Therefore, under the introduced
measure Q and noise profile Ŵ, X(·, ω) becomes equivalent to X̃(·, ω) from (A9). Con-
versely, under measure P, (A15) (or (A16)) behaves as the original system in (A8). In other
words, (A8) and (A16) describe the same system on (Ω,F ,P). From the uniqueness of
solutions and the aforementioned reasoning, one has the following:

P
(
{X̃ ∈ Γ}

)
= Q

(
{X ∈ Γ}

)
.

The result follows from Equation (A14).

Appendix D. Proof of Lemma 1

Proof. Under the open loop parameterization U (x, t) = m(x)Tu(t), the problem takes
the following form:

u∗ = argmin
[ ∫

C
loge

dL∗(x)
dL̃(x)

dL∗(x)
]
= argmin

[ ∫
C

loge
dL∗(x)
dL(x)

dL(x)
dL̃(x)

dL∗(x)
]

.
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By using the change of measures in Equation (13) of the main text, minimization of the last
expression is equivalent to the minimization of the following expression:

EL∗
[

loge
dL(x)
dL̃(x)

]
= −√ρEL∗

[ ∫ T

0
u(t)>m̄(t)

]
+

1
2

ρEL∗
[ ∫ T

0
u(t)>Mu(t)dt

]
.

As stated in Lemma 1, we apply the control in discrete time instances, and consider the
class of step functions ui, i = 0, . . . , L− 1 that are constant over fixed-size intervals [ti, ti+1]
of length ∆t . We have the following:

EL∗
[

loge
dL(x)
dL̃(x)

]
= −√ρ

L−1

∑
i=0

u>i EL∗
[ ∫ ti+1

ti

m̄(t)
]
+

1
2

ρ
L−1

∑
i=0

u>i Mui∆t,

where we have used the fact that M is constant with respect to time. Due to the symmetry
of M, minimization of the expression above with respect to ui results in the following:

u∗i =
1
√

ρ∆t
M−1EL∗

[ ∫ ti+1

ti

m̄(t)
]

. (A17)

Since we cannot sample directly from the optimal measure L∗, we need to express the
above expectation with respect to the measure induced by controlled dynamics, L(i). We
can then directly sample controlled trajectories based on L(i) and approximate the optimal
control trajectory. The change in expectation is achieved by applying the Radon–Nikodym
derivative. These so-called importance sampling steps are as follows. First define W(i) in a
similar fashion to Equation (A13), as follows:

W(i)(t) := W(t)−
∫ t

0

√
ρU (i)(s)ds. (A18)

Similar to Equation (A16), one can rewrite the uncontrolled dynamics as the following:

dX =
(
A X + F(t, X)

)
dt +

1
√

ρ
G(t, X)dW(t)

=
(
A X + F(t, X)

)
dt + G(t, X)

(
U (i)dt +

1
√

ρ
dW(i)(t)

)
.

(A19)

Under the open-loop parameterization U (t)(x) = m(x)>uj, where uj are step func-
tions on each interval [tj, tj+1], the change of measures becomes the following:

dL
dL(i)

= exp
(
−√ρ

L−1

∑
k=0

u(i)>
k

∫ tk+1

tk

m̄(i)(t)− ρ
1
2

L−1

∑
k=0

u(i)>
k Mu(i)

k ∆t
)

, (A20)

where

m̄(i)(t) :=
[
〈m1, dW(i)(t)〉U , ..., 〈mN , dW(i)(t)〉U

]>
∈ RN . (A21)

One can alternatively write this as the following:( ∫ tj+1

tj

m̄(i)(t)
)

l
=
∫ tj+1

tj

〈
ml , dW(i)(t)

〉
U =

∫ tj+1

tj

〈
ml , dW(t)−√ρU (i)(t)dt

〉
U

=
∫ tj+1

tj

〈
ml , dW(t)

〉
U −
√

ρ

[〈
ml , m1

〉
U , ...,

〈
ml , mN

〉
U

]
u(i)

j ∆t.
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It follows that: ∫ tj+1

tj

m̄(i)(t) =
∫ tj+1

tj

m̄(t)−√ρ∆tMu(i)
j . (A22)

In order to derive the iterative scheme, we perform one step of importance sampling
and express the associated expectations with respect the measure induced by the controlled
SPDE in Equation (3) of the main text. Let us begin by modifying Equation (A17) via the
appropriate change of measures from (A20), as well as (A18):

ui+1
j =

1
√

ρ∆t
M−1

∫
Ω

[
dL∗
dL

dL
dL(i)

∫ ti+1

ti

m̄(t)
]

dL(i) (A23)

=
1
√

ρ∆t
M−1

∫ [ exp(−ρJ)
EL
[

exp(−ρJ)
] dL

dL(i)
∫ ti+1

ti

m̄(t)
]

dL(i)

=
1
√

ρ∆t
M−1

∫ [ exp(−ρJ)
EL(i)

[ dL
dL(i) exp(−ρJ)

] dL
dL(i)

∫ ti+1

ti

m̄(t)
]

dL(i)

=
1
√

ρ∆t
M−1EL(i)

[
exp(−ρJ(i))

EL(i)
[

exp(−ρJ(i))
] ∫ ti+1

ti

m̄(t)
]

, (A24)

One can reorder Equation (A22) as the following:∫ tj+1

tj

m̄(t) =
∫ tj+1

tj

m̄(i)(t) +
√

ρ∆tMu(i)
j . (A25)

and plug it into Equation (A24) to yield the following:

ui+1
j =

1
√

ρ∆t
M−1EL(i)

[
exp(−ρJ(i))

EL(i)
[

exp(−ρJ(i))
] ∫ tj+1

tj

m̄(i)(t) +
√

ρ∆tMu(i)
j

]
= u(i)

j +
1
√

ρ∆t
M−1EL(i)

[
exp(−ρJ(i))

EL(i)
[

exp(−ρJ(i))
] ∫ tj+1

tj

m̄(i)(t)
]

, (A26)

which is equivalent to Equation (17) in the main text with J(i) defined by Equation (18) in
the main text.

Appendix E. Feynman–Kac for Spatio-Temporal Diffusions: From Expectations to
Hilbert Space PDEs

Lemma A1. Infinite dimensional Feynman–Kac: Define ψ : [t0, T]× H → R as the following
conditional expectation.

ψ(t, X) := EL
[

exp
(
− ρJ

(
XT

t,X
))∣∣∣∣Ft

]
+EL

[ ∫ T

t
g(X, t) exp

(
− ρΦ

(
Xs

t,X
))

ds
∣∣∣∣Ft

]
, (A27)

evaluated on stochastic trajectories XT
t,X generated by the infinite dimensional stochastic systems

in Equations (2) and (3) of the main text and ρ ∈ R+. The trajectory dependent terms Φ
(
XT

t,X
)

:
Lp → R+ and J

(
XT

t,X
)

: Lp → R+ are defined as follows:

Φ
(
Xs

t,X
)
=
∫ s

t
`
(
τ, X(τ)

)
dτ,

J
(
XT

t,X
)
= φ(T, X) + Φ

(
XT

t,X
)
.

(A28)
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Additionally, let ψ(t, X) ∈ C1,2
b ([0, T]× H). Then, the function ψ(t, X) satisfies the following

equation:

−∂tψ
(
t, X(t)

)
= −ρ`

(
t, X(t)

)
ψ
(
t, X(t)

)
+
〈
ψX , A X(t) + F

(
X(t)

)〉
+

1
2

Tr
[
ψXX(BQ

1
2 )(BQ

1
2 )∗
]
+ g
(
t, X(t)

)
.

(A29)

Proof. The proof starts with the expectation in (A27), which is an expectation conditioned
on the filtration Ft. To keep the notation short, we drop the dependencies on t and X(t),
and write φT = φ

(
T, X(T)

)
, `t = `

(
t, X(t)

)
, and gt = g

(
t, X(t)

)
. We split the integrals

inside the expectations to write the following:

ψ(t, X) = EL
[

exp
(
− ρφT − ρ

∫ T

t
`τdτ

)∣∣∣∣Ft

]
+EL

[ ∫ T

t
gs exp

(
− ρ

∫ s

t
`τdτ

)
ds
∣∣∣∣Ft

]
= EL

[
exp

(
− ρφT − ρ

∫ T

t+δt
`τdτ

)
exp(−

∫ t+δt

t
`τdτ)

∣∣∣∣Ft

]
+EL

[ ∫ t+δt

t
gs exp

(
− ρ

∫ s

t
`τdτ

)
ds
∣∣∣∣Ft

]
+EL

[ ∫ T

t+δt
gs exp

(
− ρ

∫ s

t
`τdτ

)
ds
∣∣∣∣Ft

]
By using the law of iterated expectations between the two sub-sigma algebras Ft ⊆

Ft+δt we have the following:

ψ(t, X) = EL

[
EL
[

exp
(
− ρφT − ρ

∫ T

t+δt
`τdτ

)
exp

(
−
∫ t+δt

t
`τdτ

)∣∣∣∣Ft+δt

]∣∣∣∣Ft

]

+EL
[ ∫ t+dt

t
gs exp

(
− ρ

∫ s

t
`τdτ

)
ds
∣∣∣∣Ft

]

+EL
[
EL
[ ∫ T

t+dt
gs exp

(
− ρ

∫ t+dt

t
`τdτ

)
exp

(
− ρ

∫ s

t+dt
`τdτ

)
ds
∣∣∣∣Ft+δt

]∣∣∣∣Ft

]
.

Next, we use the fact that the conditioning on the filtration Ft+δt results in the following
equality:

EL
[
EL
[

exp
(
− ρφT − ρ

∫ T

t+δt
`τdτ

)
exp

(
−
∫ t+δt

t
`τdτ

)∣∣∣∣Ft+δt

]∣∣∣∣Ft

]
= EL

[
exp

(
−
∫ t+δt

t
`τdτ

)
EL
[

exp
(
− ρφT − ρ

∫ T

t+δt
`τdτ

)∣∣∣∣Ft+δt

]∣∣∣∣Ft

]
By further using this property of independence we have the following:

ψ(t, X) = EL
[

exp
(
− ρ

∫ t+δt

t
`τdτ

)
EL
[

exp
(
− ρφT − ρ

∫ T

t+δt
`τdτ

)∣∣∣∣Ft+δt

]∣∣∣∣Ft

]
+EL

[ ∫ t+dt

t
gs exp

(
− ρ

∫ s

t
`τdτ

)
ds
∣∣∣∣Ft

]
+EL

[
exp

(
− ρ

∫ t+δt

t
`τdτ

)]
EL
[ ∫ T

t+δt
gs exp

(
− ρ

∫ s

t+δt
`τdτ

)
ds
∣∣∣∣Ft+δt

]∣∣∣∣Ft

]
= EL

[
exp

(
− ρ

∫ t+δt

t
`τdτ

)
ψ(t + δt, X(t + δt))

∣∣∣∣Ft

]
+EL

[ ∫ t+δt

t
gs exp

(
− ρ

∫ s

t
`τdτ

)
ds
∣∣∣∣Ft

]
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The last expression provides the backward propagation of the ψ
(
t, X(t)

)
by employing

a expectation over ψ
(
t + δt, X(t + δt)

)
. To get the backward deterministic Kolmogorov

equations for the infinite dimensional case, we subtract the term E
[
ψ
(
t + δt, X(t + δt)

)∣∣∣∣Ft

]
from both sides:

−EL
[

ψ
(
t + δt, X(t + δt)

)
− ψ

(
t, X(t)

)∣∣∣∣Ft

]
= EL

[{
exp

(
− ρ

∫ t+δt

t
`τdτ

)
− 1
}

ψ
(
t + δt, X(t + δt)

)∣∣∣∣Ft

]
+EL

[ ∫ t+δt

t
gs exp

(
− ρ

∫ s

t
`τdτ

)
ds
∣∣∣∣Ft

]
.

Next, we take the limit as δt→ 0 and we have the following:

− lim
δt→0

EL
[

ψ
(
t + δt, X(t + δt)

)
− ψ

(
t, X(t)

)∣∣∣∣Ft

]
= lim

δt→0
EL
[(

exp(−ρ
∫ t+δt

t
`τdτ)− 1

)
ψ
(
t + δt, X(t + δt)

)∣∣∣∣Ft

]
+ lim

δt→0
EL
[ ∫ t+δt

t
gs exp

(
− ρ

∫ s

t
`τdτ

)
ds
∣∣∣∣Ft

]
.

Thus, we have to compute three terms. We employ the Lebegue dominated conver-
gence theorem to pass the limit inside the expectations:

− lim
δt→0

EL
[

ψ
(
t + δt, X(t + δt)

)
− ψ

(
t, X(t)

)∣∣∣∣Ft

]
= EL

[
dψ

∣∣∣∣Ft

]
(A30)

By using the Itô differentiation rule ([2] Theorem 4.32) for the case of infinite dimensional
stochastic systems, we have the following:

EL
[

dψ
(
t, X(t)

)∣∣∣∣Ft

]
= ∂tψ

(
t, X(t)

)
dt +

〈
ψX , A X(t) + F

(
X(t)

)〉
d t

+
1
2

Tr
[
ψXX(BQ

1
2 )(BQ

1
2 )∗
]
dt

The next term is as follows:

lim
δt→0

EL
[(

exp(−ρ
∫ t+δt

t
`τdτ)− 1

)
ψ
(
t + δt, X(t + δt)

)∣∣∣∣Ft

]
= −EL

[
`tψ
(
t, X(t)

)∣∣∣∣Ft

]
= −ρ`

(
t, X(t)

)
ψ
(
t, X(t)

)
dt

The third term is as follows:

lim
δt→0

EL
[ ∫ t+δt

t
gs exp

(
− ρ

∫ s

t
`τdτ

)
ds
∣∣∣∣Ft

]
= EL

[
g
(
t, X(t)

)
δt
∣∣∣∣Ft

]
= g

(
t, X(t)

)
dt

Combining the three terms above, we have shown that ψ
(
t, X(t)

)
satisfies the back-

ward Kolmogorov equation for the case of the infinite dimensional stochastic system in
Equation (3) of the main text.

Appendix F. Connections to Stochastic Dynamic Programming

In this section, we show the connections between stochastic dynamic programming
and the free energy. Before proceeding, let Ck,n

b ([0, T]× H) denote the space of all functions
ξ : [0, T]× H → R1 that are k times continuously Fréchet differentiable with respect to
time t and n times Gâteaux differentiable with respect to X. In addition, all their partial
derivatives are continuous and bounded in [0, T]× H. Furthermore, trajectories starting at
X ∈ E over the time horizon [t, T] are denoted XT

t,X ≡ X(T, t, ω; X). Using this notation,
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we have that X(t, t, ω; X) = X. Finally, for real separable Hilbert space E, by the notation
x⊗ y, we mean a linear bounded operator on E such that the following holds:

(x⊗ y)z = x〈y, z〉, ∀ x, y, z ∈ E.

First, we perform the exponential transformation on the function ψ
(
t, X(t)

)
∈ C1,2

b ([0, T]×
H) and show that the transformed function V

(
t, X(t)

)
∈ C1,2

b ([0, T]× H) satisfies the HJB
equation for the case of infinite dimensional systems [29]. This result is derived with
general Q-Wiener noise with covariance operator Q, however it holds also for cylindrical
Wiener noise (Q = I). This requires applying the Feynman–Kac lemma and deriving the
backward Chapman–Kolmogorov equation for the case of infinite-dimensional stochastic
systems. The backward Kolmogorov equations result in the HJB equation after a logarith-
mic transformation is applied. We start from the free energy and relative entropy inequality
in (A5) and define the function ψ

(
t, X(t)

)
: [0, T]× H → R as follows:

ψ
(
t, X(t)

)
:= EL

[
exp

(
− ρJ

(
XT

t,X)
)∣∣∣∣X],

which is simply the free energy as defined in Definition A5. By using the Feynman–Kac
lemma we have that the function ψ(t, X) satisfies the backward Chapman–Kolmogorov
equation specified as follows:

−∂tψ
(
t, X(t)

)
= −ρ`

(
t, X(t)

)
ψ
(
t, X(t)

)
+
〈
ψX , A X(t) + F

(
X(t)

)〉
+

1
2

Tr
[

ψXX(GQ
1
2 )(GQ

1
2 )∗
]

.
(A31)

where ∂tψ
(
t, X(t)

)
denotes the Fréchet derivative of ψ

(
t, X(t)

)
with respect to t, and ψX

and ψXX denote the first and second Gâteaux derivatives of ψ
(
t, X(t)

)
with respect to X(t).

Starting with the exponential transformation we have the following:

V
(
t, X(t)

)
= −1

ρ
loge ψ

(
t, X(t)

)
=⇒ ψ

(
t, X(t)

)
= e−ρV(t,X(t)).

Next, we compute the functional derivatives VX and VXX as functions of the functional
derivatives ψX and ψXX . This results in the following:

ρ∂tV
(
t, X(t)

)
e−ρV = −ρ`

(
t, X(t)

)
e−ρV − ρ

〈
VXe−ρV , A X(t) + F

(
X(t)

)〉
+

ρ

2
Tr
[
(VX ⊗VX)(GQ

1
2 )(GQ

1
2 )∗e−ρV

]
− 1

2
Tr
[
(VXX(GQ

1
2 )(GQ

1
2 )∗e−ρV

]
.

The last equations simplifies to the following:

−∂tV
(
t, X(t)

)
= `
(
t, X(t)

)
+
〈
VX , A X(t) + F

(
X(t)

)〉
− 1

2ρ
Tr
[
(VX ⊗VX)(GQ

1
2 )(GQ

1
2 )∗
]
+

1
2ρ

Tr
[

VXX(GQ
1
2 )(GQ

1
2 )∗
] (A32)

From the definition of the trace operator Tr[A] := ∑∞
j=1〈Aej, ej〉 for orthonormal basis {ej}

over the domain of A, we have the following expression:

1
2

Tr
[
(VX ⊗VX)(GQ

1
2ρ )(GQ

1
2 )∗
]
=

1
2ρ

∞

∑
j=1

〈
(VX ⊗VX)(GQ

1
2 )(GQ

1
2 )∗ej, ej

〉
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Since (x⊗ y)z = x〈y, z〉, we have the following:

1
2ρ

∞

∑
j=1

〈
(VX ⊗VX)(GQ

1
2 )(GQ

1
2 )∗ej, ej

〉
=

1
2ρ

∞

∑
j=1

〈
VX
〈
VX , (GQ

1
2 )(GQ

1
2 )∗ej

〉
, ej

〉
=

1
2ρ

∞

∑
j=1

〈
VX , (GQ

1
2 )(GQ

1
2 )∗ej

〉〈
VX , ej

〉
=

1
2ρ

∞

∑
j=1

〈
(GQ

1
2 )(GQ

1
2 )∗VX , ej

〉〈
VX , ej

〉
=

Parseval

1
2
〈
VX , (GQ

1
2 )(GQ

1
2 )∗VX

〉
=

1
2ρ

∣∣∣∣(GQ
1
2
)∗VX

∣∣∣∣2
U0

Substituting back to (A32) we have the HJB equation for the infinite dimensional case:

−Vt
(
t, X(t)

)
= `
(
t, X(t)

)
+
〈
VX , A X(t) + F

(
X(t)

)〉
+

1
2ρ

Tr
[

VXX(GQ
1
2 )(GQ

1
2 )∗
]

− 1
2ρ

∣∣∣∣(GQ
1

2ρ )∗VX
∣∣∣∣2

U0

In the same vein, one can also show that the relative entropy between the probability
measures induced by the uncontrolled and controlled infinite dimensional systems in
Equations (2) and (3) of the main text, respectively, result in an infinite dimensional
quadratic control cost. This requires the use of the Radon–Nikodym derivative from our
generalization of Girsanov’s theorem for the case of infinite dimensional stochastic systems
in Equations (2) and (3) of the main text.

Appendix G. SPDEs under Boundary Control and Noise

Let us consider the following problem with Neumann boundary conditions:{
∆xy(x) = λy(x), x ∈ O
∂

∂n y(x) = γ(x), x ∈ ∂O
(A33)

where ∆x corresponds to the Laplacian, λ ≥ 0 is a real number, O is a bounded domain
in Rd with regular boundary ∂O and ∂

∂n denotes the normal derivative, with n being
the outward unit normal vector. As shown in [29] and references therein, there exists a
continuous operator DN : Hs(∂O) → Hs+3/2(O) such that DNγ is the solution to (A33).
Given this operator, stochastic parabolic equations with Neumann boundary conditions of
the following type:

∂h(t, x)
∂t

= ∆xh(t, x) + f1(t, h) + c1(t, h)
∂w(t, x)

∂t
, x ∈ O

∂h(t, x)
∂n

= f2(t, h) + c2(t, h)
∂v(t, x)

∂t
, x ∈ ∂O,

h(0, x) = h0(x).

(A34)

which can be written in the mild abstract form:
X(t) = etAN X0 +

∫ t

0
e(t−s)AN F1(s, X)ds +

∫ t

0
e(t−s)AN C1(s, X)dW(s)

+
∫ t

0
(λI −AN)

1/4+εe(t−s)AN GN F2(s, X)ds

+
∫ t

0
(λI −AN)

1/4+εe(t−s)AN GNC2(s, X)dV(s),

(A35)
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where GN := (λI −AN)
3/4−εDN , and the remaining terms are defined with respect to

the space-time formulation of (A35). A similar expression can be obtained for Dirichlet
conditions as well; however, the solution has to be investigated under weak norms, or in
weighted L2 spaces. More details can be found in ([29] Appendix C) and references therein.

Appendix H. An Equivalence of the Variational Optimization Approach for SPDEs
with Q-Wiener Noise

In this section, we briefly discuss how one obtains an equivalent variational optimiza-
tion as in Section 3 of the main text, for control of SPDEs with Q-Wiener noise. Consider
the uncontrolled and controlled version of an H-valued process be given, respectively, by
the following:

dX =
(
A X + F(t, X)

)
dt +

1
√

ρ

√
QdW(t), (A36)

dX̃ =
(
A X̃ + F(t, X̃)

)
dt +

√
Q
(
U (t, X̃)dt +

1
√

ρ
dW(t)

)
, (A37)

with initial condition X(0) = X̃(0) = ξ. Here, Q is a trace-class operator, and W ∈ U is a
cylindrical Wiener process. The assumption that Q is of trace class is expressed as follows:

Tr
[
Q
]
=

∞

∑
n=1

〈
Qen, en

〉
< ∞.

As opposed to the discussion following Equation (3) of the main text, in this case we
do not require any contractive assumption on the operator A due to the nuclear property
of the operator Q. The stochastic integral

∫ t
0 e(t−s)A√QdW(s) is well defined in this case

([2] Chapter 4.2). Define the process:

WQ(t) :=
√

QW(t) =
∞

∑
n=1

√
Qenβn(t)

=
∞

∑
n=1

√
λnenβn(t)

where the basis {en} satisfies the eigenvalue–eigenvector relationship Qen = λen. The pro-
cess WQ(t) satisfies the properties in Definition A4, and is therefore a Q-Wiener process.

The above case is an SPDE driven by Q-Wiener noise, which is quite different from
the cylindrical Wiener process described in the rest of this work. In order to state the
Girsanov’s theorem in this case, we first define the Hilbert space U0 :=

√
Q(U) ⊂ U with

inner product 〈u, v〉U0 :=
〈

Q−1/2u, Q−1/2v
〉

U , ∀u, v ∈ U0.

Theorem A3 (Girsanov). Let Ω be a sample space with a σ-algebra F . Consider the following
H-valued stochastic processes:

dX =
(
A X + F(t, X)

)
dt +

1
√

ρ
dWQ(t), (A38)

dX̃ =
(
A X̃ + F(t, X̃)

)
dt +

√
QU (t, X̃)dt +

1
√

ρ
dWQ(t)

)
, (A39)

where X(0) = X̃(0) = x and WQ ∈ U is a Q-Wiener process with respect to measure P. Moreover,
for each Γ ∈ C([0, T]; H), let the law of X be defined as L(Γ) := P(ω ∈ Ω|X(·, ω) ∈ Γ).
Similarly, the law of X̃ is defined as L̃(Γ) := P(ω ∈ Ω|X̃(·, ω) ∈ Γ). Then, we have the following:

L̃(Γ) = EP
[

exp
( ∫ T

0

〈
ψ(s), dWQ(s)

〉
U0
− 1

2

∫ T
0 ||ψ(s)||

2
U0

ds
)
|X(·) ∈ Γ

]
, (A40)
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where we have defined ψ(t) :=
√

ρU
(
t, X̃(t)

)
∈ U0 and assumed the following:

EP
[
e

1
2
∫ T

0 ||ψ(t)||
2dt
]
< +∞. (A41)

Proof. The proof is identical to the proof of Theorem A2.

Note that ψ(t) in this case is identical to ψ(t) in Theorem A2. As a result, despite
having Q-Wiener noise, we have the same variational optimization for this case as in
Section 3 of the main text.

Appendix I. A Comparison to Variational Optimization in Finite Dimensions

In what follows, we show how degeneracies arise for a similar derivation in finite
dimensions. The stochastic dynamics are given by the following:

dX =
(
A X + F(t, X)

)
dt + G(t, X)

(
U (t, X)dt +

1
√

ρ
dW(t)

)
, (A42)

where W(t) is a cylindrical Wiener process. Now, let the Hilbert space state vector X(t) ∈ H
be approximated by a finite dimensional state vector X(t) ≈ X̂(t) ∈ Rd with arbitrary
accuracy, where d is the number of grid points. In order to rewrite a finite dimensional form
of (A42), the cylindrical Wiener noise term W(t) must be captured by a finite dimensional
approximation. The expansion of W(t) in (A1) is restated here and truncated at m terms:

W(t) =
∞

∑
j=1

√
λjβ j(t)ej =

∞

∑
j=1

β j(t)ej ≈
m

∑
j=1

β j(t)ej (A43)

where λj = 1, ∀j ∈ N in the case of cylindrical Wiener noise, and β j(t) is a standard Wiener
process on R. The stochastic dynamics in (A42) become a finite set of SDEs:

dX̂ =
(
AX̂ +F (t, X̂)

)
dt + G(t, X̂)

(
Mu(t; θ)dt +

1
√

ρ
Rdβ(t)

)
(A44)

The terms A, F , and G are matrices associated with the Hilbert space operators A , F,
and G respectively. The matrixM has dimensionalityM ∈ Rd×k, where k is the number
of actuators placed in the field. The vector dβ ∈ Rm collects the Wiener noise terms in
the expansion (A43), and the matrixR collects finite dimensional basis vectors from (A43).
As noted in the main paper, the dimensionality of the R is R ∈ Rd×m. The degeneracy
arises when d > m for the case of the cylindrical noise. For the case of Q-Wiener noise,
degeneracy may arise, even when d ≤ m and Rank(R) < d. In both cases, the issue of
degeneracy prohibits the use of the Girsanov theorem for the importance sampling steps,
due to the lack of invertibility of R. With respect to the approach relying on Gaussian
densities, the derivation would require the following time discretization of the reduced
order model in (A44):

X̂(t + ∆t) = X̂(t) +
∫ t+∆t

t

(
AX̂ +F (t, X̂)

)
dt +

∫ t+∆t

t
G(t, X̂)

(
Mu(t; θ)dt +

1
√

ρ
Rdβ(t)

)
(A45)

≈ X̂(t) +
(
AX̂ +F (t, X̂)

)
∆t + G(t, X̂)

(
Mu(t; θ)∆t +

1
√

ρ
Rdβ(t)

)
(A46)

Without loss of generality, we simplify the expression above by assuming theG(t, X̂) = Id×d.
The transition probability takes the following form:

p
(
X̂(t + ∆t)|X̂(t)

)
=

1

(
√

2π)n(det ΣX̂)
1
2

exp
(
− 1

2

(
X̂(t + ∆t)− µX̂(t + ∆t)

)>
Σ−1

X̂

(
X̂(t + ∆t)− µX̂(t + ∆t)

))
(A47)
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where the term µX̂(t + ∆t) is the mean and ΣX̂ is the variance defined as follows:

µX̂(t + ∆t) = X̂(t) +
(
AX̂ +F (t, X̂)

)
∆t +Mu(t; θ)∆t (A48)

ΣX̂ =
1
ρ
RRT∆t (A49)

The existence of the transition probability densities requires invertibility ofRRT, which is
not possible when d < m or when Rank(R) < d for d ≥ m.

Appendix J. Algorithms for Open Loop and Model Predictive Infinite
Dimensional Controllers

The following algorithms use equations derived in [42] for finite difference approx-
imation of semi-linear SPDEs for Dirichlet and Neumann Boundary conditions. Spatial
discretization is done as follows: pick a number of coordinate-wise discretization points
J on the coordinate-wise domain D = [a, b] ⊂ R such that each spatial coordinate is
discretized as xk = a + k b−a

J where k = 0, 1, 2, . . . , J. For our experiments, the function
that specifies how actuation is implemented by the infinite dimensional control is of the
following form:

ml(xk; θ) = exp
[−1

2σ2
l
(xk − µl)

2
]
, l = 1, . . . , N (A50)

where µl denotes the spatial position of the actuator on [a, b] and σl controls the influence
of the actuator on nearby positions.

Next, we provide two algorithms for infinite dimensional stochastic control. In partic-
ular, Algorithm A1 is for open-loop trajectory optimization and Algorithm A2 is for model
predictive control that uses implicit feedback.

Algorithm A1 Open-loop infinite dimensional controller.

1: Function: u = OptimizeControl(Time horizon (T), number of optimization iterations (I),
number of trajectory samples per optimization iteration (R), initial field profile (X0), number of
actuators (N), initial control sequences (uT×N) for each actuator, temperature parameter (ρ),
time discretization (∆t), actuator centers and variance parameters (θ))

2: for i = 1 to I do
3: Initialize X ← X0
4: for r = 1 to R do
5: for t = 1 to T do
6: Sample noise, dW(t, xk) = ∑J

j=1

(
ej(t, xk) β j(t)

)
, ej =

√
2/a sin(jπx/a) for

x ∈ L2(0, a)
7: Compute entries of the actuation matrix M̃ by (A50)
8: Compute the control actions applied to each grid point, U (t) = u(t)T M̃
9: Propagate the discretized field X(t) ([42], Algorithm 10.8)

end for
10: end for
11: Compute trajectory cost J(i)r via Equation (18) of the main text

end for
12: end for
13: Compute exponential weight of each trajectory J (i)

r := exp
(
− ρJ(i)r (X)

)
14: Compute the normalizer J (i)

m = 1
R ∑R

r=1 J
(i)

r
15: Update nominal control sequence by Equation (17) of the main text

end for
16: end for
17: Return: u
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Algorithm A2 Model predictive infinite dimensional controller.

1: Inputs: MPC time horizon (T), number of optimization iterations (I), number of tra-
jectory samples per optimization iteration (R), initial profile (X0), number of actuators
(N), initial control sequences (uT×N) for each actuator, temperature parameter (ρ), time
discretization (∆t), actuator centers and variance parameters (θ), total simulation time
(Tsim)

2: for tsim = 1 to Tsim do
3: uI(tsim) = OptimizeControl(T, I, R, X0, N, u, ρ, ∆t, θ)
4: Apply uI(t = 1) and propagate the discretized field to tsim + 1
5: Update the initial field profile X0 ← X(tsim + 1)
6: Update initial control sequence u =

[
uI [2 : T, :]; uI [T, :]

]
end for

7: end for

For MATLAB pseudo-code on sampling space-time noise (step 6 in Algorithm A1 and
step 7 in Algorithm A2), refer to ([42] algorithms 10.1 and 10.2). Note, however, that our
experiments used cylindrical Wiener noise so λj = 1 ∀j = 1, . . . , J.

Appendix K. Brief Description of Each Experiment

The following is additional information about the experiments referenced in Section V.
Appendix K.1 describes boundary and distributed control experiments, while Appendices K.2
and K.3 describe experiments for distributed control only.

Appendix K.1. Heat SPDE

The 2D stochastic Heat PDE with homogeneous Dirichlet boundary conditions is
given by the following:

ht(t, x, y) = εhxx(t, x, y) + εhyy(t, x, y) + σdW(t),

h(t, 0, y) = h(t, a, y) = h(t, x, 0) = h(t, x, a) = 0,

h(0, x, y) ∼ N (h0; 0, σ0),

(A51)

where the parameter ε is the so-called thermal diffusivity, which governs how quickly the
initial temperature profile diffuses across the spatial domain. Equation (A51) considers the
scenario of controlling a metallic plate to a desired temperature profile, using five actuators
distributed across the plate. The edges of the plate are always held at constant temperature
of 0 degrees Celsius. The parameter a is the length of the sides of the square plate for which
we use a = 0.5 m.

The actuator dynamics are modeled by Gaussian-like exponential functions with the means
co-located with the actuator locations at: µ =

[
µ1, µ2, µ3, µ4, µ5

]
=
[
(0.2a, 0.5a), (0.5a, 0.2a),

(0.5a, 0.5a), (0.5a, 0.8a), (0.8a, 0.5a)
]

and the variance of the effect of each actuator on nearby
field states given by σ2

l = (0.1a)2, ∀l = 1, . . . , 5. For every j = 1, . . . , J, and l = 1, . . . , N,
the resulting ml(x) has the following form:

ml,j

([
x
y

])
= exp

{
−1

2

([
x
y

]
−
[

µl,x
µl,y

])>[
σ2

l 0
0 σ2

l

]([
x
y

]
−
[

µl,x
µl,y

])}

The spatial domain is discretized by dividing the x and y domains into 64 points each
creating a grid of 64× 64 spatial locations on the plate surface. For our experiments, we use
a semi-implicit forward Euler discretization scheme for time and central difference for the
2nd order spatial derivatives hxx and hyy. We used the following parameter values, time
discretization ∆t = 0.01 s, MPC time horizon T = 0.05 s, total simulation time Tsim = 1.0 s,
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thermal diffusivity ε = 1.0 and initialization standard deviation σ0 = 0.5. The cost function
considered for the experiments was defined as follows:

J := ∑
t

∑
x

∑
y

κ
(
hactual(t, x, y)− hdesired(t, x, y)

)2 · 1S(x, y)

where S := ∪5
i=1Si and the indicator function 1S(x, y) is defined as follows:

1S(x, y) :=

{
1, if (x, y) ∈ S
0, otherwise

(A52)

where

S1 = {(x, y) | x ∈ [0.48a, 0.52a] and y ∈ [0.48a, 0.52a]} is in the central region,

S2 = {(x, y) | x ∈ [0.22a, 0.18a] and y ∈ [0.48a, 0.52a]} is the left-mid region,

S3 = {(x, y) | x ∈ [0.82a, 0.78a] and y ∈ [0.48a, 0.52a]} is the right-mid region,

S4 = {(x, y) | x ∈ [0.48a, 0.52a] and y ∈ [0.18a, 0.22a]} is in the top-central region,

S5 = {(x, y) | x ∈ [0.48a, 0.52a] and y ∈ [0.78a, 0.82a]} is in the bottom-central region.

In addition hdesired(t, x, y) = 0.5◦ C for (x, y) ∈ S1 and hdesired(t, x, y) = 1.0◦ C for (x, y) ∈
∪5

i=2Si and the scaling parameter κ = 100.
In the boundary control case, we make use of the 1D stochastic heat equation given

as follows:

ht(t, x) = εhxx(t, x) + σdW(t)

h(0, x) = h0(x)

For Dirichlet and Neumann boundary conditions, we have h(t, x) = γ(x), ∀x ∈ ∂O
and hx(t, x) = γ(x), ∀x ∈ ∂O, respectively. Regarding our 1D boundary control example,
we set ε = 1, σ = 0.1, hx(t, 0) = u1(t) and hx(t, a) = u2(t). In this case, ml(x) is simply
given by the identity function and the corresponding inner products associated with
Girsanov’s theorem are given by the standard dot product. Finally, the cost function used
is the same as above with S = {x|0 < x < a} and the following:

hdesired(t, x) =

{
1, for t ∈ [0, 0.4],
3, for t ∈ [0, 0.4] and t ∈ [0.8, 1.3].

Appendix K.2. Burgers SPDE

The 1D stochastic Burgers PDE with non-homogeneous Dirichlet boundary conditions
is as follows:

ht(t, x) + hhx(t, x) = εhxx(t, x) + σdW(t)

h(t, 0) = h(t, a) = 1.0

h(0, x) = 0, ∀x ∈ (0, a)

(A53)

where the parameter ε is the viscosity of the medium. (A53) considers a simple model
of a 1D flow of a fluid in a medium with non-zero flow velocities at the two boundaries.
The goal is to achieve and maintain a desired flow velocity profile at certain points along
the spatial domain. As seen in the desired profile in Figure 3 of the main paper, there are
three areas along the spatial domain with desired flow velocity such that the flow has to
be accelerated, then decelerated, and then accelerated again while trying to overcome the
stochastic forces and the dynamics governed by the Burgers PDE. Similar to the experiments
for the heat SPDE, we consider actuators behaving as Gaussian-like exponential functions
with the means co-located with the actuator locations at µ =

[
0.2a, 0.3a, 0.5a, 0.7a, 0.8a

]
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and the spatial effect (variance) of each actuator given by σ2
l = (0.1a)2, ∀ l = 1, . . . , 5.

The parameter a = 2.0 m is the length of the channel along which the fluid is flowing.
This spatial domain was discretized, using a grid of 128 points. The numerical

scheme used semi-implicit forward Euler discretization for time and central difference
approximation for both the 1st and 2nd order derivatives in space. The 1st order derivative
terms in the advection term hhx were evaluated at the current time instant, while the 2nd
order spatial derivatives in the diffusion term hxx were evaluated at the next time instant;
hence, the scheme is semi-implicit. The following are values of some other parameters
used in our experiments: time discretization ∆t = 0.01, total simulation time = 1.0 s, MPC
time horizon = 0.1 s, and the scaling parameter κ = 100. The cost function considered for
the experiments was defined as follows:

J := ∑
t

∑
x

κ
(
hactual(t, x)− hdesired(t, x)

)2 · 1S(x)

where the function 1S(x) is defined as in (A52) with S = ∪3
i=1, where S1 = [0.18a, 0.22a],

S2 = [0.48a, 0.52a], and S3 = [0.78a, 0.82a]. In addition hdesired(t, x) = 2.0 m/s for x ∈
S1 ∪ S3, which is at the sides, and hdesired(t, x) = 1.0 m/s for x ∈ S2 which is in the
central region.

Appendix K.3. Nagumo SPDE

The stochastic Nagumo equation with Neumann boundary conditions is as follows:

ht(t, x) = εhxx(t, x) + h(t, x)
(
1− h(t, x)

)(
h(t, x)− α

)
+ σdW(t)

hx(t, 0) = hx(t, a) = 0

h(0, x) =
(
1 + exp(−2− x√

2
)
)−1

The parameter α determines the speed of a wave traveling down the length of the axon and
ε the rate of diffusion. By simulating the deterministic Nagumo equation with a = 5.0, ε =
1.0 and α = −0.5, we observed that after about 5 s, the wave completely propagates to the
end of the axon. Similar to the experiments for the heat SPDE, we considered actuators
behaving as Gaussian-like exponential functions with actuator centers (mean values) at
µ =

[
0.2a, 0.3a, 0.4a, 0.5a, 0.6a, 0.7a, 0.8a

]
and the spatial effect (variance) of each actuator

given by σ2
l = (0.1a)2, ∀ l = 1, . . . , 7. The spatial domain was discretized using a grid

of 128 points. The numerical scheme used semi-implicit forward Euler discretization for
time and central difference approximation for the 2nd order derivatives in space. The
following are values of some other parameters used in our experiments: time discretization
∆t = 0.01, MPC time horizon = 0.1 s, total simulation time = 1.5 s for acceleration task and
total simulation time = 5.0 s for the suppression task, and the scaling parameter κ = 10, 000.
The cost function for this experiment was defined as follows:

J = ∑
t

∑
x

κ
(
hactual(t, x)− hdesired(t, x)

)2 · 1S(x)

where hdesired(t, x) = 0.0 V for the suppression task, and hdesired(t, x) = 1.0V for the
acceleration task, and the function 1S(x) is defined as in (A52) with S = [0.7a, 0.99a].
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