
 
 

Supplementary Materials 

of 

Statistical Approach of Gene Set Analysis with Quantitative Trait Loci for Crop 
Gene Expression Studies 

Samarendra Das1-4,Shesh N Rai3-8* 

1Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New 

Delhi 110012, India 

2Biostatistics and Bioinformatics Facility, JG Brown Cancer Center, University of Louisville, Louisville, 

KY 40202, USA  

3School of Interdisciplinary and Graduate Studies, University of Louisville, Louisville, KY 40292, USA 

4Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA 

5Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA 

6Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY 40202, USA 

7Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY 40202, USA 

 

 

Authors’ email addresses: 

SD: samarendra.das@louisville.edu 

SNR: shesh.rai@louisville.edu 

 

 

*To whom correspondence should be addressed- email: shesh.rai@louisville.edu.



1 
 

Document S1. Data collection, pre-processing, meta-analysis and preliminary gene selection 

for rice Microarray datasets. 

Data selection 

The six different gene expression datasets for rice related to a balanced set of three abiotic 

stresses (salinity, cold and drought) and  three biotic stresses (Xanthomonas bacteria, fungal and 

insect) were obtained from Gene Expression Omnibus (GEO) database of NCBI 

(http://www.ncbi.nlm.nih.gov) with platform GPL2025, as this platform contains as much as 220 

microarray experiments (series) comprising 3480 samples/subjects of Oryza sativa L.as 

compared to other platforms. Among these 3480 samples, 550 experimental samples related to 

these six different biotic and abiotic stresses for rice were taken in this study. Further, the raw 

.CEL files for these gene expression samples are downloaded for GEO database of NCBI. The 

detail description about the selected Microarray datasets for rice is given in Table S1 (in .xlx 

file). 

Data preprocessing 

The preprocessing of the gene expression datasets was done to remove noises, including missing 

and mislabeled probes (Das et al., 2017). Here, the preprocessing of data was conducted by using 

Bioconductor platform of R (Gentleman et al., 2004). Initially, the raw CEL files of the collected 

samples were processed using Robust Multichip Average (RMA) algorithm available in affy 

Bioconductor package of R (Gautier et al., 2004; Bolstad et al., 2003). This RMA procedure 

involves background correction, quantile normalization and summarization by median polish 

approach. Further, the log2 scale transformed expression data from RMA for the collected 

experimental samples were used for meta-analysis to remove the outlier samples. After 

normalization of the data, we used the z-score method, a Location-Scale approach (Lazar et al. 
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2013) to remove the batch effects of the genes. Here, the main idea behind the use of z-score 

method is to transform the data from each batch to have similar (equal) z-score (i.e. function of 

mean and variance) for each gene. It is assumed that these transformations, while trivially 

making data more comparable, do not remove any biological signal of interest 

Meta-analysis of gene expression datasets 

Meta-analysis was performed on the collected gene expression samples to remove the unusual or 

outlier samples from the data. It was performed individually for each stress. Through this, the 

gene expression samples with mean ≥ µ0 and standard deviation ≤ σ0 are retained and other 

samples, which do not satisfy this condition are considered as outliers and removed. Further, we 

validated the homogeneity of the selected samples through correlation analysis, as they were 

generated over varying experimental conditions. The parameters for meta-analysis in each stress 

condition are given in Table S2. 

Table S1. Description about the gene expression studies used in this study (.xlxs) (given 

separately).    

Table S2. Parameters for gene expression samples selection. 

Sl. No. Stress condition Mean (µ0) Standard deviation (σ0) Samples selected 

1 Cold stress 6.5 2.7 28 

2 Drought stress 6.2 2.6 70 

3 Fungal stress 6.05 2.8 26 

4 Insect stress 7.4 2.4 18 

 

In meta-analysis, the GE samples with mean (µ) ≥ µ0 and standard deviation (σ) ≤ σ0 

were retained for further study and other samples, which do not satisfy this condition were 

considered as outliers. The values of µ0 and σ0 were chosen in such a way that the uniformity in 

color of the correlation plot (among samples) is observed at these parameters setting. For cold 
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stress, the micro-array samples with µ ≥ 6.5 and σ ≤ 2.7 were selected. For drought stress, the 

micro-array samples with µ ≥ 6.2 and σ ≤ 2.6 were selected. For fungal stress, the micro-array 

samples with µ ≥ 6.05 and σ ≤ 2.8 were selected. For insect stress, the microarray samples with µ 

≥ 7.4 and σ ≤ 2.4 were retained for further analysis. At these parameters’ settings, the 

homogeneity of correlation plot is observed for each of the stresses (Figure S1). In other words, 

the selected GE samples are observed to be highly homogeneous at these parameters setting, 

though they were generated over varying experimental conditions. Through the above procedure, 

the GE samples were retained for further study for all the stresses. The detail description about 

the selected samples is given in Table S1. 
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Figure S1. Correlation plot of the micro-array experimental samples. The plots are shown for (A) Cold; 

(B) Drought; (C) Fungal and (D) Insect stresses in rice 

Through this meta-analysis, samples which satisfy the above condition are selected for each 

stress. These parameter combinations are chosen for each stress, as we observed uniformity of 

color in the correlation plot at these parameter settings, though they are generated over varying 

experimental conditions across the globe. For instance, in salinity stress, experimental samples 

whose mean (µ) ≥ 5.23 and standard deviation ≤ 2.51 were retained for further analysis as they 

are observed to be highly homogeneous at these parameters setting, irrespective of their 
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experimental conditions (Figure S1). Similar interpretations can be made for cold, drought, 

fungal and insect stresses in rice.  

Preliminary gene selection for dimension reduction 

The gene expression data generated from Affymetrix Rice Genome Array (GPL 2025 in GEO), 

which contains 57,381 probes and each probe is assumed to represent an individual gene. 

Further, there are 123 probe sets designed for control (in GPL 2025), so, we removed these 

probes from the analysis and the dataset on 57,258 valid probe sets were obtained for further 

analysis. It would be of high computational complex as well as statistically infeasible to use the 

gene set selection methods directly on expression data on 57,258 probes. Hence, we first 

employed t-test and Fold Change (FC) criteria to filter out unlikely genes to reduce the 

dimension of the GE datasets at the preliminary stage. In our preliminary selection, we assigned 

1 and 0.05 as the |FC| and p-value thresholds respectively, resulting in selection of several 

thousands of genes (Table 1). Further, GE data on these selected genes (at the preliminary stage) 

were further used for performance analysis of proposed and existing gene selection techniques. 
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Document S2: Rice RNA-sequencing dataset collection and pre-processing 

Raw reads data 

The raw read sequence datasets for the 24 samples/libraries (in. fastq format) were downloaded 

from the Sequence Read Achieve (SRA) database. The brief description about the collected 

dataset is given in Table S3. Here, the leaf and root tissue samples were collected from two rice 

cultivars, i.e., Vialone Nano and Baldo, and the RNA-sequencing (RNA-seq) datasets were 

generated under two contrasting conditions, salinity treated vs. control. For further statistical 

analysis, first these raw datasets need to be quality checked, pre-processed, and converted to 

discrete read counts data. The detailed procedures are discussed in the following sections.  

Table S3. Description of the RNA-seq data for salinity stress in rice. 

GSM id SRA id Samples Genotype Tissue Class Class label 

GSM2940029 SRR6502085 SRR6502085_1.fastq Vialone Nano Leaves Salinity 1 
GSM2940030 SRR6502086 SRR6502086_1.fastq Vialone Nano Leaves Salinity 1 
GSM2940031 SRR6502087 SRR6502087_1.fastq Vialone Nano Leaves Salinity 1 
GSM2940032 SRR6502088 SRR6502088_1.fastq Vialone Nano Leaves Control 0 
GSM2940033 SRR6502089 SRR6502089_1.fastq Vialone Nano Leaves Control 0 
GSM2940034 SRR6502090 SRR6502090_1.fastq Vialone Nano Leaves Control 0 
GSM2940035 SRR6502091 SRR6502091_1.fastq Vialone Nano Roots Salinity 1 
GSM2940036 SRR6502092 SRR6502092_1.fastq Vialone Nano Roots Salinity 1 
GSM2940037 SRR6502093 SRR6502093_1.fastq Vialone Nano Roots Salinity 1 
GSM2940038 SRR6502094 SRR6502094_1.fastq Vialone Nano Roots Control 0 
GSM2940039 SRR6502095 SRR6502095_1.fastq Vialone Nano Roots Control 0 
GSM2940040 SRR6502096 SRR6502096_1.fastq Vialone Nano Roots Control 0 
GSM2940041 SRR6502097 SRR6502097_1.fastq Baldo Leaves Salinity 1 
GSM2940042 SRR6502098 SRR6502098_1.fastq Baldo Leaves Salinity 1 
GSM2940043 SRR6502099 SRR6502099_1.fastq Baldo Leaves Salinity 1 
GSM2940044 SRR6502100 SRR6502100_1.fastq Baldo Leaves Control 0 
GSM2940045 SRR6502101 SRR6502101_1.fastq Baldo Leaves Control 0 
GSM2940046 SRR6502102 SRR6502102_1.fastq Baldo Leaves Control 0 
GSM2940047 SRR6502103 SRR6502103_1.fastq Baldo Roots Salinity 1 
GSM2940048 SRR6502104 SRR6502104_1.fastq Baldo Roots Salinity 1 
GSM2940049 SRR6502105 SRR6502105_1.fastq Baldo Roots Salinity 1 
GSM2940050 SRR6502106 SRR6502106_1.fastq Baldo Roots Control 0 
GSM2940051 SRR6502107 SRR6502107_1.fastq Baldo Roots Control 0 
GSM2940052 SRR6502108 SRR6502108_1.fastq Baldo Roots Control 0 
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Quality check of raw reads 

One of the critical challenges in the RNA-seq study is to ensure that the quality of the samples is 

maintained properly without contamination. The inclusion of contaminated samples will bias the 

results of the data analysis. Low-quality libraries in RNA-seq data can stem from damaged or 

stressed tissues or errors in library preparation. FastQC[1] is one of the most commonly used 

quality control tools developed for RNA-seq. The output from FastQC is an HTML file viewed 

in a browser after analyzing a read file in FASTQ format. It gives quality statistics from 

sequencing data for RNA-seq data and contains information about the input FASTQ file, type of 

quality score encoding, the total number of reads, read length, and GC content. The first plotPer 

base sequence quality, gives quality score distribution over all the sequenceson the X-axis and 

the observed mean quality on the Y-axis. The red line in the center of the box and whisker plot 

gives the median value, the yellow box of the plot represents the inter-quartile range (25-75%), 

the upper and lower whiskers of the plot represent the 10% and 90% percentile scores, and the 

blue line represents the mean quality of the read. 

The sequence qualities are stored in the form of a Phred score. The Phred score is an error 

probability belonging to each base and is calculated by: 

𝑄 ൌ െ 10 logଵ଴ 𝑃                                                             (1) 

where Q is the quality score,and P is the error rate. For instance, if Q=30 is assigned to a base, 

this means the chances that a base is called incorrectly is 1 in 1000(p=10-3; error rate is 0.1%).A 

high-quality score implies that a base call is more reliable and less likely to be incorrect; for 

example, p=10-10, Q=100 (1 in 10 billion), which is unrealistic and unlikely. The background of 

the plotis colored and divides the Y-axis into excellent quality base calls (green), base calls of 

reasonable quality (orange), and base calls of low quality (red).  The median quality score is low 
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for the first few bases and then rises to gradually drop towards the end of the read, indicating 

good quality read. A warning is flagged if the median quality for any base is less than 27, while 

the failure occurs if the median quality falls below 20. The nextplotPer sequence quality score, 

gives the distribution of the average quality score. This quality report allows a check if a subset 

of sequences has low-quality values universally. There is a problem with the run if a significant 

proportion of the sequences in a run have overall low quality. If the observed mean quality is 

below 27, which equals a 0.2% error rate, a warning is issued. A failure is flagged when the 

mean quality falls below 20. 

 In the quality analysis, the Sequence GC content, that gives the number of reads vs. GC 

percentage per read. The distribution of mean GC content may vary to a greater or less extent 

among transcripts. It can lead to the observed plot to be broader or narrower than the ideal plot of 

normal distribution. The Per base N content gives the percentage of bases at each position with 

or without a base call. If the curve rises above zero at any place, it indicates a problem in the 

sequencing run. The Sequence length distribution plot shows the distribution of fragment sizes in 

the file. The graph usually has one peak depicting the length of the read but flags a warning if 

multiple fragment lengths are there in the file. The  Sequence duplication plot  gives the 

percentage of reads of any given sequence in the file, which occurs several times in the file. For a 

high coverage library, the exact same region should not be sequenced multiple times. There are 

two lines in the plot. The blue line gives the distribution of duplication in all the reads, and the 

red contains duplication levels in the de-duplicated sequences. The Overrepresented sequence 

lists the sequence which appears more than expected in the file. For RNA-Seq data, it is usual 

that few transcripts may be counted as overrepresented sequences due to the high abundance. A 

sequence is considered overrepresented if it is accounted for ≥ 0.1% of the total reads for which a 
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warning is raised and a failure if it is >1%. The Adapter content plots the fraction of reads where 

the sequence library adapter sequence is identified. Through Trimmomatic tool, we removed the 

adopter sequences from the raw sequence reads data and assessed the quality of the read 

sequences data using FastQC. The results are shown in Figure S2 – S4. 

Figure S2. Quality plot for the processed raw sequence reads data (part I). The quality 

scores of the base pairs are plotted with base pairs at each position. The plots are shown for (A) 

SRR6502085; (B) SRR6502086; (C) SRR6502087; (D) SRR6502088; (E) SRR6502089; (F) 

SRR6502090; (G) SRR6502091; (H) SRR6502092. 
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Figure S3. Quality plot for the processed raw sequence reads data (part II). The quality scores of 

the base pairs are plotted with base pairs at each position. The plots are shown for  

(A) SRR6502093 

(B) SRR6502094 

(C) SRR6502095 

(D) SRR6502096 

(E) SRR6502097 

(F) SRR6502098 

(G) SRR6502099 

(H) SRR6502100 
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Figure S4. Quality plot for the processed raw sequence reads data (part III). The quality scores 

of the base pairs are plotted with base pairs at each position. The plots are shown for  

(A) SRR6502101 

(B) SRR6502102 

(C) SRR6502103 

(D) SRR6502104 

(E) SRR6502105 

(F) SRR6502106 

(G) SRR6502107 

(H) SRR6502108 

 

Document S3. Differential Expression analysis of RNA-seq data 

Usually the Differential Expression (DE) analysis was performed, after mapping the sequence 

reads to the reference genome followed by quantifying the transcripts, to identify the DE genes 

(DEG) with respect to two differential conditions (i.e. salinity vs. control). For identification of 

DEGs, the raw counts were used as input of a state-of-the-art differential expression analysis 

workflow (Anders et al., 2013). For this purpose, the edgeR (v. 3.8.6) bioconductor package 

implemented on the R language was executed (Robinson et al., 2010). Different sets of DEGs 

were obtained by comparing RNA-seq libraries/samples under two differential conditions (i.e. 

treated (salinity) vs. control) for both two tissue samples (i.e. leaves and roots) separately for 

both cultivars (i.e. Baldo and Vialone Nano). For each comparison, reads with above 1 count per 

million (CPM) in 3 samples were included in the Generalized Linear Model (GLM) based-

pipeline. The normalization factor and the estimated dispersion were computed, both “trended” 

(or, whenever not possible, “common”) and “tagwise,” before fitting a GLM to each gene. 
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Finally, likelihood ratio test was performed for each gene separately and statistical significance 

values (p-values) was computed for each. Further, the adjusted p-values were computed through 

Benjamini and Hochberg correction for multiple testing (Benjamini and Hochberg, 1995). The 

results from the DE analysis is shown in Figure S3. 

Figure S5. The DE analysis result and the common DE genes detected between tissue types 

and genotypes. 

Further, the processed sequence count data was used for differential expression analysis 

for each tissue type and cultivars separately. The adjusted p-values were computed by using 

Benjamini and Hochberg correction for multiple hypothesis testing through likelihood ratio test 

implemented edgeR package of R. The DEGs were identified whose p-values are less than 0.001. 
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Through this, 3750 and 3041 genes are identified as differentially expressed in root and leaf 

tissue samples for the Vialone Nano cultivar. Similarly, 1170 and 764 are as DEGs for root and 

leaf tissue samples of the Baldo cultivar (Figure S5). From these results, it was evident that large 

number of genes are identified as DEGs in root tissue samples as compared to leaves, due to their 

direct exposure to salt ions in soil and water for both the cultivars. Moreover, large number of 

genes are identified as DEGs for the Vialone Nano cultivar as compared to Baldo, which 

indicated the salinity tolerant characteristics of Vialone Nano. 

 

Document S4: Stress(s) specific Quantitative Trait Loci information for rice (Oryza sativa 
L.) 

The list of trait specific Quantitative Trait Loci (QTL) for the abiotic, viz.  salinity, drought, and 

cold, and biotic stresses bacteria (Xanthomonas), fungal (blast) and insect (brown plant hopper) 

for rice were collected from the Gramene QTL database (http://www.gramene.org/qtl/) (Ni et al. 

2009). Then, the genomic regions of these QTLs (for each stress) were mapped to rice genome 

using Gramene annotation of rice genome of MSU Rice Genome Annotation (Osa1) Release 6 

(Ouyang et al. 2007). For a given QTL, there may be 25–30 genes per cM (∼270 kbp in 

rice) (Khurana and Gaikwad, 2005). Further, the lists of the QTLs for each of the six different 

stresses are given in Table S2-S6. 

 

Table S4. List of salinity responsive QTLs in rice (Oryza sativa L.). 
Sl. No. QTL ID Chr. No. Start End Note 
1 AQEM001 1 33956950 37713775  
2 AQEM006 1 9820009 11232822  
3 AQGR001 1 38530957 38531467  
4 AQGR002 3 22798284 22830744  
5 AQCL001 3 484860 485333  
6 AQEM009 4 19928370 22355854  
7 AQCL002 4 33663984 33664487  
8 AQCL003 5 18874932 18875558  
9 AQCL004 6 22862400 22862821  
10 AQEM002 6 21605889 24919236  
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11 AQEM003 7 4573316 7739951  
12 AQEM004 7 2633784 4575215  
13 AQEM007 9 14362062 17837010  
14 AQEM005 1 33956950 37713775 Same as 1 
15 AQEM008 7 2633784 4575215 Same as 12 
16 AQEM010 7 2633784 4575215 Same as 12 
17 AQEM011 7 2633784 4575215 Same as 12 
Sl. No.: Serial number of the QTL; QTL ID: Published qtl id; Chr. No.: Chromosome number of the QTL; Start: 
start position of the QTL in terms of base pairs (bp); End: end position of the QTL in terms of length of bps.  
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Table S5. List of cold responsive QTLs for rice (Oryza sativa L.) 
Sl. No. QTL ID Chr. No. Start End Note 

1 CQAA8 4 688353 6574518   
2 AQDU008 4 688353 6574518 Same as 1 
3 AQDU004 11 932068 932221  
4 CQP8 11 1491600 2523808  
5 AQDU009 6 5425408 5425631   
6 CQAA9 6 5425408 5425631  Same as 5 
7 AQAV003 1 5558576 7445919   
8 AQDU014 12 8826555 8826855  
9 AQDU005 12 8826555 8826855  Same as 8 

10 AQAV004 2 11389704 12216613   
11 AQAV001 2 11389704 12216613  Same as 10 
12 AQAV002 9 17719660 18810331  
13 AQF129 8 19051713 22886866  
14 AQDU002 6 19499320 27252383   
15 AQDU003 8 20650060 21142502  
16 AQDU012 8 20650060 21142502  Same as 15 
17 AQDU010 8 21142348 21142502  Same as 15 
18 CQAA10 8 21142348 21142502  Same as 15 
19 CQP7 7 22857717 22885543   
20 AQDU013 11 25153466 25153681  
21 AQDU015 4 26857374 29061127   
22 AQBO001 7 27159051 27159261   
23 AQAV006 5 27342022 27342124   
24 CQO3 4 29155838 30445683   
25 AQDU001 4 30772388 32650528  
26 CQO1 4 31276528 32772351  
27 CQAA6 1 32099566 33677892   
28 AQDU006 1 32099566 33677892  Same as 27 
29 CQP1 1 34651088 39949610   

Sl. No.: Serial number of the QTL; QTL ID: Published qtl id; Chr. No.: Chromosome number of the 
QTL; Start: start position of the QTL in terms of base pairs (bp); End: end position of the QTL in terms 
of length of bps.  
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Table S6: List of drought responsive QTLs in rice (Oryza sativa L.) 
Sl. No. QTL ID Chr. Start End Note 

1 CQAI48 4 13634515 13635012  
2 AQA046 12 26017140 27489485  
3 AQA045 4 13634515 13635012 Same as 1 
4 CQAI49 12 26017140 27489485 Same as 2 
5 AQHP062 8 21645663 21647445  
6 AQHP058 2 10503368 10503846  
7 AQHP059 4 31662839 31663326  
8 AQHP082 6 6718648 9537772  
9 AQHP083 7 13074864 13075056  

10 AQHP070 4 31662839 31663326 Same as 7 
11 AQHP065 1 29184260 29184844  
12 AQHP081 4 8610617 8611256  
13 AQHP079 3 15469002 19412007  
14 AQAN005 8 20094533 20094695  
15 AQAN004 4 8610617 8611256 Same as 12 
16 AQHP066 2 29761981 29762453  
17 AQHP080 4 31662839 31663326 Same as 7 
18 AQHP084 8 21645663 21647445 Same as 5 
19 AQHP069 3 22798284 35828040  
20 AQHP068 2 10503368 19866086  
21 AQAN001 5 27342022 28610866  
22 AQHP078 11 4413928 4415836  
23 AQHP067 2 27034342 27035328  
24 AQHP085 9 20481606 20482133  
25 AQHP061 6 2560318 2561213  
26 AQHP075 9 20481606 20482133 Same as 24 
27 AQHP060 4 8610617 8611256 Same as 12 
28 AQHP074 8 21645663 21647445 Same as 5 
29 AQHP087 11 19565059 19565672  

Sl. No.: Serial number of the QTL; QTL ID: Published qtl id; Chr.: Chromosome number of the QTL; Start: start 
position of the QTL in terms of base pairs (bp); End: end position of the QTL in terms of length of bps.  
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Table S7. List of blast (fungal) responsive unique QTLs in rice (Oryza sativa L.). 
Sl. No. QTL ID Chr. Start Stop 

1 AQAF003 1 1,98,822 18,91,260 
2 AQEN002 1 50,94,276 1,10,77,990 
3 AQAH002 1 2,41,86,290 2,91,84,844 
4 AQEN079 1 50,94,276 50,95,699 
5 AQGJ001 1 2,94,46,995 2,94,47,853 
6 AQAF011 1 3,10,46,003 3,10,47,458 
7 AQAF013 1 3,30,53,493 4,00,65,325 
8 AQAF015 1 3,44,70,620 4,00,65,325 
9 AQAF017 1 3,44,70,620 3,77,13,775 

10 AQAQ008 1 3,07,37,705 4,05,67,354 
11 AQAF006 1 74,45,627 7445919 
12 AQEN001 1 1,46,20,467 3,49,40,769 
13 AQAF007 1 79,70,722 79,70,839 
14 AQCT001 1 47,38,488 3,01,70,285 
15 AQEN011 1 1,46,20,467 2,17,01,719 
16 AQEN051 1 2,05,98,332 2,05,99,810 
17 AQCT002 2 3,56,61,689 3,56,62,199 
18 AQAQ001 2 3,56,61,689 3,56,62,199 
19 AQAF026 2 3,46,52,316 3,51,36,068 
20 AQEN069 2 2,74,82,581 3,11,07,173 
21 AQEN070 2 2,74,82,581 27,483,257 
22 AQEN039 3 4,84,860 4,85,333 
23 AQEN012 3 4,84,860 1,450,227 
24 AQEN003 3 4,84,860 34,96,275 
25 AQAQ020 3 2,51,28,239 25,128,864 
26 AQAF029 3 2,30,88,332 2,45,95,466 
27 AQGJ003 4 86,10,617 86,11,256 
28 AQEN063 4 3,16,62,839 3,16,63,326 
29 AQAQ015 4 86,10,617 1,12,34,543 
30 CQAC1 4 1,99,28,370 2,23,55,854 
31 AQEN061 4 2,00,87,103 2,00,87,362 
32 AQAQ024 5 2,25,79,390 2,25,80,355 
33 AQCT003 5 20,91,276 2,782,394 
34 AQEN041 6 23,63,670 23,63,704 
35 AQEN005 6 23,63,670 67,20,901 
36 AQAQ021 6 2,90,27,995 3,09,45,628 
37 AQEN014 6 95,36,259 2,44,55,212 
38 AQGJ023 6 25,60,318 62,84,636 
39 AQEN059 6 95,36,259 95,37,772 
40 AQGJ008 6 2,67,07,816 26,708,549 
41 AQCT004 6 62,83,401 6,928,661 
42 AQAH001 6 69,27,624 6,928,661 
43 AQEN044 7 2,94,66,368 2,94,67,498 
44 AQEN007 7 1,30,74,864 29,467,498 
45 AQAF030 7 15,36,133 2,317,976 
46 AQEN033 7 15,36,133 1,537,879 
47 AQAF033 7 2,54,72,688 2,65,29,185 
48 AQGJ010 7 2,67,04,922 29,467,498 
49 AQAQ016 7 1,75,25,817 18,686,761 
50 AQAF031 7 23,16,691 7,232,998 
51 AQGJ026 7 71,24,042 7,124,718 
52 AQAF035 8 41,05,519 53,27,118 
53 AQEN015 8 41,05,519 1,74,38,003 



21 
 

54 AQAF034 8 41,05,519 41,06,001 
55 AQEN037 8 41,05,519 4,106,001 
56 AQAF038 9 1,46,48,372 20,174,430 
57 CQAC3 9 96,29,362 10,801,158 
58 AQAQ022 9 12,71,123 10,801,158 
59 AQAF040 9 1,77,19,660 18,810,331 
60 AQAF041 9 1,99,46,740 20,482,185 
61 AQGJ027 9 1,88,10,067 1,88,10,331 
62 AQAF042 9 2,11,89,110 22,196,064 
63 AQCT006 10 2,09,76,812 20,978,165 
64 AQEN067 11 2,03,36,572 20,337,612 
65 AQEN016 11 1,81,78,768 20,337,612 
66 AQAQ017 11 1,36,71,613 28,412,347 
67 AQEN081 11 1,81,78,768 18,179,510 
68 AQAO001 11 1,78,08,335 22,816,523 
69 AQGJ013 11 66,86,166 6,687,145 
70 AQCT007 11 46,24,598 46,26,888 
71 AQAQ009 12 5,32,909 1,595,325 
72 AQEN017 12 77,29,365 23,775,487 
73 AQEN047 12 77,29,365 7,729,855 
74 CQAC4 12 1,10,58,522 18,867,702 
75 AQCT008 12 77,29,365 13,429,507 
76 AQAQ011 12 77,29,365 77,29,855 
77 AQEN072 12 15,94,823 15,95,325 

Sl. No.: Serial number of the unique QTL; QTL ID: Published qtl id; Chr. No.: Chromosome number of the QTL; 
Start: start position of the QTL in terms of base pairs (bp); End: end position of the QTL in terms of length of bps. 
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Table S8. List of brown plant hopper (insect) responsive unique QTLs in rice (Oryza sativa L.). 
Sl. No. QTL ID Chr. Start Stop 

1 AQAP053 2 7,44,663 7,45,178 
2 AQAP027 6 17,64,586 18,22,651 
3 CQAM3 1 4,29,53,262 42,955,596  
4 AQAP058 10 53,52,766 1,58,02,326 
5 AQAP009 8 1,39,27,893 2,28,86,866 
6 AQBA009 6 67,18,648 67,20,901 
7 AQBA003 8 2,78,22,512 2,78,25,271 
8 AQBA005 4 3,36,63,984 3,46,98,383 
9 AQW015 12 2,74,88,270 2,74,89,485 

10 AQW012 11 2,31,54,725 2,31,55,291 
11 AQBA002 6 67,18,648 6,720,901  
12 AQAP023 5 1,88,74,932 22,580,355  
13 AQAP040 6 1,70,54,655 17,055,184  
14 AQAP032 10 2,10,98,188 2,10,99,881 
15 AQAP054 3 32,36,247 3,236,745  
16 AQAP048 4 3,06,30,093 3,06,30,917 
17 AQAP036 12 2,61,07,904 26,992,979  
18 AQAP050 11 1,36,71,613 2,31,55,291 
19 AQAP051 2 2,58,65,334 27,610,063  
20 AQAP043 5 2,25,79,390 29,285,656  
21 AQAP018 8 2,28,85,196 26,282,308  
22 AQAP035 9 2,21,94,746 2,21,96,064 
23 AQAP042 9 2,21,94,746 22,196,064  
24 AQAP029 6 39,22,784 26,708,549  
25 AQW010 6 67,18,648 19,338,095  
26 AQBA020 6 67,18,648 1,93,38,095 
27 AQAP015 1 2,76,25,475 2,91,84,844 
28 AQAP028 8 89,23,052 8,924,004  
29 CQAM2 6 41,60,454 8,066,358  
30 AQW007 3 57,29,669 7,350,653  
31 AQAP004 3 3,03,13,472 3,03,15,075 
32 CQT1 4 35,46,753 14,707,274  
33 AQAP030 11 1,36,71,613 28,412,347  
34 AQAP045 1 3,96,87,395 4,05,67,354 
35 AQAP005 5 52,55,880 52,56,140 
36 AQBA017 1 1,46,20,467 14,626,881  
37 AQAP056 6 31,68,314 54,25,631 
38 AQAP057 7 1,75,25,817 2,57,75,868 
39 AQAP039 1 10,39,086 10,39,868 
40 AQBA007 2 1,98,65,083 2,45,66,182 
41 AQAU001 2 89,84,645 18,249,617  
42 CQT2 3 3,19,45,962 35,710,936  
43 AQW013 12 1,96,28,443 19,628,925  
44 AQAP034 11 57,06,417 57,06,935 
45 AQAP041 2 45,24,663 5,263,536  
46 AQAP055 4 2,01,71,917 2,01,73,040 
47 AQW014 12 1,96,28,443 19,628,925  
48 AQBA022 1 1,46,20,467 14,626,881  
49 AQW008 4 2,41,65,104 24,165,408  
50 AQAU003 12 5,32,909 5,33,313 
51 AQAP007 5 52,55,880 6,700,408  
52 AQAU002 10 2,14,02,080 23,031,714  
53 AQAP031 8 1,39,27,893 2,06,50,257 
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54 AQAP052 2 52,62,891 69,16,662 
55 AQBA008 4 3,16,62,839 32,449,446  
56 AQAP046 10 1,77,94,267 1,98,23,295 
57 AQAP001 1 97,01,793 1,04,91,821 

Sl. No.: Serial number of the unique QTL; QTL ID: Published qtl id; Chr. No.: Chromosome number of the QTL; 
Start: start position of the QTL in terms of base pairs (bp); End: end position of the QTL in terms of length of bps.  
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Table S9. Number of gene samples and sizes of gene sample for each selected gene set for 
GSAQ analysis. 

Sl. No. Selected gene set size (n) Gene sample size (m) No. of gene samples (K) 
1 200 170 50 
2 300 255 50 
3 400 340 60 
4 500 425 60 
5 600 510 60 
6 700 595 60 
7 800 680 70 
8 900 765 70 
9 1000 850 70 
10 1100 935 70 
11 1200 1020 80 
12 1300 1105 80 
13 1400 1190 80 
14 1500 1275 90 
15 1600 1360 90 
16 1700 1445 90 
17 1800 1530 100 
18 1900 1615 100 
19 2000 1700 100 
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Document S5:Guidelines and tutorials for GSQSeq R package 

Inputs for GSQSeq R package 

1. Gene Expression count data/Microarraymatrix X with N genes and M samples/libraries 
2. Class information M-dimensional vector having elements +1 (case) and 0 (control) 
3. QTL dataset Q with rows as K QTL ids and columns as chromosome number, start and stop positions 

of the QTL id. 
4. Gene space (list) dataset with N genes as rows and columns as chromosome number, start and stop 

positions of each gene. 
5. Gene Selection Method to produce Gene Set G. Includes a simple univariate t-test, F-score, 

MultivariateMRMR or Machine learning Support Vector Machine for Microarray gene expression 
data. We use only one probe per gene to prevent overestimation of the NQhits and GSQ statistic(s).  

6. Differential expression analysis methods to produce Gene Set G for RNA-seq count expression data.  
This includes either DESeq2 or edgeR methods. 

7. Size: Size of the selected gene set selected from the expression data. 

R package Installation from local directory: 

Required e1071 R package 
install.packages("…/…path location to the 
file…/GSQSeq_0.1.0.tar.gz", repos = NULL, type = "source") 
library(e1071) 
library(GSAQ) 
library(BootMRMR) 
library(GSQSeq) 
 
**** Data example 
(Download the data from the supplementary files) 
####Example Microarray Data 
Expdata<- read.table(file="MicroarrayData.txt", header = TRUE, 
row.names = 1, sep="\t") 
###Class information 
class <- c(rep(1, 35), rep(0, 35)) 
#####Example QTL data 
QTLdata<- read.table(file="QTLData.txt", header = TRUE, 
row.names = 1, sep="\t") 
####Location of the genes of Microarray data 
MicGeneLoc<- read.table(file="MicroGeneLocation.txt", header = 
TRUE, row.names = 1, sep="\t") 
###Example RNA-seq count data 
CountData<- read.table(file="RNACountData.txt", header = TRUE, 
row.names = 1, sep="\t") 
######Location of the genes in RNA-seq data 
RNAGeneLoc<- read.table(file="RNAGeneLocation.txt", header = 
TRUE, row.names = 1, sep="\t") 
class <- c(rep(1, 12), rep(0, 12)) 
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R package Installation steps from web: 
#get the devtools 
install.packages("devtools") ##install if not 
iibrary(devtool) 
#install GSQSeq R package from web 
install_github("sam-uofl/GSQSeq") 
library(GSQSeq) 
#Gene set analysis with QTL for Microarray Data 
>GSQMicro(ExpData, class, geneLoc, size, QTLData, method) 
 
Arguments: 
ExpData N by M matrix of expression values, rows as genes (N: total number of genes) and columns 

as samples (M: Total samples). 

class Vector of 1 and 0 of length M shows the class labels of samples (1: case and 0: control). 

geneLoc N by 3 dataframe/ matrix (genes/gene ids as row names); where, N represents the number of 
genes in the whole gene set: first coloumnrepresnting the chromosomal location of genes: 
second coloumn representing the start position of genes in terms of basepairs: third coloumn 
representing the end position of genes in terms of basepairs in their respective 
chromosomes. 

size size of the selected gene set to be analyzed with the QTL, e.g. 100, 500, ... 

QTLData Q by 3 dataframe/matrix (qtl names/qtl ids as row names);where, Q represents the number of 
qtls: first coloumnrepresnting the chromosomal location of qtls: second coloumn representing 
the start position of qtls in terms of basepairs: third coloumn representing the end position of 
qtls in terms of basepairs in their respective chromosomes. 

method A character representing the Differential Expression (DE) analysis method to be used for DE 
analysis of expression data. It must be either T-test or F-scores or MRMR or SVM. 

 
######Example data analysis 
>GSAmicro = GSQMicro(ExpData = Expdata, class = class, geneLoc = 
MicGeneLoc, size = 1000, QTLData = QTLdata, method = “MRMR”) 
Summary(GSAmicro) 
 
# Gene set analysis with QTL for RNA-seq Data 
>GSQSeq(CountData, class, geneLoc, size, QTLData, method) 

Arguments 

CountData N by M matrix of reads count data (N: Total number of genes; M: Total number of 
samples), rows represent the genes and columns represent samples/libraries. 

class M by 1 vector of 0 and 1 representing the class labels of the samples, i.e. 1 for case and 0 
for control. 

geneLoc N by 3 data frame/ matrix (genes/gene ids as row names); where, N represents the 
number of genes in the whole gene set: first coloumnrepresnting the chromosomal location 
of genes: second coloumn representing the start position of genes in terms of basepairs: 
third coloumn representing the end position of genes in terms of basepairs in their 
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respective chromosomes. 

size size of the selected gene set to be analyzed with the QTL, e.g. 100, 500, ... 

QTLData Q by 3 data frame/matrix (qtl names/qtl ids as row names);where, Q represents the 
number of qtls: first coloumnrepresnting the chromosomal location of qtls: second coloumn 
representing the start position of qtls in terms of basepairs: third coloumn representing the 
end position of qtls in terms of basepairs in their respective chromosomes. 

method A character representing the Differential Expression (DE) analysis method to be used for 
DE analysis of RNA-seq data. It must be either DESeq or edgeR. 

######Example 
GSASeq<- GSQSeq(CountData = RNACountData, class = class, geneLoc = 
RNAGeneLoc, size = 200, QTLData = QTLdata, method = “edegeR”) 

summary (GSASeq) 

#Finding QTL enriched gene set. 

>GeneQTL(geneset, genelist, qtl) 
 

Arguments 

geneset vector of characters representing the names of genes/ gene ids selected from the whole 
gene list/space by using a gene selection method. 

genelist N by 3 dataframe/ matrix (genes/gene ids as row names); where, N represents the number 
of genes in the whole gene set: first coloumnrepresnting the chromosomal location of genes: 
second coloumn representing the start position of genes in terms of basepairs: third 
coloumn representing the end position of genes in terms of basepairs in their respective 
chromosomes. 

qtl Q by 3 dataframe/matrix (qtl names/qtl ids as row names);where, Q represents the number 
of qtls: first coloumnrepresnting the chromosomal location of qtls: second coloumn 
representing the start position of qtls in terms of basepairs: third coloumn representing the 
end position of qtls in terms of basepairs in their respective chromosomes. 
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Other Materials 

Supplementary Material 1. Example datasets for GSQSeq R package. 

Supplementary Material 2. GSQSeq R package. 

 


