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Abstract: Traditionally, the study of quantum key distribution (QKD) assumes an omnipotent
eavesdropper that is only limited by the laws of physics. However, this is not the case for specific
application scenarios such as the QKD over a free-space link. In this invited paper, we introduce the
geometrical optics restricted eavesdropping model for secret key distillation security analysis and
apply to a few scenarios common in satellite-to-satellite applications.
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1. Introduction

Quantum key distribution is known to guarantee unconditional security. The first
QKD protocol, BB84, was developed in 1984 [1], which uses the polarization states of single
photons to safely distribute keys. This was also known as the first discrete variable (DV)-
QKD. Different protocols have since been studied, such as device-independent protocols
that study the security with compromised apparatus [2–5], high dimensional protocols that
exploit high dimensional degrees of freedom to increase the key rate [6–10] and decoy state
protocols [11–13] that use decoy states against the photon-number-splitting attack [14].
Another major category in the study of QKD protocols, the continuous variable (CV)
protocols [15,16] that encode keys into CV observables of carrier fields [17], are known to
be more easily implementable for their compatibility with current communication devices
instead of relying on single-photon generation and detection like most DV protocols.

Generally, in this paper, we assume that Alice uses a multi-photon source governed by
the mean photon number without photon-number-resolving detectors so that she is limited
in knowing whether she is transmitting a multi-photon wave packet, for example, if she
only has a Geiger mode detector that clicks when one or more photons are detected. For
security analysis of the quantum key distribution under these assumptions, conventionally,
an omnipotent eavesdropper (Eve) that can gather information from the multi-photon wave
packets transmitted from Alice to Bob by collecting every photon that does not arrive at
Bob’s receiver is assumed [18–25]. However, this is not the case for some specific application
scenarios. For example, it would be reasonable to assume that the eavesdropper’s (Eve’s)
power collection ability is limited due to the size of her aperture in an optical wireless
channel from Alice to Bob. In [26,27], geometrical optics restricted eavesdropping analysis
was proposed, considering the reasonably limited power collection ability of Eve. In [28–33],
some of the applications of this restricted Eve model were introduced.

In this invited paper, we present some of the applications of the geometrical optics
restricted model. In Section 2, we briefly introduce the power-collection-restricted eaves-
dropping model and give the lower and upper bound expressions. In Section 3.1, we
showcase geometrical optics restricted eavesdropping analysis with a case where the eaves-
dropper has an aperture of a limited size in the same plane as Bob’s while investigating the
exclusion zone as one of Bob’s defense strategies. In Section 3.2, we further assume that
Eve’s aperture can be dynamically positioned and provide the results while optimizing this
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eavesdropping strategy. We conclude that the geometrical optics restricted eavesdropping
model is suitable for multiple application scenario analysis.

2. Geometrical Optics Restricted Eavesdropping Model

As is illustrated in Figure 1, instead of assuming that Eve collects all the photons
outside of Bob’s receiver, only a fraction κ of them is collectable by Eve, denoted here as a
wiretap channel with a κ-transmissivity beamsplitter. Here, η is the Alice-to-Bob channel
transmissivity, µ is the input mean photon number per mode on Alice’s side, and ne is
the noise mean photon number per mode on Eve’s side. ψAA′ and ψEE′ in Figure 1 are
entanglement pairs. Alice would keep mode A and send mode A′ to Bob, and in the most
general case, Eve would also use entanglement pairs to eavesdrop, retaining mode E and
sending mode E′ into the channel. In [26], the lower bound on the achievable key rate for
direct and reverse reconciliation is shown below:

K→ ≥ βg(ne(1− η) + ηµ)−∑i g

(
νER

yi
− 1

2

)
− βg(ne(1− η)) + g(ne(1− ηκ)), (1)

K← ≥ βg(µ)−∑
i

g

(
νER

yi
− 1

2

)
− βg

(
µ− ηµ(1 + µ)

1 + ne − neη + ηµ

)
+ ∑

i
g

(
νER

yi
− 1

2

)
, (2)

g(x) = (x + 1) log2(x + 1)− x log2 x (3)

with detailed expressions of νER
yi

available in [26]. Here, β is the reconciliation efficiency,
which is set to β = 1 throughout this paper.
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The upper bound in a pure loss channel (ne = 0) is shown to be [26]

K ≤ log2
η + κ(1− η)

κ(1− η)
, (4)

while the upper bound in a thermal noise channel does not have a closed form expression.
Detailed calculations can be found in Appendix A of [26].

3. Applications on Satellite-to-Satellite Secret Key Distillation

In this section, we study some applications of the geometrical optics restricted model
analysis that would be common in satellite-to-satellite links where Eve’s collecting ability
would be naturally limited due to the radius of her receiver aperture, which usually ranges
from centimeters to decimeters for traditional free-space communication. If we take existing
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space applications into account for an upper-bounding estimation of Eve’s aperture size,
the Giant Magellan Telescope, one of the largest optical observatories, has a primary mirror
of a 12.5-m radius [34]. Other known aperture sizes of satellite-based applications are
much smaller, such as the 1.2-m-radius primary mirror for the Hubble Space Telescope [35]
and the 20-cm-radius aperture for NASA’s “Wide-field Infrared Survey Explorer” infrared
telescope [36].

We analyze both the communication parties’ and Eve’s strategy by starting with
a defense strategy from Bob’s side called an exclusion zone, under the aforementioned
assumptions and considering the case where Eve’s aperture is in the same plane with Bob’s
in Section 3.1. Then, in Section 3.2, we move forward from that and assume that Eve’s
aperture can be dynamically positioned, concluding Eve’s strategy for eavesdropping.
In this section, we assume that a Gaussian beam with a beam waist W0 and wavelength
λ = 1550 nm is transmitted. The space temperature is set to T = 3 K, and we calculate the
noise mean photon number using the black body radiation equation:

ne =
1

e
h f
kT − 1

, (5)

where h is the Planck constant, f is the transmission center frequency, and k is the Boltzmann
constant. We then calculate the power transmitted by Alice PAlice, the power received by
Bob PBob, the power received by Eve PEve, and the channel transmissivity η, and the
restriction factor on Eve κ can be expressed as

η =
PBob
PAlice

, (6)

κ =
PEve

Ptotal(1− η)
, (7)

In this section, we calculate the lower bound as the maximum of the direct reconcilia-
tion lower bound and the reverse reconciliation lower bound.

3.1. Bob’s Defense Strategy: Exclusion Zone

In this subsection, we introduce the problem set-up of one of the most straightfor-
ward defense strategies of the communication parities: the so-called exclusion zone. In
principle, the closer Eve is to the beam transmission axis from Alice to Bob, the more likely
the legitimate communication parities would detect the eavesdropper’s presence (e.g.,
with a naïve approach such as a visible or infrared telescope or even radar to detect the
eavesdropper’s presence and abort communication if a possible eavesdropper is detected
within a certain range to the communication parities). In free-space channels such as the
satellite links, it is also possible for Bob to have opaque material around his receiver to
absorb any photons that might have arrived outside of his receiver’s aperture, preventing
them from further propagation and possibly ending up in Eve’s receiver aperture. As is
illustrated in Figure 2, the exclusion zone is denoted with a dashed circle around Bob’s
receiver, excluding potential eavesdroppers to collect photons that arrive in this region.
By definition, Bob’s aperture area is also part of the exclusion zone, since the photons
arriving at Bob’s aperture would not be collectable by Eve. Here, more specifically, we
say that Bob is setting up an exclusion zone if the area of the exclusion zone (Aex) is larger
than his receiver aperture area (ABob or Ab). Other specified parameters include L being
the transmission distance and AAlice (Aa) and AEve (Ae) being the area of Alice’s aperture
(radius ra) and Eve’s aperture (radius re), respectively. The radii of Bob’s aperture and the
exclusion zone are denoted as rb and rex (rex ≥ rb). Here, the limited size of Eve’s aperture
is placed in the same plane as Bob’s, since that would be the worst-case scenario for the
purpose of our study under this exclusion zone assumption if Eve is not allowed between
the Alice-to-Bob line of sight.
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Figure 2. Limited size aperture of Eve in the same plane as Bob’s. Here, Bob is setting an exclusion
zone around his receiver as a defense strategy.

To start with, we set rex = rb (no additional exclusion zone) and investigate how Eve’s
aperture size would affect the achievable secure key rate lower bound (LB) and upper
bound (UB), as shown in Figure 3. Here, we can see that under these parameters, the lower
bound was quite close to the upper bound, which gave us the capacity in this scenario.
As Eve’s aperture size increased, the achievable rate went down and saturated but still
outperformed the unrestricted case capacity. The reason for this convergence is that the
transmitted beam intensity was the strongest at its center and weakened fast in the outer
regions. As such, up to some point, increasing Eve’s aperture size would only be able to
gather photons from the regions far away from the beam center, thus making it ineffective
in increasing Eve’s advantage. As a result of that, in the figure below, we only set Eve’s
aperture radius to be 10 cm, equal to ra and rb, for a fair comparison.
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In Figure 4, we set the exclusion zone radius to be rex = 15 cm and 20 cm to compare
the achievable rate lower bounds (LB) and upper bounds (UB) for the case without an
additional exclusion zone. Here, we can see that with an aperture of a limited size on Eve’s
side, the achievable secure key rate outperformed that of the unrestricted case. The lower
bound and upper bound were quite close, which gave the range for the capacity. We can
also see that an exclusion zone helped increase the key rate when the transmission distance
was not too large. However, when the transmission distance was sufficiently large, the
lower and upper bounds became constant, as proved in [30], when the collecting ability of
Bob and Eve became proportional to their aperture sizes:

lim
L→∞

PEve
PBob

=
Ae

Ab
, (8)
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distance. The unrestricted case (infinite size aperture on Eve’s side with rex = rb) is also included.
Here, W0 = ra = rb = re = 10 cm.

Here, we can see that an exclusion zone would not affect this saturation very much, as
at a large transmission distance, the collecting ability of Bob and Eve became proportional
to their aperture sizes as in Equation (8) when the area of an exclusion zone was not
significantly larger than the receiver aperture sizes of Bob and Eve.

3.2. Eavesdropper’s Strategy: A Dynamically Positioned Aperture

In this subsection, we introduce and analyze one of the eavesdropper’s possible
strategies with a dynamically positioned aperture, which would apply to the geometrical
optics restricted model, where Eve could dynamically position her aperture behind Bob’s.
As is illustrated in Figure 5, AAlice(Aa), ABob(Ab), and AEve(Ae) are the area of Alice’s
aperture (radius ra), Bob’s aperture (radius rb), and Eve’s aperture (radius re), respectively.
LAB is the distance between Alice’s and Bob’s aperture planes, while LBE is the distance
between Bob’s and Eve’s aperture planes. D is the distance between Eve’s aperture center
and the beam propagation line-of-sight path.
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As was proven in Equation (44) of [33], when LAB was sufficiently large, the optimal
strategy for Eve was to set LBE = LAB and D = 0. Thus, we set LBE = LAB, D = 0 and
obtained the lower and upper bounds on the achievable secure key rate as in Figure 6. It
is shown that in this case, the rate increased with the increase in W0 as this decreased the
divergence angle, making the beam more focused on Bob’s aperture plane. We can also
see that Eve suppressed Alice and Bob’s achievable key rate compared with the similar
distance range in Figure 4 by applying this strategy.
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4. Discussion

In this invited paper, we briefly introduced the geometrical optics restricted model
and presented a few cases applying this model to some common cases in free-space optical
links such as the satellite-to-satellite channel. We showcased the achievable secure key rate
lower and upper bounds and compared them to the unrestricted case. Furthermore, we
investigated the strategy from both the communication parties’ side and Eve’s side within
this model.
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