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Abstract: We present a hypothetical argument against finite-state processes in statistical language
modeling that is based on semantics rather than syntax. In this theoretical model, we suppose
that the semantic properties of texts in a natural language could be approximately captured by a
recently introduced concept of a perigraphic process. Perigraphic processes are a class of stochastic
processes that satisfy a Zipf-law accumulation of a subset of factual knowledge, which is time-
independent, compressed, and effectively inferrable from the process. We show that the classes
of finite-state processes and of perigraphic processes are disjoint, and we present a new simple
example of perigraphic processes over a finite alphabet called Oracle processes. The disjointness
result makes use of the Hilberg condition, i.e., the almost sure power-law growth of algorithmic
mutual information. Using a strongly consistent estimator of the number of hidden states, we show
that finite-state processes do not satisfy the Hilberg condition whereas Oracle processes satisfy the
Hilberg condition via the data-processing inequality. We discuss the relevance of these mathematical
results for theoretical and computational linguistics.

Keywords: statistical language modeling; Zipf’s law; Hilberg’s hypothesis; algorithmic mutual
information; hidden Markov processes; perigraphic processes

1. Introduction

The goal of this article is to show that finite-state statistical language models can be
refuted using a hypothetical argument that is based on semantics rather than syntax. This
semantic argument is rooted in recent theoretical research in information theory. Even if
some hypotheses thereof do not pertain to natural language, we suppose that our reasoning
may still be appealing enough for computational and theoretical linguistics and it points
out interesting directions of future research. In the following, first, we sketch the historical
context of our research line (Section 1.1) and, next, we describe the particular technical
aims of this article (Section 1.2).

1.1. Historical and Conceptual Research Context

In the famous critique of Burrhus Skinner’s book [1], Noam Chomsky refuted finite-
state models for human language as implausible since they could not express context-free
syntax with central embeddings of an unbounded depth [2–5]. In turn, this refutation
produced doubt among linguists about whether information theory and statistical language
modeling are relevant for language studies and stimulated a fast growth of purely formal
linguistics [6]. Probabilities were relegated mostly to natural language engineering, where
some completely new ideas were developed and gradually radiated back to linguistics.
Focusing specifically on the innovations of language engineering, probabilistic finite-state
models were initially applied for speech recognition [7,8] and part-of-speech tagging [9], to
be followed by probabilistic context-free grammars for sentence parsing [10–12] and were
replaced by long short-term memory (LSTM) neural networks [13], word embeddings [14],
and transformers [15], which achieved an apparently human-like quality of text prediction
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and generation [16–18]. All of this progress is breath-taking, and language theories can not
keep up with these technical achievements. We can be concerned with whether there is a
fundamental statistical theory of language, for the successes of neural statistical language
models suggest that the most accurate description of language is of a probabilistic nature.
However, can there be a language theory more concise and more transparent than a neural
network with millions or even billions of parameters?

Actually, we should entertain the idea that there is no finite theory of human language
more seriously in the obvious and narrow sense that we constantly update the neural
network wiring of our brains. What may exist is rather a universal language learning
mechanism—though not necessarily exactly one proposed by Chomsky [19]—that is up-
dated with the unbounded influx of stimuli and random drift. In particular, an important
phenomenon that may not have caught enough attention in the formally oriented linguistic
literature is the interaction between the language theories and the potential unboundedness
of factual knowledge conveyed by means of language. It is an assumption of some linguis-
tic theories that the description of the core language system can be sharply delineated from
the factual knowledge expressed in texts. However, when we perform statistical language
modeling for speech recognition or machine translation, we cannot afford to ignore factual
knowledge. Taking factual knowledge into account is essential for a good performance
of respective computer applications [20]. Statistical modeling of texts, called deceptively
statistical language modeling, requires that we model not only language as a system but
also things that are expressed in language, and these seem to come as a large number of
rare events [21,22]. Under Zipf’s law [23,24], roughly half of the vocabulary of a text are
hapax legomena, i.e., words that appear only once. This skewness of distribution may also
apply to concepts or facts.

In our opinion, the fields of computational and theoretical linguistics lack a corre-
sponding baseline probabilistic model of an unbounded accumulation of factual knowledge;
see also Bar-Hillel and Carnap [25] for some fairly old ideas with regard to linking formal
semantics and information theory, and compare it with Claude Shannon’s disregard for
semantics in information theory [26]. Having such an idealized model, we could try to
explain and better understand why certain kinds of language theories have to grow un-
boundedly as we have more and more data and why statistical language models have to be
continually trained. We want to argue that such a model can be provided by accumulated
developments in information theory and quantitative linguistics. The core idea is to operate
with an idealized stochastic model of the distribution of factual knowledge in texts, known
as perigraphic processes.

Roughly speaking, perigraphic processes introduced in [27], whereof simple examples
are Santa Fe processes [28,29] and whereof some less trivial examples may be random
hierarchical association (RHA) processes [30], are stationary stochastic processes for which
effectively inferrable mentions of independent elementary facts are distributed according
to the Zipfian power laws. By the Zipfian power laws, we collectively understand the
Zipf–Mandelbrot law for the word rank-frequency distribution [23,24] and the Herdan–
Heaps law for the growth of the number of word types [31–34], where the former implies
the latter, cf. [35] and [36] (Section 1.3). To make our model mathematically precise, for
each perigraphic process, we assume that elementary facts are bits (binary symbols) of
a fixed algorithmically random sequence, i.e., an infinite sequence of bits in which the
shortest description is the sequence itself [37,38], and there exists a computable function
that allows us to ultimately infer elementary facts from any sufficiently long subsequence
of the process [27,29].

In plain words, perigraphic processes define a model of factual knowledge that is
infinite, time-independent, compressed losslessly as much as possible, and effectively
described in random texts at a power-law rate. Namely, the number of initial bits of factual
knowledge that are correctly described in a text of length n equals roughly nβ+ , where
β+ ∈ (0, 1) is a free parameter, such as in the Herdan–Heaps law for the growth of the
number of word types. Each elementary fact, i.e., each bit of factual knowledge, is described
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infinitely often in the infinite random text generated by a perigraphic source, but the facts
located earlier in the sequence of factual knowledge are described more frequently, roughly
according to the Zipf–Mandelbrot law. The function that computes facts from finite sections
of the infinite text, called the knowledge extractor, can be quite arbitrary, but within our
model, we assume that it is computable. Making connections to natural language, we can
regard the knowledge extractor as a mathematical model of a sort of language competence.

An important open problem in the theory of perigraphic processes is whether the men-
tioned power-law exponent β+ can be consistently estimated. Namely, the open question
is whether there exists a computable function of finite texts that returns some estimates
converging to β+ almost surely. If such a function exists, then we could empirically verify
whether natural language is a perigraphic process or, rather, to what degree it resembles a
perigraphic process. However, regardless of the uncertain success of this research project,
we stress that there are some other measurable side effects of perigraphicness. Namely,
when an algorithmically random sequence is described repetitively in texts, then the algo-
rithmic mutual information between the previous text and the forthcoming text must grow
unboundedly as we increase the text length. Moreover, since we can estimate the algorith-
mic mutual information to a certain extent, e.g., using universal codes [39], this growth
effect should be approximately empirically measurable. Thus, for any stationary streams of
data that do not satisfy a power-law growth of computable estimates of algorithmic mutual
information, we can effectively tell that they are not perigraphic.

In this way, we proceed to another important topic, namely, Hilberg’s hypothesis.
The proponent of this hypothesis was the German engineer Wolfgang Hilberg [40], who
replotted the famous guessing estimates of conditional entropy for English by Claude
Shannon [41] in the doubly logarithmic scale. In the replotted graph, Hilberg’s eyes saw a
straightish line, meaning a hypothetical power-law growth of block entropy. Hilberg’s hy-
pothesis of the power-law growth of entropy has dwelled on the peripheries of mainstream
language sciences, where it gradually matured. The idea was first seriously considered
by physicists [42–45], who reformulated Hilberg’s hypothesis as a power-law growth for
block Shannon mutual information—getting rid of the dubious asymptotic determinism of
the statistical language model. We took up the topic in 2000, and we devoted to it twenty
years of mathematical research resumed in the book in [36]; see also a more empirically
oriented monograph by Tanaka-Ishii [46]. In parallel, suggestive upper bounds for the
power-law growth of mutual information and partial evidence for infinite excess entropy,
i.e., the divergent mutual information between the past and the future [45], were provided
by several independent large-scale computational experiments [47–53]. For languages as
diverse as English, French, Russian, Chinese, Korean, and Japanese, the upper bounds for
mutual information grow universally as roughly n0.8 [46,47]. Thus, all of these languages
seem equally hard to learn to predict.

The most important achievement of our mathematical theory of Hilberg’s hypothesis
are so-called theorems about facts and words, cf. [27,29,54] and [36] (Section 8.4), that
connect this hypothesis with Zipfian power laws for words and for bits of the compressed
factual knowledge called facts. The theorems about facts and words make a quantitative
connection between the unbounded accumulation of factual knowledge (measured by the
number of distinct inferrable facts) and the unbounded growth of some primitive linguistic
theories (measured by the total length of distinct discernible words, cf. [55]). According to
the theorems about facts and words,

• The expected number of distinct binary facts that can be learned from a finite text is
roughly less than the mutual information between two halves of the text.

• The mutual information between two halves of the text is roughly less than the
expected total length of distinct words that can be found in the text.

These statements pertain to texts generated by arbitrary stationary stochastic sources over
a finite alphabet. They are purely mathematical theorems but with a linguistic twist. The
rough inequalities are understood as precise inequalities of so-called Hilberg exponents.
Not only facts but also words are understood as effectively inferrable. Namely, words
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can be detected in the text via the prediction by a partial matching (PPM) universal code
[56–59] or via shortest grammar-based compression [29,60,61], which roughly agrees with
the orthographic parsing of texts into words for human languages [55].

Using the theorems about facts and words, perigraphic processes not only satisfy
Hilberg’s hypothesis but also satisfy Zipfian power laws for words. This result shows not
only that Hilberg’s hypothesis can be connected on a theoretical level with some abstract
semantics but also that the abstract semantic properties of a random text imply double ar-
ticulation of the text, i.e., discreteness of words, which is the rudiment of structures studied
by linguists. In consequence, we suppose that perigraphic processes are a promising class
of abstract statistical language models in which linguistically interpretable properties can
be investigated deductively and partly motivated empirically.

1.2. Aims and Organization of the Article

Having made such a long historical and conceptual introduction, let us state the
particular aim of this article. Continuing our line of research, in this article, we solve
open problem no. 4 from the conclusion of the book in [36]. The conjecture was that
no finite-state process is perigraphic, even if the finite-state process has uncomputable
transition probabilities. We show that this proposition holds indeed, which sheds another
beam of light onto the debate between Skinner and Chomsky. In the very beginning of our
acquaintance with Hilberg’s hypothesis, we realized that it can be also used for refuting
finite-state models for human language. The reason for this is that excess entropy, i.e., the
mutual information between the infinite past and the infinite future [45], is finite for finite-
state models by the data-processing inequality, whereas it is obviously infinite if Hilberg’s
hypothesis is satisfied. This statement holds straightforwardly in the framework of the
Shannon information theory, which assumes that we have a definite statistical language
model, i.e., a distribution of a stochastic process.

However, a large part of our later theorizing dealt with technical and conceptual
problems around the ergodic decomposition of the statistical language model [62,63]. To
make the long story short, it is natural to assume that the subjective probabilities in our
minds contain certain priors and, hence, that they are computable but nonergodic. By
contrast, the resulting relative frequencies in the unbounded stream of our speech are
typical ergodic components of subjective probabilities, and hence, they are ergodic but
uncomputable. This distinction results in two complementary versions of an idealized
statistical theory of language: one seen from the perspective of a language user and
another seen through the lens of a fixed generated text. Whereas from the language
user’s perspective Shannon information theory seems sufficient, from the perspective of a
particular text, we need to apply algorithmic information theory [38,64,65]. Not everything
that can proven easily in Shannon information theory can be proven as easily in algorithmic
information theory. This is exactly the case with refuting finite-state language models.

Thus, as the main goal of this article, we show that Hilberg’s hypothesis and the
accumulation of factual knowledge at a power-law rate are incompatible with finite-state
models also in the algorithmic framework. This solves open problem no. 4 from the
conclusion of the book in [36], i.e., we show that no perigraphic process can be a finite-state
process—even if we admit uncomputable transition probabilities. To deal with these issues,
we apply techniques inspired by the aforementioned theorems about facts and words—
manifested most prominently in the proofs of Theorems 5 and 7. In this way, we provide
a complete argument against finite-state models, which is orthogonal to the Chomskyan
argument, since it is more related to an idealized model of semantics than to an idealized
model of syntax.

As a secondary goal of this article, we also present a simple example of a perigraphic
process over a finite alphabet, called Oracle processes. The first constructed examples
of a perigraphic process are the Santa Fe processes [28,29], which are even simpler but
constitute processes over a countably infinite alphabet. In Reference [66] (see also the book
in [36]), we have provided quite a complicated encoding of Santa Fe processes in a finite
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alphabet. By contrast, Oracle processes constitute a much simpler encoding, of which the
construction applies the monkey-typing explanation of Zipf’s law by Benoît Mandelbrot
and George Miller [24,67].

Ironically, the composition of this article follows a central embedding: We delve
gradually into mathematical considerations and eventually emerge from them to come back
to linguistic interpretations towards the end. To be concrete, we begin with recalling some
established classes and examples of discrete stochastic processes in Section 2. Subsequently,
we discuss Hilberg’s hypothesis at length in Section 3. In Section 4, we show that no
finite-state process satisfies Hilberg’s hypothesis. By contrast, in Section 5, we discuss that
all perigraphic processes satisfy Hilberg’s hypothesis. To exhibit a simpler example of
such processes over a finite alphabet, we construct so-called Oracle processes in Section 6.
In Section 7, we discuss the relevance of these mathematical results for theoretical and
computational linguistics. Section 8 concludes the article. All proofs of theorems are
deferred to Appendix A. Salient mentions of important formal concepts are typeset in
boldface. Intentionally, we try to write this article in a more popular fashion than an
average mathematical paper to reach some audience in language research.

2. Some Classes of Processes

To provide an introduction for readers who are less versed in measure-theoretic
probability, we begin with discussing some basic classes and examples of discrete stochastic
processes. We may imagine those as a progression of rudimentary statistical language
models, i.e., the conditional probability distributions that predict the next letter or the next
word given a sequence of previous ones. Since we work with discrete distributions, we
can avoid measure theory in the beginning but the reader should be aware that it exists
and that it takes care of what is not explicitly explained or even noticed during the first
reading, cf. [36] (Chapters 2–4) and [68]—especially in the treatment of stationary and
ergodic processes.

Within our framework, stochastic processes are infinite sequences of discrete random
variables, indexed by natural numbers (N) or by integers (Z). The linguistic interpretation
is that the indices point to specific symbols in an idealized random text or a corpus of
texts, which extends toward an infinite future (N) or towards both an infinite future and an
infinite past (Z). To specify the probability measure on such infinite sequences of symbols,
it is enough to specify all finite-dimensional distributions—or conditional distributions
of a single symbol given any sequence of previous symbols. In the following, notation xk

j
denotes string xjxj+1...xk of particular symbols. The same convention applies to blocks
of random variables Xk

j := XjXj+1...Xk, which are, technically speaking, functions from
elementary events to strings of particular symbols.

Let us proceed to defining some classes of discrete processes. Process (Xi)i∈N over a
countable alphabet X is called a Markov process when the conditional probability of the
next symbol xi depends only on the directly preceding symbol xi−1, i.e.,

P(X1 = x1) = π(x1), (1)

P(Xi = xi|Xi−1
1 = xi−1

1 ) = σ(xi|xi−1) (2)

for certain functions π : X → [0, 1] (initial distribution) and σ : X× X → [0, 1] (transi-
tion matrix). A Markov process such that σ(xi|xi−1) = π(xi) is called an IID (indepen-
dent identically distributed) process. Whereas IID processes are central to the theory
of mathematical statistics, Markov processes exhibit some rudimentary dependence—
exactly only on the directly preceding observation—and were in fact proposed by Andrey
Markov [69,70] as some primitive statistical language models.
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By contrast, process (Xi)i∈N over a countable alphabet X is called a hidden Markov
process with respect to a Markov process (Yi)i∈N over a countable alphabet Y when the
conditional probability of the next symbol xi depends only on the hidden state yi, i.e.,

P(Xi = xi|Yi
1 = yi

1, Xi−1
1 = xi−1

1 ) = ε(xi|yi) (3)

for a certain function ε : X × Y → [0, 1] (emission matrix). Elements of X are called
symbols, whereas elements of Y are called (hidden) states. Hidden Markov processes were
the state-of-the-art of statistical language modeling for speech recognition and part-of-
speech tagging in the 1990s [7–9,12]. As we can see, the dependence between a symbol xi
and its past is bottlenecked by the hidden state yi, which in turn is a result of a Markov
process. The modeling power of hidden Markov processes depends on what we assume
about the hidden states and about their structure. When these hidden states are closer
to mental states, we may suppose that the resulting process of emitted symbols is closer
to human utterances. In practice, we consider much simpler models. In particular, a
finite-state process is such a hidden Markov process that the set of states Y is finite. By
contrast, a unifilar process (Xi)i∈N with respect to a Markov process (Yi)i∈N is such a
hidden Markov process that

Yi+1 = τ(Yi, Xi) (4)

for a certain function τ : Y×X→ Y (transition table). Unifilar processes are a probabilistic
version of deterministic automata in automata theory. To specify a unifilar process, it
suffices to fix initial distribution π, emission matrix ε, and transition table τ, since transition
matrix σ follows from them.

To be concrete, let us discuss some further examples of stochastic processes. First, n-th
order Markov processes, called also (n + 1)-gram models, are unifilar processes such that
Yi = Xi−1

i−n. A subclass of these processes with n = 2, called trigram models, constitutes
particularly effective statistical language models, which were applied in computational
linguistics of the 1990s [7–9,12]. Another important examples are computable processes,
which are processes such that function w 7→ P(X|w|1 = w) is computable. It can be seen that
the class of these processes is the class of hidden Markov processes with countably infinite
X and Y and with computable functions π, σ, and ε, since it suffices to state that Yi = Xi−1

1 .
The last example shows that hidden Markov processes can model pretty much anything if
we do not impose a finite number of hidden states or a particular structure of the transition
and emission matrices.

The post-Chomskyan linguistics refuted the class of finite-state processes on the
account that they cannot model a context-free syntax with central embeddings of an un-
bounded depth [2–5]. This raised some doubt in the general utility of stochastic processes
for theoretical linguistics. However, the class of discrete stochastic processes is much richer
than simply finite-state processes. There are of course probabilistic context-free gram-
mars (PCFGs), a model useful in the parsing of sentences in natural language [10–12,71].
However, PCFGs define probability distributions on finite trees or finite strings rather
than infinite sequences. By contrast, here, we are interested in a model of text that can
be unboundedly extended with time. Formally, let us define the hidden Markov order of
process (Xi)i∈N as the number of states in its minimal hidden Markov presentation,

MHM := inf{|Y| : (Xi)i∈N is hidden Markov with respect to (Yi)i∈N} (5)

with the convention that the infimum of the empty set is infinite. That is, we have equality
MHM = ∞ if and only if (Xi)i∈N is not a finite-state process. Analogously, we can de-
fine the unifilar Markov order of process (Xi)i∈N as the number of states in its minimal
unifilar presentation,

MU := inf{|Y| : (Xi)i∈N is unifilar with respect to (Yi)i∈N}, (6)
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cf. [72–74]. We have inequality MU ≥ MHM. The minimal unifilar presentation of a
process, called the ε-machine, is unique and given by the equivalence classes of conditional
probability of infinite future given infinite past [72,73]. There exist simple processes such
that MU = ∞ and MHM < ∞ [74], e.g., the Golden Mean process [45] or the Simple
Nonunifilar Source [75]. In fact, these two processes have only two hidden states in
their minimal nonunifilar presentations but their minimal unifilar presentations have
uncountably many hidden states. These processes are very simple examples of processes
with MU = ∞ but they have no linguistic interpretation.

In the second turn, we can propose another simple example of a process that does not
have a finite-state presentation, even a nonunifilar one, and can be considered an idealized
model of the unbounded accumulation of randomly accessed factual knowledge. As we
mentioned in Section 1, we model the factual knowledge as a compressed infinite sequence
of bits that becomes gradually revealed in text. There are two obvious choices: We can
consider a fixed sequence (zk)k∈N where zk ∈ {0, 1}, or putting on a Bayesian hat, when we
do not know this sequence a priori, we can model the factual knowledge as an IID process
(Zk)k∈N over alphabet {0, 1} with the uniform distribution, i.e., P(Zk = 0) = P(Zk = 1) =
1/2. We can consider the Santa Fe processes, which are sequences of random variables
(Xi)i∈N that consist of either pairs

Xi = (Ki, ZKi ) (7)

or pairs

Xi = (Ki, zKi ), (8)

where (Ki)i∈N is an IID process over alphabet N with Zipf’s distribution P(Ki = k) ∝ k−α

for a parameter α > 1. These processes were discovered by us in August 2002 during our
visit at the Santa Fe Institute, but they were first published in [28,29].

From a linguistic point of view, we can interpret Santa Fe processes as a toy model of
a stochastic process that conveys an infinite number of elementary meanings in a repetitive
way. Namely, these processes can be interpreted as sequences of random statements
Xi = (k, z) that assert for a randomly chosen index k that the kth fact, i.e., the kth item of
the factual knowledge, equals z: Zk = z or zk = z. This stochastic description, although
indices Ki are scattered at random, is never contradictory: If statements Xi = (k, z) and
Xi = (k′, z′) describe the same fact, i.e., k = k′, then both statements assign the same
value to it, i.e., z = z′. Moreover, since random variables (Ki)i∈N constitute an IID process
and P(Ki = k) > 0 for all k ∈ N, ultimately, every fact is described in a sufficiently long
text Xn

1 almost surely. “Almost surely” is a mathematical quantifier that means “with
probability 1”. Moreover, the Zipf distribution of random variables Ki allows us to deduce
a stronger property: The number of distinct facts Zk or zk described by a random text Xn

1
is asymptotically proportional to n1/α almost surely [36]. That is, the facts follow a sort
of Herdan–Heaps’ law, originally formulated as a power-law growth of the number of
distinct words [31–34]. A generalization of this property is called perigraphic processes
in Section 5, applying the concept of Hilberg exponents developed in Section 3 and the
notion of algorithmic randomness. What is interesting for linguistic discussions is that
the non-IID Santa Fe processes (7) are not finite-state processes. We have MHM = ∞ for
them since the Shannon mutual information between the past and future is infinite, as we
discuss in Section 3. In this article, we show that perigraphic processes, such as the IID
Santa Fe processes (8), cannot be finite-state processes either.

Looking for more realistic models of language, we can proceed in the hierarchy of
discrete stochastic processes further. Two important notions in the theory of stochastic
processes are stationary and ergodic processes. Usuallym they are defined by applying
measure theory, but for discrete processes, the respective conditions can be expressed using
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finite-dimensional distributions. In particular, process (Xi)i∈N is a stationary process if
and only if the probabilities are shift invariant, i.e.,

P(X|w|1 = w) = P(Xt+|w|
t+1 = w) (9)

for all strings w ∈ X∗ and shifts t ∈ N. Every one-sided stationary process (Xi)i∈N can
be extended to the stationary sequence of random variables (Xi)i∈Z extending into two
directions. An important result, the Birkhoff ergodic theorem states that, for a stationary
process (Xi)i∈N, relative frequencies converge almost surely, i.e., if we define event

ΩS :=
⋂

w∈X∗

(
lim inf

n→∞

1
n

n−1

∑
t=0

1
{

Xt+|w|
t+1 = w

}
= lim sup

n→∞

1
n

n−1

∑
t=0

1
{

Xt+|w|
t+1 = w

})
(10)

then P(ΩS) = 1, cf. [36] (Section 4.2) and [76,77]. Moreover, a stationary process (Xi)i∈N
is an ergodic process if and only if the relative frequencies of all strings converge to their
probabilities almost surely, i.e., when P(ΩP) = 1 for

ΩP :=
⋂

w∈X∗

(
lim

n→∞

1
n

n−1

∑
t=0

1
{

Xt+|w|
t+1 = w

}
= P(X|w|1 = w)

)
. (11)

The Birkhoff ergodic theorem is a generalization of the law of large numbers for IID
processes. There are a few more effective criteria of ergodicity, cf. [77] and [36] (Section 4.3).
In particular, it can be shown that the non-IID Santa Fe processes (7) are stationary but not
ergodic, whereas the Santa Fe processes (8) are IID and, hence, ergodic.

Not all stochastic processes are stationary, ergodic, computable, or perigraphic. It is
important to note that these conditions interact not only with each other but also with
a particular interpretation that we ascribe to the concept of probability, as applied to
language modeling in particular. There are two main distinct interpretations of probability:
subjective and objective—as we call them in this paper. The subjective probabilities
represent subjective odds of a language user—or of an effective predictor, speaking more
generally. As such, the subjective probabilities should be computable, but they can be
nonergodic—since there may be some prior random variables in the mental state of a
language user such as variables Zk in the Santa Fe process (7). Upon the conditioning of
subjective probabilities on the previously seen text, the prior random variables becomes
more and more concentrated on some particular fixed values. This concentration process
can be equivalently named the process of learning of the unknown parameters. The
objective probabilities represent an arbitrary limit of this learning process, where all prior
random variables become instantiated by some fixed values such as values zk in the Santa
Fe process (8). Miraculously, it turns out that objective probabilities of strings are exactly
the asymptotic relative frequencies of these strings in the particularly generated infinite
text. As such, the objective probabilities should be ergodic by the Birkhoff ergodic theorem
if the generating subjective odds form a stationary process but they can be uncomputable
since the limit of computable functions need not be computable.

This difference in desiderata for subjective (computable but not ergodic) and objective
(ergodic but not computable) statistical language models is formally reconciled by the
ergodic decomposition theorem, which says that, for any stationary distribution P, there
exists a unique prior ν supported on stationary ergodic distributions such that

P(A) =
∫

F(A)dν(F) (12)

for all events A, cf. [36] (Section 4.4) and [62,63,77]. That is, the computable subjective
distribution P is the average of ergodic objective distributions F taken with a computable
prior ν, whereas ergodic objective distributions F can be interpreted as so-called ergodic
components of the computable subjective distribution P. In some sense, the set of measures
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F is given uniquely for a given measure P. In particular, for the Santa Fe processes (7),
which are computable and nonergodic, the ergodic components take the form of processes
(8), where (zk)k∈N are fixed infinite binary sequences. The prior ν is simply the uniform
measure on these sequences, i.e., the probability that Zk

1 = zk
1 equals 2−k. Processes (Xi)i∈N

given by (8) are ergodic, but for almost all sequences (zk)k∈N, they are not computable for
the simple reason that individual sequences (zk)k∈N are not computable themselves.

3. Hilberg’s Hypothesis

The relaxed Hilberg hypothesis for natural language states that the Shannon mutual
information between two blocks of random variables for a reasonable statistical language
model should grow roughly as a power of the block length [40,42–45,78]. Considering this
hypothesis, we can be seriously concerned with how to identify the right statistical lan-
guage model. To address this problem, in this section, we adjust the statement of Hilberg’s
hypothesis for natural language to make it independent of the distinction between subjec-
tive and objective probabilities. We note that the ergodic decomposition is a technically
difficult theorem in the general stationary case but the distinction between subjective and
objective probabilities affects the values of Shannon mutual information. For nonergodic
Santa Fe processes (7), the Shannon mutual information between a finite past and a finite
future diverges as a power law, whereas it equals zero for their ergodic components (8)
since those are obviously IID processes. Thus, when stating Hilberg’s hypothesis, we must
be careful whether we work with subjective or with objective probabilities. Either we must
specify what kind of statistical language model we speak of or we should make our state-
ment of Hilberg’s hypothesis invariant with respect to choosing a particular interpretation
of probability. In this article, we apply the second solution, an invariant statement, by
using algorithmic mutual information instead of Shannon mutual information.

First, let us fix the notation and basic concepts. Symbol ln x denotes the natural
logarithm, in contrast with the binary logarithm log x. Applying the measure-theoretic
formalism, E X :=

∫
XdP is the expectation of a real random variable X with respect to a

probability measure P. The Shannon entropy of a discrete random variable X is H(X) :=
E[− log P(X)], where P(X) = P(X = x) if X = x, whereas conditional entropy of X given
random variable Y is H(X|Y) := E[− log P(X|Y)], where P(X|Y) = P(X = x|Y = y) if
X = x and Y = y. Subsequently, the Shannon mutual information for random variables
X and Y is I(X; Y) := H(X) + H(Y)− H(X, Y).

Let (Xi)i∈Z be a stationary process over a finite alphabet X. We denote the conditional
entropies

hk := H(X0|X−1
−k ). (13)

It is well known that we can define the entropy rate h as the limiting amount of information
produced by a single random variable,

h := lim
n→∞

H(Xn
1 )

n
= inf

k≥1
hk = H(X0|X−1

−∞). (14)

As discussed in [36,45], we can also equivalently define the excess entropy E as the mutual
information between infinite past and infinite future of the process,

E := lim
n→∞

[H(Xn
1 )− nh] = lim

n→∞
I(X0
−n+1; Xn

1 ) = I(X0
−∞; X∞

1 ). (15)

(The proof in [45] contains a gap, whereas a correct proof can be found in [36] (Theorem
5.13).)

The data-processing inequality states that I(X; Y) ≥ I(X; Z) if random variables X
and Z are conditionally independent given Y. This holds in particular if Z is a function of
Y, Z = f (Y), hence the name of this inequality: The information decreases as we process it
deterministically. Consequently, if (Xi)i∈Z is a hidden Markov process with respect to a
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Markov process (Yi)i∈Z, then by the data-processing inequality and the Markov condition,
we obtain

E = I(X0
−∞; X∞

1 ) ≤ I(Y0
−∞; Y∞

1 ) = I(Y0; Y1) ≤ H(Y0) ≤ log MHM. (16)

In particular, the excess entropy of a finite-state process is finite. By contrast, the relaxed
Hilberg hypothesis in a variant introduced in [42–45,78] that states that mutual information
I(X0
−n+1; Xn

1 ) grows similar to a power law. Such unbounded growth is clearly impossible
for finite-state processes but can be achieved for the nonergodic Santa Fe processes (7). In
fact, every stationary nonergodic process with a continuous prior on the ergodic compo-
nents has infinite excess entropy via the ergodic decomposition of excess entropy, cf. [28]
and [36] (Theorems 5.35 and 5.40).

For the sake of further considerations concerning the power-law growth of various
quantities, let us introduce so-called Hilberg exponents

hilb
n→∞

s(n) := lim sup
n→∞

log max{1, s(n)}
log n

(17)

for real functions s(n) of natural numbers, cf. [27,36,79] (Definition 8.1), where we gradually
approach the above definition. The Hilberg exponents capture the asymptotic power-law
growth of the respective functions, such as

hilb
n→∞

nβ = β for β ≥ 0. (18)

Let us strengthen a simple observation from [27,36]. Our improvement is also very
simple and it consists of replacing condition J(n) ≥ −C with S(n)− ns ≥ −C as sufficient
for equality of the respective Hilberg exponents. It is surprising that we have not noticed
this earlier.

Theorem 1 (cf. [27] and [36] (Theorem 8.2)). For a function S : N → R, define J(n) :=
2S(n)−S(2n). If limn→∞ S(n)/n = s for a s ∈ R then

hilb
n→∞

(S(n)− ns) ≤ hilb
n→∞

J(n) (19)

with an equality if S(n)− ns ≥ −C for all but finitely many n and some C > 0.

By Theorem 1 and identity I(X0
−n+1; Xn

1 ) = 2H(Xn
1 )− H(X2n

1 ) following from station-
arity, we can define the Hilberg exponent

βH := hilb
n→∞

[H(Xn
1 )− nh] = hilb

n→∞
I(X0
−n+1; Xn

1 ) ∈ [0, 1]. (20)

In particular, βH = 1/α for the nonergodic Santa Fe processes (7). That is, in some particular
mathematical model, an unbounded accumulation of factual knowledge can be a reason
for the relaxed Hilberg hypothesis. If we infer repeatable information from the process at a
power law rate, so must grow the mutual information between the past and the future. We
make this intuition precise in Section 5.

The relaxed Hilberg hypothesis for natural language in the variant introduced in
references [42–45,78] could be simply expressed as condition βH > 0 for a reasonable statis-
tical language model. However, such a formulation is ambiguous since, as we mentioned in
the beginning of this section, there are two main interpretations of probability, nonergodic
subjective and ergodic objective, and this distinction affects the estimates of power-law
growth of mutual information. As we indicated, the guiding example are the subjective
nonergodic Santa Fe processes (7), where βH = 1/α is an arbitrary number in the range
(0, 1), whereas βH = 0 holds for their objective ergodic components (8), since they are IID.
Additionally, for natural language, the estimates of the Hilberg exponent vary depending
on the estimation method. Universal coding estimates yield an upper bound of βH ≤ 0.8
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[46–48,51,52], whereas methods based on guessing by human subjects seem to yield an
upper bound of βH ≤ 0.5 [40,41]. Thus, imposing a condition on the subjective probability
Hilberg exponent βH may differ greatly from imposing a similar condition on the objective
probability Hilberg exponent βH . This is the main conceptual difficulty about Hilberg’s
hypothesis that researchers in this topic should be aware of.

Some solution to this problem may be using a yardstick that is independent of a
concrete probability distribution. In particular, we may apply the algorithmic information
theory, where the information content of a particular text is defined in terms of the minimal
length of a computer program that outputs this text. In particular, the prefix Kolmogorov
complexity of a string w, denoted K(w), is the length of the shortest self-delimiting program
for a universal computer for which the output is w. Note that the prefix Kolmogorov
complexity is in general uncomputable but can be effectively approximated from above.
The algorithmic mutual information between strings u and w is J(u; w) := K(u)+K(w)−
K(u, w). Many results from the Shannon information theory carry on to the algorithmic
information theory, but the respective proofs are often more difficult [38,64,65]. Let us
observe that the typical difference between expected Kolmogorov complexity E K(Xn

1 ) and
Shannon entropy H(Xn

1 ) is of the order log n if the probability measure P is computable. For
uncomputable measure P, which holds also if some parameters of a computable formula
for P are uncomputable real numbers, this difference can be somewhat greater or even
substantially greater, which complicates the transfer of results from one sort of information
theory to another.

Let us inspect which of our claims survive in the algorithmic setting. Let (Xi)i∈Z be
a stationary process over a finite alphabet X. Since E K(Xn

1 ) ≥ H(Xn
1 ) by the prefix-free

property of Kolmogorov complexity and K(w) ≤ LZ(w), where LZ(w) is the length of a
self-delimiting universal Lempel–Ziv code [39], then we obtain

lim
n→∞

K(Xn
1 )

n
= h almost surely, (21)

lim
n→∞

E K(Xn
1 )

n
= h. (22)

(These equalities were originally shown by Brudno [80] using a much more involved
technique.) Hence, by Theorem 1, we can define another Hilberg exponent:

βK := hilb
n→∞

E[K(Xn
1 )− nh] = hilb

n→∞
E J(X0

−n+1; Xn
1 ) ∈ [0, 1], (23)

where βK ≥ βH . The difference between exponents βH and βK can be as large as 1, de-
pending on the probability distribution of process (Xi)i∈Z. If the probability distribution
is computable, then there holds βH = βK, since besides E K(Xn

1 ) ≥ H(Xn
1 ), we also have

that K(Xn
1 ) ≤ − log P(Xn

1 ) + 2 log n + K(P) by the Shannon–Fano coding, where K(P) is
the Kolmogorov complexity of measure P [79]. Thus, if we think that Hilberg’s hypothesis
should be stated for a computable subjective probability, then we can simply express it as
βK > 0, which has a greater chance of remaining valid also under the objective probability
interpretation. (Let us note that, for different probability interpretations, we have expecta-
tions of the same random variables but with respect to different probability measures.)

However, this is not the end of the detachment from a probability measure. Let us
define a random variable

γK := hilb
n→∞

J(X0
−n+1; Xn

1 ), (24)

which is independent of the distribution of the process. As also shown in [79], for any
stochastic process (Xi)i∈Z, we have

γK ≤ βK almost surely. (25)

Additionally, if the process is ergodic, then Hilberg exponent γK is constant almost surely,
as shown in [79]—but we do not know whether γK = βK holds in so general case, cf. [36]
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(Section 8.2). Notice also that, for the ergodic decomposition P(A) =
∫

F(A)dπ(F), any
event A has a subjective probability P(A) = 1 if and only if we have F(A) = 1 for π,
almost every objective probability F. Hence, condition γK > 0 holds almost surely for a
subjective distribution if and only if γK > 0 holds almost surely for almost all objective
distributions supported by the subjective distribution.

Consequently, to make the statement of Hilberg’s hypothesis invariant with respect
to switching between subjective and objective perspectives or to adopt an intermediate
perspective—as it arises in actual experiments with texts and human subjects—we should
express it rather as condition γK > 0 using the algorithmic mutual information. The above
paragraphs are the motivation for the following formal definition.

Definition 1 (Hilberg condition). We say that a stationary process (Xi)i∈Z satisfies the Hilberg
condition if γK > 0 holds almost surely.

This is our working understanding of the relaxed Hilberg hypothesis, which could
be applied both to statistical language models and to more abstract stochastic processes.
Using the uncomputable algorithmic information is the price that we pay for working with
an underspecified probability model.

4. Finite-State Processes

The aim of this section is to show that no finite-state process satisfies the Hilberg con-
dition. That is, if we believe that natural language satisfies the relaxed Hilberg hypothesis,
we cannot expect that it can be reasonably modeled by a hidden Markov process with a
finite number of hidden states. However, our intended claim, stated in the algorithmic
fashion and detached from the probability measure as far as possible, is not so trivial as
claiming that no finite-state has infinite excess entropy. The reason is that algorithmic
mutual information J(X0

−n+1; Xn
1 ) may diverge for some finite-state processes if their tran-

sition and emission matrices contain uncomputable real numbers. We want to show that
J(X0
−n+1; Xn

1 ) in this case can only grow quite slow, namely, not faster than log n multiplied
by the number of hidden states. Since we do not know the number of hidden states be-
forehand, we need to recall some theory of consistent estimation of the number of hidden
states and adjust it to our particular needs. This section is a journey through mathematical
statistics and information theory.

To prove that no finite-state process satisfies the Hilberg condition, we put together a
few ideas that are well known in information theory: normalized maximum likelihood,
universal codes in the spirit of Ryabko, strongly consistent order estimators, as well as our
own ideas developed for the theorems about facts and words mentioned in Section 1. We
work with unifilar processes to obtain a stronger result than we need for the mere refutation
of finite-state language models. We translate this result into finite-state processes by the
end of this section and we apply it to Oracle processes in Section 6. We recall from Section 2
that a unifilar process is a hidden Markov process with an arbitrary (possibly infinite)
number of hidden states that is deterministic in the automata sense, i.e., the next hidden
state is a fixed function of the previous hidden state and the previous emitted symbol.

In this section, we consider a family of unifilar process distributions where the num-
ber k = 1, 2, 3, . . . of hidden states is finite and the emitted symbols belong to a fixed
finite alphabet X. That is, for a given sequence of symbols xn

1 and states yn
1 , our unifilar

distributions take the following form:

P(xn
1 , yn

1 |k, π, τ, ε) := π(y1)ε(x1|y1)
n

∏
i=2

1{yi = τ(yi−1, xi−1)}ε(xi|yi), (26)

where π : {1, .., k} → [0, 1] with ∑y π(y) = 1 is the initial hidden state distribution,
τ : {1, .., k} × X → {1, .., k} is the transition table, and ε : X × {1, .., k} → [0, 1] with
∑x ε(x|y) = 1 is the emission matrix. We also denote the marginal distribution
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P(xn
1 |k, π, τ, ε) := ∑

yn
1

P(xn
1 , yn

1 |k, π, τ, ε) (27)

and the conditional distribution

P(xn
1 |k, y1, τ, ε) :=

1
π(y1)

∑
yn

2

P(xn
1 , yn

1 |k, π, τ, ε). (28)

Subsequently, we define three distributions of the shape well-known in minimum
description length theory [81]: the maximum likelihood (ML)

P̂(xn
1 |k) := max

y,τ,ε
P(xn

1 |k, y, τ, ε); (29)

the normalized maximum likelihood (NML) in the spirit of Shtarkov [82]

P(xn
1 |k) :=

P̂(xn
1 |k)

∑zn
1∈Xn P̂(zn

1 |k)
≤ P̂(xn

1 |k); (30)

and the Ryabko mixture, cf. [58,59],

P(xn
1 ) :=

∞

∑
k=1

wkP(xn
1 |k), wk :=

1
k
− 1

k + 1
. (31)

We notice that the maximum likelihood satisfies P̂(xn
1 |k) = 1 for k ≥ n, since having

as many hidden states as the string length, we can put π(1) = 1, τ(i, xi) = i + 1, and
ε(xi|i) = 1. Consequently, the NML equals P(xn

1 |k) = |X|−n for k ≥ n and the Ryabko
mixture P(xn

1 ) is a computable function of xn
1 since the defining infinite series can be

truncated. We stress that the maximum likelihood, the NML, and the Ryabko mixture are
computable in the sense of computability theory, which suffices for our needs of bounding
algorithmic mutual information in Theorem 5, but they are computationally intractable
since we need to perform an exhaustive search over all transition tables τ combined with
summation over exponentially growing domains Xn.

Subsequently, such as in [81], we introduce the family complexity of the unifilar
family:

C(n|k) := − logP(xn
1 |k) + log P̂(xn

1 |k) = log ∑
zn

1∈Xn
P̂(zn

1 |k) ≤ n log|X|. (32)

This family complexity is a different concept than the statistical complexity of a stochastic
process discussed in [72–74]. The family complexity (32) is a property of a class of processes,
roughly related to the number of distinguishable distributions in the class. By contrast,
the statistical complexity by [72–74] is the entropy of the hidden state distribution in the
minimal unifilar presentation of a given process. The statistical complexity is smaller than
or equal to log MU but greater than or equal to excess entropy (15). Unlike excess entropy,
it can be infinite for some finite-state nonunifilar sources such as the Golden Mean process
[45] or the Simple Nonunifilar Source [75]. By contrast, it is a rule of thumb that the family
complexity of a distribution family with exactly k real parameters is roughly k log n. There
also exist more exact expressions assuming some particular conditions [81]. Here, we only
need a very rough bound for C(n|k) but assuming that we have not only a real-parameter
emission matrix ε but also an integer-parameter transition table τ. We can observe a small
correction up to the aforementioned rule of thumb.

Theorem 2. For the unifilar family, the family complexity satisfies

C(n|k) ≤ [k|X|+ 1] log[k(n + 1)]. (33)
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The next fact that we present is the universality of the Ryabko mixture, i.e., the
Ryabko mixture yields a strongly consistent and asymptotically unbiased estimator of the
entropy rate. For distribution families that contain Markov chain distributions of all orders
and for which the family complexity C(n|k) grows sublinearly with the sample size n for
any order k, the Ryabko mixture is a universal distribution by a reasoning following the
ideas of papers [58,59]. It turns out that this is the case for the unifilar hidden Markov
family. As a consequence, the Ryabko mixture can be used for universal compression of
data generated by any stationary ergodic process, i.e., there is a computable procedure
that takes text Xn

1 and compresses it losslessly as a string of − logP(Xn
1 ) ≈ hn bits, and

this compression cannot be substantially improved. The following theorem states the
universality of the Ryabko mixture:

Theorem 3. For a stationary ergodic process (Xi)i∈Z over a finite alphabet,

lim
n→∞

1
n
[− logP(Xn

1 )] = h almost surely, (34)

lim
n→∞

1
n

E[− logP(Xn
1 )] = h. (35)

For completeness, we present the proof in Appendix A but we do not claim originality
of the idea. Additionally, as we have mentioned, this particular Ryabko mixture is com-
putable in the sense of computability theory, but it is intractable and highly impractical as
a universal compression procedure. We need it only for further theoretical applications.

As we announced in the beginning, all this is needed to estimate the unifilar order
of the process, i.e., the number of hidden states, and to link this estimate with the algo-
rithmic mutual information for an unknown process, being a statistical language model
in particular. Thus, subsequently, we consider a unifilar order estimator that is a certain
modification of estimators of the Markov order and the hidden Markov order proposed
by Merhav, Gutman, and Ziv [83] and by Ziv and Merhav [84], respectively. The idea of
[83,84] is that the estimator returns the smallest order for which the maximum likelihood
is larger than a penalized universal probability. Consequently, we will define the unifilar
order estimator:

M(xn
1 ) := min

{
k : P̂(xn

1 |k) ≥ wnP(xn
1 )
}

, wn :=
1
n
− 1

n + 1
. (36)

We can see that the estimator is nicely bounded by M(xn
1 ) ≤ n since P̂(xn

1 |k) = 1 for k ≥ n.
In the literature on Markov order estimation [83,85–95], sublinear penalty − log wn = o(n)
in estimators resembling (36) can be traced in [88,90,94]. In the literature on hidden Markov
order estimation [84,96–104], the majority of articles consider very similar ideas and prove
the strong consistency of related estimators. Thus, we do not claim a particular originality
of estimator (36).

The unifilar order estimator (36) is computable in the sense of computability theory,
but it is intractable since it applies exact maximum likelihood and normalized maximum
likelihood. We need it as is since it yields the most elegant upper bound for the algorithmic
mutual information. Ignoring the question of obtaining this bound for a while, we note that
we can make the estimator somewhat computationally simpler while preserving strong
consistency if we replace universal distribution P(xn

1 ) with a simpler universal compression
procedure such as the Lempel–Ziv code [39]. This idea was proposed by Merhav, Gutman,
and Ziv [83] and by Ziv and Merhav [84] themselves. This substitution, however, breaks
the simple upper bound for mutual information to be stated in Theorem 5 while not solving
the problem of computing the maximum likelihood, which requires an exhaustive search
over all transition tables τ. By contrast, some practical estimators of the hidden Markov
order can be found in [102,104].
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The following theorem states a strong consistency and asymptotic unbiasedness of
unifilar order estimator (36), which makes use of the universality of the Ryabko mixture
claimed in Theorem 3.

Theorem 4. For a stationary ergodic process (Xi)i∈Z over a finite alphabet,

lim
n→∞

M(Xn
1 ) = MU almost surely, (37)

lim
n→∞

EM(Xn
1 ) = MU , (38)

and we have the overestimation bound P
(
M(Xn

1 ) > MU
)
≤ wn.

The proof is quite complicated and deferred to Appendix A. Our proof technique for
the impossibility of overestimation is taken from Markov order estimation proof ideas
such as [90,94]. We suppose that our proof of the impossibility of underestimation is more
original—although some expressions in it superficially resemble some results by Gassiat
and Boucheron [101]. In contrast with [101], we also prove consistency in the case of
MU = ∞. That is, estimator M(Xn

1 ) grows unboundedly almost surely if the process does
not have a finite unifilar presentation—which may be the case of natural language. Since
we apply a result about asymptotically mean stationary channels by Kieffer and Rahe [105],
we suspected that Kieffer [98] might have used a similar technique in the context of hidden
Markov order estimation but we did not find it there.

What remains is to link the mutual information with the unifilar order estimator.
First, we compare the algorithmic mutual information with the Ryabko mixture mutual
information. By nonnegativity of the Kullback–Leibler divergence, E

[
− logP(Xn

1 )
]
≥

H(Xn
1 ) ≥ hn, so in view of Theorem 1, we define the Hilberg exponent for the Ryabko

mixture mutual information:

βP := hilb
n→∞

E[− logP(Xn
1 )− nh]

= hilb
n→∞

E
[
− logP(Xn

1 )− logP(X2n
n+1) + logP(X2n

1 )
]
∈ [0, 1]. (39)

By the universality of the Ryabko mixture proven in Theorem 3 and inequality

K(xn
1 ) ≤ − logP(Xn

1 )− log wn + K(P) (40)

stemming from the computability of the Ryabko mixture and the Shannon–Fano coding [38,106],
we also obtain

βH ≤ βK ≤ βP. (41)

Thus, our first goal of relating algorithmic mutual information to Ryabko mixture
is accomplished.

Next, we relate the Ryabko mixture mutual information to a unifilar order estimator,
which as we recall, was also defined in terms of the Ryabko mixture. The next theorem,
which provides the requested link, resembles the second part of the theorems about facts
and words, which bound the growth of Shannon and algorithmic mutual information in
terms of the growth of the number of distinct words detectable in a random text.

Theorem 5. For a stationary process (Xi)i∈Z over a finite alphabet,

βP ≤ βM := hilb
n→∞

EM(Xn
1 ). (42)

The proof of Theorem 5 applies a simple subadditivity technique, which is the essence
of the proofs of the second part of the theorems about facts and words from [27,29] and
[36] (Section 8.4). Seen from this perspective, we may interpret the unifilar order estimator
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M(Xn
1 ) as an approximation of the number of distinct words that may be detected in

text Xn
1 . It may be interesting to investigate whether M(Xn

1 ) can actually be related to
grammar-based coding, which was the original technique for proving the theorems about
facts and words, cf. [29,107].

Let us observe that, in view of asymptotic unbiasedness (38) of the unifilar order
estimator, we obtain βM = 0 for stationary ergodic finite-state unifilar processes over a
finite alphabet. Consequently, in view of Theorem 5, all such processes satisfy βK = 0.
Using the data-processing inequality for algorithmic mutual information and the finite
ergodic decomposition of finite-alphabet Markov processes, we may generalize this result
to arbitrary finite-state processes.

Theorem 6. For a finite-state stationary process (Xi)i∈Z over a finite alphabet, we have βK = 0.

Hence, by inequality (25), we obtain γK = 0 almost surely, i.e., no finite-state stationary
process over a finite alphabet satisfies the Hilberg condition. There is some technical detail
here that may inspire some future research: Whereas βK = 0 holds for finite-state processes
in general, some of these processes, such as the Golden Mean process [45] or the Simple
Nonunifilar Source [75], have the unifilar order MU = ∞, cf. [72–74]. Thus, it is an
interesting open problem whether βM = 0 holds also in the general case of nonunifilar
finite-state processes. We suppose that it does.

Resuming this section, Hilberg’s hypothesis refutes finite-state models also when we
formulate it as an almost sure power law for algorithmic mutual information. If we believe
in Hilberg’s hypothesis seriously, we cannot defend finite-state language models.

5. Perigraphic Processes

Now, we are in a position that we need to justify Hilberg’s hypothesis itself. Is it
true in general that a power-law-rate accumulation of factual knowledge in an agent
that reads a random text implies Hilberg’s hypothesis? Well, this seems the first part of
the theorems about facts and words discussed at length in papers [27,29] and book [36].
However, those discussions pertain to the expected number of facts and expected mutual
information. Here, we strengthen these results a bit to relate them to the almost sure growth
of algorithmic mutual information stated as the Hilberg condition in Definition 1. Along the
way, we formally introduce the concept of perigraphic processes as defined in [27,36], which
captures a power-law-rate accumulation of factual knowledge for stationary stochastic
processes. We show that, perigraphic processes satisfy βK > 0, i.e., the classes of perigraphic
processes and finite-state processes are disjoint.

To approach these topics, first, we can ask whether there exist processes such that
γK > 0 almost surely, i.e., ones that satisfy the Hilberg condition. In fact, as it was evaluated
in [79,108], for the nonergodic Santa Fe processes (7), we obtain

γK = βK = βH = 1/α ∈ (0, 1) almost surely. (43)

Equality γK = 1/α almost surely transfers to almost all but not all ergodic Santa Fe pro-
cesses (8). In fact, if we fix the sequence (zk)k∈N as (0, 0, 0, . . . ), we obtain J(X0

−n+1; Xn
1 ) ≤

J(K0
−n+1; Kn

1 ) + C by the data-processing inequality for algorithmic mutual information,
where (Ki)i∈Z is an IID process. In turn, we may suspect that algorithmic mutual infor-
mation J(K0

−n+1; Kn
1 ) is low and that the main contribution to high algorithmic mutual

information J(X0
−n+1; Xn

1 ) for almost all ergodic components (8) may come from the high
Kolmogorov complexity of the fixed sequence (zk)k∈N.

In fact, there is an important concept in the algorithmic information theory, called
algorithmic randomness, that allows us to deal with that intuition at ease. Precisely, a
binary sequence (zk)k∈N is called algorithmically random (in the Martin-Löf sense) if it
is incompressible in the sense that

K(zn
1 ) ≥ n− c (44)
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for all n and a constant c < ∞ [37,38]. Since almost all binary sequences (zk)k∈N with
respect to the uniform measure P(Zk

1 = zk
1) = 2−k are algorithmically random, we may

suppose that γK = 1/α ∈ (0, 1) holds almost surely for an ergodic Santa Fe process (8) if
(zk)k∈N is algorithmically random.

To show that it is actually the case, we may use another important observation.
Namely, some prefix of sequence (zk)k∈N can be computed from both blocks X0

−n+1 and
Xn

1 for the ergodic Santa Fe process (8). Let us denote random variables

Um,n := min{k ≥ 1 : Ki 6= k for all i such that m ≤ i ≤ n}. (45)

Then, exactly string zLn−1
1 can be computed from both blocks X0

−n+1 and Xn
1 given the

random number Ln := min{U−n+1,0, U1,n}. Hence, by the data-processing inequality and
algorithmic randomness of (zk)k∈N, we obtain

J(X0
−n+1; Xn

1 )
+
> J(zLn−1

1 ; zLn−1
1 )− 2K(Ln)

+
= K(zLn−1

1 )− 2K(Ln)

+
> Ln − 1− c− 4 log Ln (46)

Consequently, applying the techniques resumed in [36] (Theorem 8.14), we can show that
inequality

γK ≥ hilb
n→∞

Ln = 1/α ∈ (0, 1) almost surely (47)

holds for all ergodic Santa Fe processes (8) with an algorithmically random sequence
(zk)k∈N. Thus, each of these processes taken individually satisfies the Hilberg condition.

In information theory, there is a formal construction for what we have shown above. It
is called the common information in the sense of Gács and Körner [109]. Staying within
the framework of Shannon information theory, if we have two random variables X and Y
and a random variable Z that is a function of X and Y each, Z = f (X) = g(Y), then the
Shannon mutual information between X and Y is bounded as I(X; Y) ≥ I(Z; Z) = H(Z)
by the data-processing inequality. The Gács–Körner common information CGK(X; Y) is the
supremum of entropies H(Z) taken over all random variable Z such that Z = f (X) = g(Y).
What is surprising is that inequality CGK(X; Y) ≤ I(X; Y) can be strict also if we perform
the analogous construction in the algorithmic information theory [109]. There is also a
related concept called the common information in the sense of Wyner CW(X; Y) [110],
which satisfies a reversed inequality CW(X; Y) ≥ I(X; Y). The theorems about facts and
words discussed in [27,29,36] can be regarded as a certain application or generalization of
inequalities CGK(X; Y) ≤ I(X; Y) ≤ CW(X; Y).

Hence, the technique for Santa Fe processes can be generalized a bit. Consider an
arbitrary computable function g : N×X∗ → {0, 1, 2}, which we call a knowledge extractor,
and an arbitrary fixed algorithmically random binary sequence z = (zk)k∈N. Define random
variables

Ug,z
m,n := min{k ≥ 1 : g(k, Xn

m) 6= zk}. (48)

If we put Lg,z
n := min

{
Ug,z
−n+1,0, Ug,z

1,n

}
, then our preceding reasoning for Santa Fe processes

carries over and we obtain

γK ≥ γg,z := hilb
n→∞

Lg,z
n , (49)

βK ≥ βg,z := hilb
n→∞

E Lg,z
n (50)

for an arbitrary process (Xi)i∈Z. For symmetry, let us define also
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γ+
g,z := hilb

n→∞
Ug,z

1,n ≥ γg,z, (51)

β+
g,z := hilb

n→∞
E Ug,z

1,n ≥ βg,z. (52)

In [27], we have shown a seemingly stronger statement than (50), namely,

βK ≥ β+
g,z, (53)

which is the first part of the theorems about facts and words and holds for arbitrary
stationary processes over a finite alphabet. To provide some further order in this zoo of
Hilberg exponents, let us show that (50) and (53) can often boil down to the same statement
since equality β+

g,z = βg,z holds under mild conditions:

Theorem 7. Let (Xi)i∈N be a stationary process. If there hold inequalities Ug,z
m,n ≤ Ug,z

m,n+1,
Ug,z

m−1,n, then

β+
g,z ≥ γ+

g,z almost surely, (54)

βg,z ≥ γg,z almost surely. (55)

If additionally we have limn→∞ E Ug,z
1,n/n = 0, then

β+
g,z = βg,z. (56)

Let us resume these constructions by giving them a name and by relating them to
previous results.

Definition 2 (perigraphic process [27]). A stationary process such that β+
g,z > 0 for a certain

computable knowledge extractor g and a certain algorithmically random sequence z is called a
perigraphic process.

For the obvious choice of knowledge extractor g(k, xn
1 ) for the Santa Fe processes that

reads off the value of bit zk, if it appears in sequence xn
1 and returns 2 otherwise [27], the

assumptions of Theorem 7 are satisfied. Hence by (47), (55) and (56), an example of a
perigraphic process is the ergodic Santa Fe process (8) with an algorithmically random
sequence (zk)k∈N. In the conclusion of the book in [36], we stated open problem no. 4 asking
whether the classes of perigraphic and finite-state processes are disjoint. We supposed that
this is true. According to Theorem 6 and inequality (53), these classes are disjoint indeed,
so our conjecture was correct.

Now, it is time for a short break from maths to comment on a linguistic interpretation
for the above considerations. As we announced in the Introduction, perigraphic processes
may be a probabilistic model of texts that admit a power-law-rate accumulation of factual
knowledge in agents that try to predict them. The role of factual knowledge in this
model is played by the algorithmically random sequence z, i.e., the factual knowledge
is compressed as much as possible, infinite, and time-independent. By contrast, the
computable knowledge extractor g plays the role of language competence, which allows us
to effectively and ultimately infer all factual knowledge from the infinite text regardless
of where the agent starts observing the infinite text. Of course, these are quite strong
assumptions from the point of view of what we may speculate about the real human
language but we think that perigraphic processes may be an interesting linking model
between the fields of linguistics and of stochastic processes.

We should be also aware that perigraphic processes can be much more complex than
Santa Fe processes and that there are some not fully understood interactions between peri-
graphicness, nonergodicity, and computability of prior ν in the ergodic decomposition (12).
Necessarily perigraphic processes must be uncomputable since their probability distribu-
tions encode an algorithmically random sequence [27]. As a more complicated example, we
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also found stochastic processes called random hierarchical association (RHA) processes,
cf. [30] and [36] (Section 11.4), which seem to exhibit not only the Hilberg condition but also
a bottom-up hierarchical structure of an infinite height. These processes are nonergodic,
and we suspect that their ergodic components are perigraphic with quite a nontrivial
knowledge extractor g and algorithmically random sequences z, which are different for
different ergodic components. From our point of view, it is interesting that some seemingly
abstract mathematical concepts such as nonergodicity or uncomputability acquire an ide-
alized linguistic interpretation. There is a great opportunity to exhibit further examples
of processes and to pursue further modeling ideas. One such idea is the transience of
factual knowledge, which seems to correspond to the phenomenon of mixing in stationary
stochastic processes [108]. We comment on this a bit in Section 7.

6. Oracle Processes

Let us note that Theorem 5 pertains to processes over a finite alphabet, whereas
Santa Fe processes are processes over a countably infinite alphabet X× {0, 1}. We need a
comparably simple example of a perigraphic stationary process over a finite alphabet. For
this goal, we present a novel example, which we call Oracle processes. The construction
of these processes builds on Benoît Mandelbrot’s and George Miller’s monkey-typing
explanations of Zipf’s law [24,67]. These researchers observed that, if the characters on the
type-writer keyboard are pressed at random, then the resulting text approximately obeys
Zipf’s law for words understood as random strings of letters delimited by spaces.

The Oracle processes are uncomputable unifilar processes with a countable number
of states, which can be thought of as encoding the ergodic Santa Fe processes (8) into a
finite alphabet. Similar perigraphic processes over a finite alphabet can be constructed
directly through stationary variable-length coding of the Santa Fe processes, cf. [36] (Section
11.3) and [66,108], but that construction leads to much more complicated and approximate
calculations. Thanks to the simplicity of Oracle processes, we prove for them an equality of
all different Hilberg exponents discussed in this article—except for βH , which is probably
0. That is, the bounds given by Theorem 5 and inequality (53) can be tight.

The construction of an Oracle process applies a memoryless source over alphabet
{0, 1, 2}, a binary code for natural numbers ψ : N→ {0, 1}∗, and an oracle containing an
algorithmically random sequence z = (zk)k∈N. Using these, the Oracle source first applies
the memoryless source to emit some random string y2, where y ∈ {0, 1}∗ is a binary string
and then it emits the corresponding bit zψ−1(y) read off from the oracle. Once this bit is
emitted, the procedure is repeated ad infinitum. The formal definition of an Oracle process
is as follows.

Definition 3 (Oracle process). Let ψ : N → {0, 1}∗, where ψ(k) is the binary expansion of
number k stripped of the initial digit 1: ψ(1) = λ, ψ(2) = 0, ψ(3) = 1, ψ(4) = 00, etc. Let
φ = ψ−1 be the inverse function. Let z = (zk)k∈N be an algorithmically random binary sequence.
The Oracle(θ) process with a parameter θ ∈ [0, 1] is the unifilar process defined by

• The set of symbols X = {0, 1, 2};
• The set of states Y = {a, b} × {0, 1}∗;
• ε(x|ay) = θ/2 and τ(ay, x) = ayx for x ∈ {0, 1} and y ∈ {0, 1}∗;
• ε(2|ay) = (1− θ) and τ(ay, 2) = by for y ∈ {0, 1}∗; and
• ε(zφ(y)|by) = 1 and τ(by, zφ(y)) = a for y ∈ {0, 1}∗.

As we can see, the above presentation is, by definition, unifilar so realizations of
the Oracle(θ) process are recognized by a deterministic push-down automaton combined
with an algorithmically random oracle: First, the random output binary string y is pushed
onto the stack, and upon producing symbol 2, the stack is emptied with an expectation of
symbol zφ(y) as a next output. Having met this expectation, the stack is ready to be refilled.
The simple connection between Oracle processes and Santa Fe processes is that, if we sort
random strings y2 according to their frequencies, then the rank-frequency distribution is
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approximately Zipf’s distribution with exponent α = 1− log θ. This observation dates
back to famous articles [24,67].

Since we have not discussed Oracle processes before, as a warm-up, let us compute
the entropy rate of an Oracle process. Our proof makes use of unifilarity of this process.

Theorem 8. The entropy rate of the stationary Oracle(θ) process equals

h =
h(θ) + θ

2− θ
, (57)

where h(θ) := −θ log θ − (1− θ) log(1− θ).

Now, let us proceed to the main result of this section, i.e., computing Hilberg exponents
for Oracle processes and showing that they are equal and can take arbitrary values in the
range (0, 1). To determine Hilberg exponents γg,z, βg,z, γ+

g,z, and β+
g,z, we use quite an

obvious knowledge extractor

g(k, xn
1 ) :=


0 if 2_ψ(k)20 v xn

1 and 2_ψ(k)21 6v xn
1 ,

1 if 2_ψ(k)21 v xn
1 and 2_ψ(k)20 6v xn

1 ,
2 else.

(58)

In the above definition, symbol ‘_’ matches any symbol.

Theorem 9. For knowledge extractor (58) and the stationary Oracle(θ) process,

γg,z = βg,z = γ+
g,z = β+

g,z = γK = βK = βP = βM =
1

1− log θ
almost surely. (59)

As we can see by the above theorem, Oracle processes can have arbitrary Hilberg
exponents in the range (0, 1). In particular, they satisfy the Hilberg condition. Moreover,
the unifilar order estimator (36) can diverge as a power law even for as simple unifilar
processes as Oracle processes and it diverges at the slowest possible rate prescribed by the
bound in Theorem 5. That is, this bound can be nontrivially tight. This tightness seems to
be a new result in our little theory of perigraphic processes.

7. Discussion

In the previous sections, we stated the Hilberg hypothesis in terms of algorithmic mu-
tual information and we showed that no finite-state statistical language model is compatible
even with so generalized hypothesis, whereas there exist simple perigraphic processes,
called Santa Fe and Oracle processes, which are fully compatible with Hilberg’s hypoth-
esis. Obviously, Santa Fe and Oracle processes are toy models, i.e., simple mathematical
examples that are specially tailored to possess certain properties while simultaneously
being easy to analyze. However, we can ask seriously how such idealized models can help
with the fundamental problem of statistical language modeling. There are several specific
questions that we address in the following, which entail further research hypotheses.

7.1. Is It Possible to Decide by Computation that a Given Empirical Stream of Data Satisfies the
Hilberg Condition or Was Generated by a Perigraphic Source?

As we have stated informally in Section 1.1, an important open problem in the theory
of perigraphic processes is whether we can consistently estimate exponent

β+ := sup
g,z

β+
g,z, (60)

where the supremum is taken over all computable knowledge extractors g and over
all algorithmically random sequences z. An analogous question pertains to exponent
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βK. Namely, the open questions are whether there exist computable functions of finite
texts that return some estimates converging to β+ or to βK almost surely. We suppose
that such functions may not exist unless we restrict ourselves to a certain subclass of
stationary processes. The main difficulty here is not extracting a sort of recurrent factual
knowledge from a random text but warranting that this extracted factual knowledge
cannot be compressed too much or that this knowledge does not evolve slowly in time.
Thus, we suppose that the property of perigraphicness or the Hilberg condition can be
empirically verified only for a special subclass of stationary processes for which a certain
incompressibility of extracted recurrent factual knowledge is warranted by definition. It is
a matter of future research to determine whether a certain process in this subclass could
resemble natural language.

7.2. Is It Plausible That Human Speech Not Only Satisfies the Hilberg Condition in a Certain
Approximation but Also Resembles a Perigraphic Process?

Since we cannot give fully convincing empirical arguments, let us resort to rational
ones. The motivation for perigraphic processes is of a semantic rather than a formal nature.
We can probably agree that an important aim of human speech is gathering and sharing
factual knowledge. We can further agree that there should be an effective procedure for
extracting the factual knowledge from speech that resembles the computable knowledge
extractor g from the definition of a perigraphic process. Moreover, at each time instant,
we can compress the finite factual knowledge that we already have to a finite string zk

1,
which has a higher density of Kolmogorov complexity, i.e., string zk

1 is closer to being
algorithmically random. Thus the doubt remains whether factual knowledge can be
unbounded and whether it is possible to extract a compressed representation of factual
knowledge from a spoken or written text at a power-law rate.

The answer to these questions depends on the exact nature of factual knowledge. If
the factual knowledge entails the knowledge of an immutable state of a physical world
that has a very high Kolmogorov complexity, then communication about this state of the
physical world may be a stochastic process with a practically unbounded acquisition of
factual knowledge, but the essential power-law rate of the acquisition is not secured. We
suppose, however, that the vast part of the factual knowledge that we communicate about
is the conventional knowledge accumulated in the gradual development of human culture.
Culture can be a sort of a random virtual world that fosters conventional knowledge for
the sake of itself and creates an environment in which fast accumulation of knowledge by
individuals can be not only possible but also rewarded.

As we can see, the justification of perigraphic processes brings linguistics in touch
with fundamental questions about the presence of algorithmic randomness in nature
and in culture as well as with interactions between culture and nature. Let us also state
clearly that the possible presence of algorithmic randomness in culture does not debunk
its value necessarily. There are sorts of algorithmically random sequences that contain
highly useful information. In the realm of mathematics, some example thereof is Chaitin’s
halting probability Ω, which is an infinite algorithmically random sequence encoding
which mathematical statements are true or false [111,112]. All knowledge can be squeezed
to a certain randomness but not every randomness is a useful knowledge.

Another important phenomenon that we have to face is the transience of factual
knowledge transmitted by culture, i.e., there are conventional facts that become gradually
forgotten. If this transience pertains to all facts transmitted through language, then the
stochastic process describing language communication becomes a mixing process (from
a subjective probability perspective) rather than a perigraphic process. However, even
in this mixing case, the process may satisfy the Hilberg condition and may differ from a
finite-state process. In fact, we investigated such a mixing phenomenon in the framework
of Shannon information theory in [36] (Section 11.2) and [108], but it may be interesting to
translate the respective phenomenon into algorithmic information theory.
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7.3. What Kind of Linguistic Structures or Phenomena Do Perigraphic Processes Account for by
Their Very Definition?

Stationary perigraphic processes are examples of stochastic sources in which the
semantic function implies a certain formal structure. Our contribution in this domain was
proving the theorems about facts and words, which state inequality β+

g,z ≤ βK ≤ βV , where
βV is the Hilberg exponent for the expected total length of distinct words detectable in the
text using the shortest grammar-based compression, cf. [29] and [36] (Problem 7.4). Hence,
the perigraphicness of a stochastic process implies Hilberg’s hypothesis and this implies
discernibility of discrete words, i.e., the double articulation, and a Zipfian distribution of
words. Since in this article, we have shown equality β+

g,z = βM for the Oracle processes, we
may expect that some nice class of perigraphic processes exhibits also equality β+

g,z = βV .
Does this mean that, in that case, we may have an approximate computable one-to-one
correspondence between elementary statements (k, zk) and words given by the shortest
grammar-based compression?

It would be interesting to investigate the above question in the future since it may
shed light onto origins of lexical semantics. The question matters also for a construction of
knowledge extractors for practical statistical language models. Namely, if the number of
independent elementary facts described by a text is approximately equal to the number of
automatically detectable words, then an appearance of a new word in the predicted text
can be a heuristic prompt for the predicting agent that a new fact needs to be added to
the agent’s database of acquired factual knowledge. However, the added fact need not be
necessarily a description of the new word.

As for syntax, we may easily notice on the example of Santa Fe and Oracle processes
that perigraphic processes need not exhibit nested hierarchical structures. All syntactic
structures that we can observe in Santa Fe or Oracle processes are elementary statements
(k, zk), in which we can seek out a primitive sentence information structure—theme k
and rheme zk—at the very best weather. Perigraphicness, which is a sort of Zipf’s law for
algorithmic information, seems to be a different cause against finite-state language models
than context-free syntax of an unbounded height. A mathematically plausible language
system with an infinitely complex semantics can be just an infinite set of meaningful words
or rather meaningful commands applied in texts at random. However, we must be a bit
careful with such statements. The lack of a hierarchical structure does not mean that Oracle
processes can be recognized by a finite-state automaton. To recognize Oracle processes,
we need a push-down automaton with an oracle. In this simple wording, there is also a
pretty complicated computer hidden that allows to look up a particular bit of the oracle
corresponding to a given string on the stack.

7.4. Are There Competing Refutations of Finite-State Language Models Based on Other
Quantitative Linguistic Observations?

Let us restrict ourselves to quantitative linguistic observations that can be easily oper-
ationalized by computational means and checked empirically also for abstract stochastic
processes. See [46] for a justification of such a naturalistic approach to language and further
examples of statistical universals in this sense.

We could probably agree that texts in natural language strongly diverge from typical
outcomes of IID processes and that memory is a preformal concept that partly captures this
difference. The standard way of formally defining long memory in numerical time series
goes through the power-law decay of autocorrelations [113]. This condition can be partly
adapted to categorical times series as the power-law decay of Shannon mutual information
I(X0; Xn). Lin and Tegmark [114] claimed to observe such a power-law decay of mutual
information for texts in natural language. Moreover, they proved that this power-law decay
is incompatible with finite-state processes, and they argued that it may be be compatible
with processes that exhibit hierarchical structures of an unbounded height; see also [46] for
more computational experiments.
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Another argument against finite-state processes applies the scaling of the maximal
repetition length in a given text. For many mixing sources, which include finite-state
processes and probably also Oracle processes, the maximal repetition length grows asymp-
totically similar to the logarithm of the text length [115,116]. For texts in natural language,
however, it seems that the maximal repetition length grows roughly similar to the cube
of the logarithm of the text length [117], which begs for an explanation, cf. [36] (Chapter
9) and [118]. We think that the cube-logarithmic scaling of the maximal repetition length
is a phenomenon that may inspire interesting mathematical models of cohesive narration
rather than of unbounded accumulation of factual knowledge. However, cohesive narra-
tion and knowledge accumulation can be coupled phenomena both in language and in
some mathematical models thereof. There may be a common underlying mechanism for
both of them.

7.5. Are There Perigraphic Processes That Satisfy All of These Quantitative Linguistic Laws and
Exhibit Hierarchical Structures of an Unbounded Height?

We can meaningfully ask whether there exist simple processes that combine all sta-
tistical phenomena mentioned above and exhibit hierarchical structures. In fact, we
constructed certain stochastic processes called random hierarchical association (RHA)
processes, which seem to simultaneously exhibit the Hilberg condition, the power-law
logarithmic growth of the maximal repetition length, and a bottom-up hierarchical struc-
ture of an infinite height, cf. [30] and [36] (Section 11.4). We suppose that the ergodic
components of RHA processes are also perigraphic and satisfy the power-law decay of
mutual information I(X0; Xn), but we have not demonstrated it yet. In [30], it was also
shown that RHA processes are nonergodic and have an infinite entropy of the invariant
algebra, which would be a very promising symptom since perigraphicness and strong
nonergodicity are similar conditions, cf. [27] and [36] (Section 8.3). Our definition of RHA
processes is quite complicated, however, which makes them difficult to analyze, and we
are not sure whether all results in [30] are correct. Probably the construction should be
somewhat simplified in order to obtain more conclusive and convincing results.

7.6. How Can We Improve Practical Statistical Language Models Using Ideas Borrowed from
Perigraphic Processes?

Since perigraphic processes satisfy the power-law growth of algorithmic mutual infor-
mation, the expected conditional Kolmogorov complexity of the next symbol given a finite
past tends toward the entropy rate very slowly with respect to the length of the past. This
means than the optimal predicting agent never stops learning from a perigraphic process
and its memory load grows unboundedly. If natural language resembles a perigraphic pro-
cess, the pretty obvious message for practitioners of statistical language models is that they
should never switch off their training. The power-law tails of learning curves, observed
in [48,50–53], may be something more fundamental than just an accidental empirical law.
With each new input, a portion of factual knowledge may come that may be useful for the
prediction of subsequent inputs. However, obviously, not all input information should be
memorized since most of it is random noise. Here, the theorems about facts and words
[27,29] may help us. As we suggested in Section 7.3, a simple heuristic prompt for a statisti-
cal model to add a new fact to the database of factual knowledge may be the appearance
of a new word type or rather of a new term—since “words” in this context are defined
by the shortest grammar-based compression [29,60,61] and they can be morphemes or
multiword expressions [55]. Moreover, this new fact need not be a description of the new
term but rather a sort of reaction to it.

The detailed mechanism of factual knowledge extraction may be different for different
perigraphic processes. Hence, while constructing practical statistical language models, it
may be useful to draw various inspirations from information theory, probability, logic,
statistical laws of language, and neuroscience. Let us stress, however, that the problem of
factual knowledge extraction is closely linked to the problem of estimating exponent β+,
discussed in Section 7.1. In particular, if we had a single knowledge extractor that works
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for a reasonable subclass of stationary processes, then by compressing the extracted knowl-
edge, we could find a desired lower bound for the number of distinct time-independent
facts necessary to verify the perigraphicness property. We notice that finding such a uni-
versal knowledge extractor is a different problem than constructing the minimal unifilar
representation of the process, called the ε-machine in [72–74], but there may be some
connections between these two tasks, cf. [103]. The relationship between the universal
knowledge extractor and the ε-machine may be analogous to the difference between the
Gács and Körner common information [109] and the Wyner common information [110].
The former is a lower bound for the learning problem, whereas the latter is an upper bound.

8. Conclusions

Recapitulating this article, we suppose that refuting finite-state language models
through various power laws for algorithmic information yields some fresh insight into
human (and maybe not necessarily only human) language. We hypothesize this despite
dealing explicitly with some abstract mathematical models. Our novel refutation is of a
semantic rather than a syntactic nature and rests on a hypothetical Zipf law for independent
elementary meanings. We think that this is an interesting feature since semantics precedes
syntax in communication whereas advanced syntax is a later evolved mechanism that
makes the mapping between signals and complex meanings more fault tolerant (and
more redundant, by the way). In fact, syntax can be also investigated using ideas from
information theory [119,120].

We hope that perigraphic processes can be an important mathematical model that
may bring information theory and linguistics closer. Even if perigraphic processes turn
out not to be realistic models of human language in the course of future investigations,
they point out a research direction in which formal semantics and the structure of human
languages can be fruitfully combined with information theory. What seems also interesting
in this framework is that we may also ask metalinguistic questions such as what kind
of theories of language can be potentially finite—such as unbounded lexicons vs. finite
universal grammars. The Chomskyan linguistics stressed the importance of finite theories
of language learning, which is a great interdisciplinary research question, but from the
perspective of an ever-learning language user, divergent language theories such as bloated
dictionaries or imprecise school grammars can be very useful, too—and they should not
be abandoned.
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witnessed in the information-theoretic literature as well. The additional, more novel contribution
of manuscript (b) concerns perigraphic and Oracle processes. In terms of mathematical content,
manuscript (b) is almost equivalent to the present article but it contains much fewer language-
oriented passages. The funders had no role in the design of the study; in the collection, analyses, or
interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Appendix A. Proofs

Proof of Theorem 1. Write δ = hilbn→∞ J(n). The proof of

hilb
n→∞

(S(n)− ns) ≤ δ (A1)

can be found in [36] (Theorem 8.2). (Notice that, in [27], which proves apparently the same
statement, the Hilberg exponent is defined on a sparse subsequence.) Now assume that
S(n)− ns ≥ −C for all but finitely many n. We have then

S(n)− ns =
J(n)

2
+

S(2n)− 2ns
2

≥ J(n)− C
2

(A2)

for a sufficiently large n. Hence, δ ≤ hilbn→∞(S(n)− ns). Thus, we obtain the equality
in (19).

Proof of Theorem 2. Let us denote the set of distinct maximum likelihood parameters

Pkn :=
{
(y, τ, ε) : ∃xn

1
P(xn

1 |k, y, τ, ε) = P̂(xn
1 |k)

}
. (A3)

As explained in [81], we can bound

C(n|k) = log

 ∑
xn

1∈Xn
P̂(xn

1 |k)

 ≤ log|Pkn|. (A4)

Given a fixed (y, τ), likelihood P(xn
1 |k, y, τ, ε) is maximized for the empirical distribution

ε(b|a) = ∑n
i=1 1{(yi, xi) = (a, b)}

∑n
i=1 1{yi = a} , (A5)

where y1 = y and yi = τ(yi−1, xi−1) for i ≥ 2. Since there are k · kk|X| possible values of
pairs (y, τ), whereas for a fixed pair (y, τ) there are less than (n + 1)k|X| distinct empirical
distributions ε, we can bound the family complexity of the unifilar hidden Markov family as

C(n|k) ≤ log|Pkn| ≤ log
(

kk|X|+1(n + 1)k|X|
)
≤ [k|X|+ 1] log[k(n + 1)]. (A6)

Proof of Theorem 3. Letting τ(xk
1, xk+1) = xk+1

2 and ε(xk+1|xk
1) = P(Xk+1 = xk+1|Xk

1 =
xk

1), we obtain the conditional probability bound

P̂(Xn
1 ||X|

k) ≥ P(Xn
1 ||X|

k, X0
−k+1, τ, ε) =

n

∏
i=1

P(Xi|Xi−1
i−k ). (A7)

Hence, by the upper bound (33) for the family complexity and by the Birkhoff ergodic
theorem, we obtain

lim sup
n→∞

1
n

[
− logP(Xn

1 ||X|
k)
]

= lim sup
n→∞

1
n

[
− log P̂(Xn

1 ||X|
k) +C(n||X|k)

]
≤ hk almost surely. (A8)
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Thus, by the upper bound

− logP(xn
1 ) ≤ − logP(xn

1 |k)− log wk. (A9)

and by the Barron lemma [121] (Theorem 3.1), we obtain (34). Noticing that P(Xn
1 ) ≥

wnP(Xn
1 |n) = wn|X|−n, we hence obtain (35) by dominated convergence.

Proof of Theorem 4. Our proof of consistency (37) is split into two separate impossibility
proofs for overestimation and for underestimation.

The bound for the overestimation probability (considering the case of MU < ∞ is
sufficient) is received by inequality P̂(Xn

1 |MU) ≥ P(Xn
1 |Y1), where Y1 is the hidden state

emitting X1, and by the Barron lemma [121] (Theorem 3.1). Hence,

P(M(Xn
1 ) > MU) ≤ P

(
P̂(Xn

1 |MU) < wnP(Xn
1 )
)

≤ P
(

wnP(Xn
1 )

P(Xn
1 |Y1)

> 1
)
≤ wn. (A10)

Since ∑∞
n=1 wn = 1, the impossibility of overestimation follows by the Borel–Cantelli

lemma.
Now, we demonstrate the impossibility of underestimation for both MU < ∞ and

MU = ∞, which is more involved. Since the Ryabko mixture is universal in the sense
of (34) and the penalty is − log wn = o(n), it is sufficient to show that

lim inf
n→∞

1
n

[
− log P̂(Xn

1 |k)
]
> h almost surely for k < MU . (A11)

Our reasoning proceeds by showing that the left-hand side of the above inequality equals
almost surely a sort of conditional entropy h[k], which is strictly greater than h if k < MU .

We observe first that, for any finite setM,

lim inf
n→∞

min
m∈M

anm = min
m∈M

lim inf
n→∞

anm. (A12)

It is so since we can take sufficiently large n on both sides to interchange the infimums. In
our case, the set of pairs (y, τ) for a fixed k is finite. Hence,

lim inf
n→∞

1
n

[
− log P̂(Xn

1 |k)
]
= lim inf

n→∞
min
y,τ,ε

1
n
[− logP(Xn

1 |k, y, τ, ε)]

= min
y,τ

lim inf
n→∞

min
ε

1
n
[− logP(Xn

1 |k, y, τ, ε)]. (A13)

Notice that, here, we cannot apply Lemmas 1–7 from Gassiat and Boucheron [101] although
they relate to an expression partly resembling (A13) for MU < ∞ (the order of the limit on
n and the minimization on ε are interchanged).

To deal also with MU = ∞ and to circumvent the difficulty of directly using results
from [101], we apply a technically difficult but beautiful result by Kieffer and Rahe [105],
which says that an ergodic Markov channel applied to an ergodic asymptotically mean
stationary process yields a jointly ergodic asymptotically mean stationary process. De-
note Yy,τ

1 := y ∈ {1, . . . , k} and Yy,τ
i+1 := τ(Yy,τ

i , Xi). We can see that the distribution of
(Yy,τ

i )i∈N given (Xi)i∈N is an ergodic Markov channel, whereas process (Xi)i∈N is station-
ary ergodic. Thus, process (Xi, Yy,τ

i )i∈N is asymptotically mean stationary ergodic. Let
process (X̄i, Ȳy,τ

i )i∈Z be distributed according to the stationary mean of (Xi, Yy,τ
i )i∈N. Since

(Xi)i∈N is stationary, we can assume without loss of generality that (X̄i)i∈N = (Xi)i∈N.
Moreover, by definition of the stationary mean, recursion Ȳy,τ

i+1 = τ(Ȳy,τ
i , Xi) holds by

recursion Yy,τ
i+1 = τ(Yy,τ

i , Xi). (Notice, however, that we cannot assume Ȳy,τ
i = σy,τ(Xi−1

−∞)

since there is a simple counterexample: a periodic process (Yy,τ
i )i∈N with a constant process

(Xi)i∈N.)
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The beauty of asymptotically mean stationary processes lies in the fact that we have a
generalization of the Birkhoff ergodic theorem [122]. The claim is that the Cesàro averages
converge almost surely to expectations with respect to the stationary mean. Hence, by
the application of the Birkhoff ergodic theorem to empirical counts in the most likely
distribution ε given (y, τ), we obtain

min
y,τ

lim inf
n→∞

min
ε

1
n
[− logP(Xn

1 |k, y, τ, ε)]

= min
y,τ

lim inf
n→∞

min
ε

1
n

n

∑
i=1

[
− log ε(Xi|Y

y,τ
i )

]
= h[k] := min

y,τ
E
[
− log P(Xi|Ȳ

y,τ
i )

]
almost surely. (A14)

Let y and τ be some minimizing parameters, and let us abbreviate Ȳi := Ȳy,τ
i . What

happens if h[k] := H(Xi|Ȳi) = h? Since Ȳi+1 = τ(Ȳi, Xi), we can write

H(Xi|Ȳi)− H(Xi|Xi−1
1 , Ȳ1) = I(Xi; Xi−1

1 , Ȳi−1
1 |Ȳi). (A15)

Hence, by stationarity of (Xi, Ȳy,τ
i )i∈Z,

n

∑
i=1

H(Xi|Ȳi) = H(Xn
1 |Ȳ1) +

n−1

∑
i=0

I(Xj; X j−1
j−i , Ȳ j−1

j−i |Ȳj). (A16)

Dividing by n and letting n→ ∞ yields

h[k] := H(Xi|Ȳi) = h + I(Xj; X j−1
−∞, Ȳ j−1

−∞ |Ȳj), (A17)

where we freely apply Shannon information measures for arbitrary σ-fields. (Their prop-
erties were described in [123,124].) That is, if h[k] = h, then I(Xi; Xi−1

−∞, Ȳi−1
−∞ |Ȳi) = 0. Since

also Ȳi+1 = τ(Ȳi, Xi), then (Xi)i∈N is a unifilar hidden Markov process with ≤ k hidden
states distributed according to Ȳi. Consequently, we have MU ≤ k.

Subsequently, let us prove the asymptotic unbiasedness (38). By M(xn
1 ) ≤ n and by

the overestimation bound (A10), we have

EM(Xn
1 ) ≤ MU + nP(M(xn

1 ) > MU) = MU +
1

n + 1
. (A18)

On the other hand, by the Fatou lemma,

MU = E lim inf
n→∞

M(Xn
1 ) ≤ lim inf

n→∞
EM(Xn

1 ). (A19)

Hence, claim (38) follows.

Proof of Theorem 5. The maximum log-likelihood is subadditive:

− log P̂(xn
1 |k)− log P̂(xn+m

n+1 |k) + log P̂(xn+m
1 |k) ≤ 0. (A20)

Denoting k := M(X2n
1 ) ≤ 2n, we observe by (36), (A9), and (A20) that

− logP(Xn
1 )− logP(X2n

n+1) + logP(X2n
1 )

≤ − logP(Xn
1 |k)− logP(X2n

n+1|k)− 2 log wk + log P̂(X2n
1 |k)− log w2n

≤ 2C(n|k)− 2 log wk − log w2n − log P̂(Xn
1 |k)− log P̂(X2n

n+1|k) + log P̂(X2n
1 |k)

≤ 2C(n|k)− 2 log wk − log w2n. (A21)
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Hence, by bound (33) for family complexity, we obtain

βP ≤ hilb
n→∞

EC(n|M(X2n
1 )) ≤ hilb

n→∞
EM(Xn

1 ). (A22)

Proof of Theorem 6. Let (Xi)i∈Z be a hidden Markov process over a finite alphabet X
with respect to a Markov process (Yi)i∈Z over a finite alphabet Y. Then, process (X̃i)i∈Z
given by X̃i = (Xi, Yi) is also a Markov process over a finite alphabet X × Y. Since
Xi = f (X̃i) for a computable function f , the data-processing inequality for algorithmic
mutual information yields

J(X0
−n+1; Xn

1 ) ≤ J(X̃0
−n+1; X̃n

1 ) + C, (A23)

where constant C does not depend on n. Process (X̃i)i∈Z is a Markov process over a finite
alphabet so it has finitely many ergodic components, which can be written as P(A) =

∑k
i=1 νiFi(A). Thus, by asymptotic unbiasedness (38) of the unifilar order estimator on each

ergodic component, we obtain

lim
n→∞

EM(X̃n
1 ) = lim

n→∞

∫ k

∑
i=1

νiM(X̃n
1 )dF

=
k

∑
i=1

νi lim
n→∞

∫
M(X̃n

1 )dF =
k

∑
i=1

νi M̃i
U ≤ M̃U < ∞, (A24)

since M̃i
U ≤ M̃U , where M̃i

U is the unifilar order of the ith ergodic component and M̃U is
the unifilar order of process (X̃i)i∈Z. Hence, by (A23), Theorem 5, and (A24), we obtain

βK ≤ β̃K ≤ β̃P ≤ β̃M = hilb
n→∞

EM(X̃n
1 ) = 0, (A25)

where the quantities with the tilde pertain to process (X̃i)i∈Z.

Proof of Theorem 7. Inequalities β+
g,z ≥ γ+

g,z and βg,z ≥ γg,z follow by the general property
of Hilberg exponents: If Sn ≤ Sn+1 holds for a sequence of random variables Sn, then
hilbn→∞ Sn ≤ hilbn→∞ E Sn almost surely [36] (Theorem 8.4). As for claim β+

g,z = βg,z, let
us observe that

Ug,z
1,n ≥ Lg,z

n = min
{

Ug,z
−n+1,0, Ug,z

1,n

}
= Ug,z

−n+1,0 + Ug,z
1,n −max

{
Ug,z
−n+1,0, Ug,z

1,n

}
≥ Ug,z

−n+1,0 + Ug,z
1,n −Ug,z

−n+1,n. (A26)

Applying expectations and stationarity yields

E Ug,z
1,n ≥ E Lg,z

n ≥ 2 E Ug,z
1,n − E Ug,z

1,2n. (A27)

Consequently, β+
g,z = βg,z follows by Theorem 1 if limn→∞ E Ug,z

1,n/n = 0.

Proof of Theorem 8. A unifilar process (Xi)i∈N is stationary and extendable to a stationary
process (Xi, Yi)i∈Z if

∑
x1,y1

π(y1)ε(x1|y1)1{y2 = τ(y1, x1)} = π(y2). (A28)

Using Equation (A28), we can easily determine the stationary initial distribution π

as π(ay) = π(a)
(

θ
2

)|y|
, π(by) = π(ay)(1− θ), and π(a) = (1− θ)/(2− θ). Subsequently,

we recall that the entropy rate of a process (Xi)i∈N unifilar with respect to a stationary
process (Yi)i∈N with entropy H(Yi) = −∑y∈Y π(y) log π(y) < ∞ equals
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h = ∑
y∈Y

π(y)

[
− ∑

x∈X
ε(x|y) log ε(x|y)

]
, (A29)

cf. [125–127]. (The entropy rate of a nonunifilar hidden Markov process is much more
difficult to compute [128–131].) In our case, we have

H(Yi) = − ∑
y∈{a,b}×{0,1}∗

π(y) log π(y)

= ∑
y∈{0,1}∗

[−(2− θ)π(ay) log π(ay)− (1− θ)π(ay) log(1− θ)]

=
1− θ

2− θ

∞

∑
k=0

[
−(2− θ)θkk log

θ(1− θ)

2(2− θ)
− (1− θ)θk log(1− θ)

]
=

(1− θ)

(2− θ)

[
− (2− θ)θ

(1− θ)2 log
θ(1− θ)

2(2− θ)
− log(1− θ)

]
=

(2− θ)θ[− log θ + 1 + log(2− θ)]− log(1− θ)

(1− θ)(2− θ)
. (A30)

Since this entropy is finite, we can compute the entropy rate by (A29) as

h = ∑
y∈{0,1}∗

π(ay)
[
−θ log

θ

2
− (1− θ) log(1− θ)

]

= π(a)
∞

∑
n=0

θn[h(θ) + θ] =
h(θ) + θ

2− θ
. (A31)

Proof of Theorem 9. Let us observe that, for knowledge extractor (58), we have Ug,z
m,n ≤

Ug,z
m,n+1, Ug,z

m−1,n, so inequalities (54)–(55) apply. Thus, by Theorem 5 and inequalities
(49)–(52), it suffices to show β ≤ γg,z and βM ≤ β, where

β :=
1

1− log θ
. (A32)

The proof of β ≤ γg,z applies techniques developed in [27] for Santa Fe processes. The
proof of βM ≤ β uses some ideas from [108] derived also for Santa Fe processes. For both
goals of the proof, we apply random variables Wi ∈ {0, 1}∗ and Zi ∈ {0, 1} constructed
through parsing

X∞
1 = R0W02Z0W12Z1W22Z2W32Z3 . . . , (A33)

X0
−∞ = . . . W−32Z−3W−22Z−2W−12Z−1R−1, (A34)

where R−1 and R0 are the shortest random strings such that these equalities are satisfied.
Obviously, Zi = zφ(Wi)

for the Oracle(θ) process. By contrast, by the strong Markov
property, random variables (Wi)i∈Z\{0} form an IID process, where

P(Wi = y) = (1− θ)

(
θ

2

)|y|
. (A35)

Write N±n := 2n + ∑n
i=1|W±i|. Since

E|Wi| = (1− θ) ∑
y∈{0,1}∗

|y|
(

θ

2

)|y|
= (1− θ)

n

∑
n=0

nθn =
θ

1− θ
, (A36)

we have E N±n = ρ n, where ρ := 2−θ
1−θ . Since E|Wi| < ∞, then by the Birkhoff ergodic

theorem, we obtain limn→∞ N±n /n = ρ almost surely. Additionally, if we define Ñ±n :=
max{m : N±m ≤ n}, then limn→∞ Ñ±n /n = ρ−1 almost surely.
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To demonstrate the first goal of the proof, we define

U±n := min
{

k ≥ 1 : ψ(k) 6∈ {W±i}n
i=1
}

. (A37)

We see that Lg,z
n = min

{
U−

Ñ−n
, U+

Ñ+
n

}
. Since limn→∞ Ñ±n /n = ρ−1 almost surely and U±n is

a nondecreasing function of n, we obtain

γg,z = hilb
n→∞

Lg,z
n ≥ lim inf

n→∞

log min{U−n , U+
n }

log n
almost surely. (A38)

Consequently, so as to bound U±n , we observe

P(U±n < 2m) ≤
2m−1

∑
k=1

P(ψ(k) 6∈ {Wi}n
i=1) = ∑

y∈{0,1}<m
P(y 6∈ {Wi}n

i=1)

=
m−1

∑
k=0

2k

(
1− (1− θ)

(
θ

2

)k
)n

≤ 2m
(

1− (1− θ)

(
θ

2

)m)n

≤ 2m exp
(
−(1− θ)n

(
θ

2

)m)
= 2m exp

(
−(1− θ)n2−m/β

)
. (A39)

Putting mn = β(1− ε) log n for an arbitrary ε > 0, we obtain

∞

∑
n=1

P(U−n < 2mn or U+
n < 2mn) ≤ 2

∞

∑
n=1

nβ(1−ε) exp(−(1− θ)nε) < ∞. (A40)

Hence, by the Borel–Cantelli lemma, we obtain

β ≤ lim inf
n→∞

log min{U−n , U+
n }

log n
≤ γg,z almost surely. (A41)

Thus, we accomplished the first goal of the proof.
To demonstrate the second goal of the proof, let us define

Mn := ∑
y∈{0,1}∗

(|y|+ 2)1
{

y ∈ {Wi}n
i=1
}

. (A42)

We observe P̂(Xn
1 |MÑ+

n
+ Cn) ≥ P(Xn

1 |Y1), where Y1 is the hidden state emitting X1 and

Cn = |R0W02Z0|+
∣∣∣WÑ+

n
2ZÑ+

n

∣∣∣. It is so since we can express probability P(Xn
1 |Y1) as prob-

ability of a unifilar process with MÑ+
n
+ Cn hidden states. Thus, by the Barron lemma [121]

(Theorem 3.1), we obtain

P
(
M(Xn

1 ) > MÑ+
n
+ Cn

)
≤ P

(
P̂(Xn

1 |MÑ+
n
+ Cn) < wnP(Xn

1 )
)

≤ P
(

wnP(Xn
1 )

P(Xn
1 |Y1)

> 1
)
≤ wn. (A43)

Since M(Xn
1 ) ≤ n holds uniformly,

EM(Xn
1 ) ≤ E MÑ+

n
+ E Cn + nwn. (A44)

We observe that E Cn + nwn is bounded as a function of n, so it suffices to take care of
E MÑ+

n
. Since Mn is a nondecreasing function of n and Ñ+

n < n, we may further bound

E MÑ+
n
≤ E Mn. (A45)

Hence,

hilb
n→∞

EM(Xn
1 ) ≤ hilb

n→∞
E MÑ+

n
≤ hilb

n→∞
E Mn. (A46)
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Consequently, so as to bound E Mn, we notice

E Mn = ∑
y∈{0,1}∗

(|y|+ 2)P(y ∈ {Wi}n
i=1)

=
∞

∑
k=0

(k + 2)2k

(
1−

(
1− (1− θ)

(
θ

2

)k
)n)

≤
∞

∑
k=0

(k + 2)2k
(

1−
(

1− 2−k/β
)n)

. (A47)

Hence, adapting the computations from the proof of Proposition 1 by [108], we obtain up
to a small constant

E Mn .
∫ ∞

0
(k + 2)2k

(
1−

(
1− 2−k/β

)n)
dk

=
1

ln 2

∫ ∞

1
(log p + 2)

(
1−

(
1− p−1/β

)n)
dp

{
p := 2k

}
=

β2

ln 2

∫ 1

0

(1− u)(log(1− u1/n)−1 + 2)du
u1−1/nn(1− u1/n)β+1

{
u :=

(
1− p−1/β

)n}
=

β2nβ(log n + 2)
ln 2

∫ 1

0
fn(u)du +

β2nβ

ln 2

∫ 1

0
gn(u)du, (A48)

where we denote functions

fn(u) :=
(1− u)

u1−1/n[n(1− u1/n)]β+1 , gn(u) := fn(u) log[n(1− u1/n)]−1. (A49)

These functions tend to limits

lim
n→∞

fn(u) = f (u) :=
(1− u)

u(− ln u)β+1 , lim
n→∞

gn(u) = g(u) := f (u) log(− ln u)−1. (A50)

We notice upper bounds fn(u) ≤ f (u) and gn(u) ≤ g1(u) for u ∈ (0, 1). Moreover,
functions f (u) and g1(u) are integrable on u ∈ (0, 1). Indeed putting t := − ln u and
integrating by parts yields∫ 1

0
f (u)du =

∫ ∞

0
(1− e−t) t−β−1dt

= (1− e−t)(−β−1)t−β|∞0 +
∫ ∞

0
e−tβ−1t−βdt = β−1Γ(1− β), (A51)

whereas putting t = 1− u and integrating by parts yields∫ 1

0
g1(u)du = −

∫ 1

0

log t
tβ

dt

= −(log t)(1− β)−1t1−β|10 +
∫ 1

0
(1− β)−1t−βdt = (1− β)−2. (A52)

Hence, we derive

hilb
n→∞

EM(Xn
1 ) ≤ hilb

n→∞
E Mn ≤ β. (A53)

This completes the second goal of the proof.
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