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Abstract: The Wasserstein distance, especially among symmetric positive-definite matrices, has
broad and deep influences on the development of artificial intelligence (AI) and other branches
of computer science. In this paper, by involving the Wasserstein metric on SPD(n), we obtain
computationally feasible expressions for some geometric quantities, including geodesics, exponential
maps, the Riemannian connection, Jacobi fields and curvatures, particularly the scalar curvature.
Furthermore, we discuss the behavior of geodesics and prove that the manifold is globally geodesic
convex. Finally, we design algorithms for point cloud denoising and edge detecting of a polluted
image based on the Wasserstein curvature on SPD(n). The experimental results show the efficiency
and robustness of our curvature-based methods.

Keywords: symmetric positive-definite matrix; Wasserstein metric; curvature; point cloud denoising;
image edge detecting

1. Introduction

Symmetric positive-definite matrices have wide usage in many fields of information
science, such as stability analysis of signal processing, linear stationary systems, optimal
control strategies and imaging analysis [1–3]. Its importance is beyond words [4,5]. Instead
of considering a single matrix, contemporary scientists tend to comprehend the global
structure of the set consisting of all n× n symmetric positive-definite matrices. This set is
known as SPD(n). SPD(n) can be endowed with various structures. The most traditional
Euclidean metric is induced as submanifold metric from the Euclidean inner product on
the space of matrices. X. Pennec, P. Fillard et al. [6] defined the affine-invariant Riemannian
metric. V. Arsigny, P. Fillard et al. [7] showed the Lie group [8] structure on SPD(n), which
admits a bi-invariant metric called the Log-Euclidean metric.

Recently, by constructing a principle bundle, Y. Li, M. Wong et al. [9] and S. Zhang et al. [10]
defined a new Riemannian metric on SPD(n) whose geodesic distance is equivalent to the
Wasserstein-2 [11,12] distance, the so-called Wasserstein metric. This distance rather than
the metric has been widely used in artificial intelligence [13]. In geometry, encouragingly,
T. Asuka [14] and E. Massart, P.-A. Absil [15] gave a series of expressions for geometric
quantities theoretically. However, these expressions are too general or complicated to be
applied. In this paper, we derive more computationally feasible expressions in a concrete
case. Moreover, we give the Jacobi field and scalar curvature.

Along the blooming of data science, point cloud processing, especially denoising,
plays an increasingly important role in data relevant researches and engineering. There are
immense literature in point cloud denoising and widely used algorithms packed as inline
functions of softwares such as PCL [16]. These methods share a common drawback when
high density noise is added to point clouds. Utilizing the geometric structure of SPD(n),
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we design a novel algorithm to overcome this drawback. Compared to traditional methods,
our algorithm is more accurate and less dependent on artificial parameters.

In addition to that, we involve our theory for image edge detection, which is a
classical problem in image processing and design a new detecting algorithm. Different
from traditional gradient-based filters, such as Sobel, Prewitt and Laplacian, we present
the connection between Wasserstein sectional curvature and edges. Experiments show the
feasibility of our algorithm.

The paper is organized as follows. In Section 2, we introduce some basic knowledge of
the Riemannian manifold (SPD(n), gW), and consider the symmetry of the (SPD(n), gW)
as well. In Section 3, we describe the Wasserstein geometry of SPD(n), including the
geodesic, exponential map, connection and curvature. In particular, we prove the geodesic
convexity and the nonexistence of cut locus and conjugate pair. In Section 4, we design an
adaptive algorithm to denoise point clouds. In Section 5, we develop a curvature-based
method to detect image edge. Proofs and detailed numerical results are presented in the
Appendix B.

2. Preliminary
2.1. Notation

In this paper, we adopt conventional notations in algebra and geometry. Riemannian
manifolds are denoted as pairs of (manifold, metric). For example, our mainly interesting
object is (SPD(n), gW), meaning SPD(n) endowed with Wasserstein metric. Rn is the
n-dimensional Euclidean space. M(n) represents the set of n× n matrices, Sym(n) means
the set of n× n symmetric matrices, and O(n) means the set of n× n orthogonal matrices.
TA M is conventionally the tangent space of M at a point A.

Λ always represents a diagonal n× n matrix. For an n× n matrix A, λ(A) or λi(A)
means an eigenvalue or the i-th eigenvalue of A, respectively. The components of matrix A
with the entries Aij will always be noted as [Aij]. The identity matrix is denoted as I. In
this paper, we conventionally express points on manifolds as A, B and vector fields as X, Y.

Sylvester equation is one of the most classical matrix equations. The following special
case of Sylvester equation plays a key role in understand the geometry of (SPD(n), gW)

AK + KA = X, A ∈ SPD(n), X ∈ Sym(n). (1)

We denote the solution about K of (1) as ΓA[X]. Then, the matrix ΓA[X] ∈ M(n) satisfies

AΓA[X] + ΓA[X]A = X. (2)

From geometric aspects, we can ensure the existence and uniqueness of the solution in the
case involved in this paper. Some properties of ΓA[X] can be found in Appendix A. More
details about the Sylvester equation are presented in [17].

We recall an algorithm to solve this kind of Sylvester equations, which offers an explicit
expression of the solution. This expression only depends on the eigenvalue decomposition.
More details can be found in [10].

Algorithm 1 will be used frequently in the following passage, and it helps us to
comprehend the geometry of SPD(n). Note that this algorithm can also be used for general
X ∈ M(n). In particular, when X is symmetric (skew-symmetric), ΓA[X] is also symmetric
(skew-symmetric). Moreover, this algorithm will be simplified if A is diagonal.
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Algorithm 1 Solution of Sylvester Equation.
Input: A ∈ SPD(n), X ∈ Sym(n)
Output: ΓA[X]

1: Eigenvalue decomposition, A = QΛQT , where Q ∈ O(n), Λ := diag(λ1, · · · , λn) are
eigenvalues of A;

2: CX := [cij] = QTXQ;

3: EX = [eij] =
( cij

λi+λj

)
;

4: ΓA[X] = QEQT .

2.2. Wasserstein Metric

In this part, we introduce the Wasserstein metric on SPD(n).

Definition 1. For any A ∈ SPD(n), X, Y ∈ TASPD(n), define

gW |A(X, Y) = tr(ΓA[X]AΓA[Y]) =
1
2

tr(XΓA[Y]). (3)

In the second equation, we use the facts that ΓA[X], ΓA[Y], A are all symetric and
that AΓA[X] + ΓA[X]A = X. One can check that gW is a symmetric and non-degenerated
bilinear tensor fields on SPD(n) [18]. We call gW the Wasserstein metric.

Denote gE(X̃, Ỹ) := tr(X̃TỸ), ∀Ã ∈ GL(n), X̃, Ỹ ∈ TÃGL(n) as Euclidean metric on
GL(n). Then, we have the following conclusions.

Proposition 1. The projection

σ : (GL(n), gE)→ (SPD(n), gW)

Ã 7→ ÃT Ã
(4)

is a Riemannian submersion [19], which means that dσ is surjective and

gE(X̃, Ỹ) = gW(dσ(X̃), dσ(Ỹ)) = gW(X, Y). (5)

Remark 1. The general linear group with Euclidean metric (GL(n), gE) and projection σ is a
trivial principal bundles on SPD(n) with orthogonal group O(n) as the structure group. This
bundle structure establishes two facts [10]: SPD(n) ∼= GL(n)/O(n), and gE remains invariant
under the group action of O(n).

Before giving more conclusions, we review some concepts. For any Ã ∈ GL(n), we
say that the tangent vector Ṽ ∈ TÃGL(n) is vertical if dσ(Ṽ) = 0, and W̃ ∈ TÃGL(n) is
horizontal if gW |Ã(Ṽ, W̃) = 0 for all vertical vecters Ṽ. In addition to that, if dσ(X̃) = X ∈
TASPD(n), we call X̃ as a lift of X, where A = σ(Ã). Using the notation ΓA[X], we can
find the horizontal lift of X ∈ TASPD(n).

Proposition 2. For any Ã ∈ (GL(n), gE), A = σ(Ã) and any X ∈ TASPD(n), there is a
unique X̃ to be the horizontal lift of X at TÃGL(n)—that is,

X̃ = ÃΓA[X]. (6)

Using Proposition 2, we can obtain the representations of horizontal and vertical
vectors.

Proposition 3. For any Ã ∈ (GL(n), gE), TÃGL(n) has the following orthogonal decomposition

TÃGL(n) = H(Ã)⊕V(Ã), (7)
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where H(Ã) consists of all horizontal vectors, V(Ã) consists of all vertical vectors, and

H(Ã) = {ÃK | KT = K}, V(Ã) = {SÃ | ST = −S}. (8)

Proofs of Proposition 2 and 3 can be found in [10].

2.3. Symmetry

Now we study the symmetry of (SPD(n), gW). Consider orthogonal group action
Ψ : O(n)× SPD(n)→ SPD(n) defined by

ΨO(A) = OAOT , ∀O ∈ O(n), A ∈ SPD(n). (9)

One can check that Ψ is a group action of O(n) and that dΨO are isometric for all O ∈ O(n),
which means that O(n) is isomorphic to a subgroup of the isometry group ISO(SPD(n), gW)
on SPD(n). Precisely, we have

{ΨO}O∈O(n) � ISO(SPD(n), gW). (10)

According to (10), when we study local geometric characteristics, we only need to
consider the sorted diagonal matrices as the representational elements under the orthogonal
action rather than all general points on SPD(n). Therefore, some pointwise quantities,
such as the scalar curvature and the bounds of sectional curvatures, depend only on the
eigenvalues.

At the end of this part, we give the symmetry degree of (SPD(n), gW), which is
defined by the dimension of ISO(SPD(n), gW).

Proposition 4. (SPD(n)), gW) has its symmetry degree controlled by

1
2
(n− 1)n ≤ dim(ISO(SPD(n), gW)) ≤ 1

8
(n− 1)n(n + 1)(n + 2) + 1. (11)

Proof. The famous interval theorem [20] about isometric group shows the nonexistence of
isometric groups with dimension between m(m−1)

2 + 1 and m(m+1)
2 , for any m-dimensional

Riemannian manifold, except m 6= 4.
On one hand, For an n-dimensional Riemannian manifold, the dimension of isometry

group achieves maximum if and only if it has constant sectional curvature. However, we
will show later that (SPD(n), gW) has no constant sectional curvature, which means its
symmetry degree is less than the highest.

On the other hand, equation (10) shows that the dimension of Wasserstein isometric
group is higher than the dimension of O(n). Therefore, by dim(SPD(n)) = n2+n

2 6= 4 and
dim(O(n)) = n2−n

2 , we obtain the desired result.

3. Wasserstein Geometry of SPD(n)
3.1. Geodesic

In this part, we give the expression of geodesic on (SPD(n), gW), including the
geodesic jointing of two points and the geodesic with initial values. Then, we will show
that the whole Riemannian manifold (SPD(n), gW) is geodesic convex, which means that
we can always find the minimal geodesic jointing any two points. To some extent, geodesic
convexity may make up for the incompleteness of (SPD(n), gW).

To prove the geodesic convexity of (SPD(n), gW), we need the following theorem.

Theorem 1. For any A1, A2 ∈ SPD(n), let Ã1 = A
1
2
1 be the fixed lift of A1, there exists a lift of

A2

Ã2 = A−
1
2

1 (A1 A2)
1
2 , (12)
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such that the line segment γ̃(t) = tÃ2 + (1− t)Ã1, t ∈ [0, 1] is horizontal and non-degenerated.

Proof of Theorem 1 can be found in Appendix B. This theorem brings some geometrical
and physical facts.

Corollary 1. (geodesic convexity) (SPD(n), gW) is a geodesic convex Riemannian manifold.
Between any two points A1, A2 ∈ SPD(n), there exists a minimal Wasserstein geodesic

γ(t) = (1− t)2 A1 + t(1− t)
(
(A1 A2)

1
2 + (A2 A1)

1
2

)
+ t2 A2, (13)

where γ(t) lies on SPD(n) strictly. Thus, (SPD(n), gW) is geodesic convex.

The similar expression of geodesic can also be found in several papers [14,15].

Theorem 2. For any two points in (SPD(n), gW), there exists a unique geodesic jointing them.
From geometric aspect, there is no cut locus on any geodesic.

Proof. We have proved the existence of minimal geodesic jointing any two points in
Corollary 1. Assume that the there exists two minimal geodesics jointing A, B ∈ SPD(n).
Fix Ã = A

1
2 as the horizontal lift of A and lift horizontally these two geodesic, we will find

two horizontal lifts of B. Denote these two lifts as B̃1 = B
1
2 Q1, B̃2 = B

1
2 Q2, Q1, Q2 ∈ O(n).

Then, Q1 and Q2 are both solutions of the following optimization problem

arg min
Q∈O(n)

dF(A
1
2 , B

1
2 Q). (14)

Since the compactness of O(n), this problem has a unique solution. Thus, we prove the
uniqueness of minimal geodesic.

Remark 2. Due to the nonexistence of cut locus, there exists no conjugate pair on (SPD(n), gW).

3.2. Exponential Map

Following Lemma A1, we can directly write down the Wasserstein logarithm on
SPD(n), for any A1 ∈ SPD(n), logA1

: SPD(n)→ TA1 SPD(n)

logA1
A2 = dσ|

A
1
2
1

˙̃γ(0) = (A1 A2)
1
2 + (A2 A1)

1
2 − 2A1. (15)

By solving the inverse problem of above equation, we gain the expression of the Wasserstein
exponential.

Theorem 3. In a small open ball B(0, ε), ε > 0 in TASPD(n) ∼= R 1
2 n(n+1), the Wasserstein

exponential at A, expA : B(0, ε)→ SPD(n) is explicitly expressed by

expA X = A + X + ΓA[X]AΓA[X]. (16)

Proof. By choosing the normal coordinates [21] at A, there always exist neighborhoods
where expA is well-defined. From (15), given expA X as well-defined, this satisfies

(A expA X)
1
2 + (expA XA)

1
2 = X + 2A. (17)
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This equation can convert to the Sylvester equation, and we can express its solution as

AA−1(A expA X)
1
2 + (expA XA)

1
2 A−1 A = X + 2A

⇔ A(A−1(A expA X)
1
2 ) + (A−1(A expA X)

1
2 )A = X + 2A

⇔ AΓA[X + 2A] = (A expA X)
1
2 .

(18)

Therefore, we have

expA X = ΓA[X + 2A]AΓA[X + 2A] = A + X + ΓA[X]AΓA[X], (19)

which finishes this proof.

Remark 3. We call the first two terms of right hand A + X as the Euclidean exponential, and the
last term of right hand ΓA[X]AΓA[X] as the Wasserstein correction for this bend manifold.

Corollary 2. The geodesic equations with initial conditions γ(0), γ̇(0) on (SPD(n), gW) have
the following explicit solution

γ(t) = γ(0) + tγ̇(0) + t2Γγ(0)[γ̇(0)]γ(0)Γγ(0)[γ̇(0)], t ∈ (−ε, ε). (20)

Using an exponential map, one can directly construct Jacobi fields with the geodesic
variation.

Theorem 4. Along a geodesic γ(t) with γ(0) = A ∈ SPD(n), γ̇(0) = X ∈ TASPD(n), there
exists a unique normal Jacobi vector field J(t) with initial conditions J(0) = 0,∇γ̇(0) J(t) = Y ∈
TASPD(n), where gW |A〈X, Y〉 = 0. We have

J(t) = tY + t2(ΓA[X]AΓA[Y] + ΓA[Y]AΓA[X]). (21)

As in [18], J(t) is constructed by

J(t) :=
∂

∂s

∣∣∣∣
s=0

expA t(X + sY), (22)

substituting (16) into (22), and Theorem 4 comes from direct computation.
Subsequently, the next natural question is what is the maximal length of the extension

of a geodesic. This question is equivalent to what is the largest domain of the exponential.
We still focus on diagonal matrices.

Theorem 5. For any A ∈ SPD(n) and X ∈ TASPD(n), expA(tX) : [0, ε) → SPD(n) is
well-defined if and only if

εmax =

{
− 1

λmin
, if λmin < 0

+∞, if λmin ≥ 0
, (23)

where λmin is the minimal eigenvalue of ΓA[X].

Proof. Evidently, εmax = min{s > 0 | det(expA(sX)) = 0}. By (19), we have

det(expA(sX)) = det(A)det2(I + sΓA[X]) = 0⇔ s = − 1
λ(ΓA[X])

, (24)

where λ(ΓA[X]) is the eigenvalue of ΓA[X]. Thus, εmax = min
{
− 1

λ(ΓA [X])
> 0

}
.

Corollary 3. The Wasserstein metric gW on SPD(n) is incomplete.
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Corollary 3 can be directly obtained from Hopf–Rinow theorem [22]. Theorem 5 and
the next theorem help us to comprehend the size of (SPD(n), gW) from sense of each point.

Figure 1 shows geodesics starting from different origins on SPD(2). From this group
of pictures, we can observe the outline of the manifold and some behaviors of geodesics.

(a) geodesics starting from [1,0;0,1] (b) geodesics starting from [1,0;0,1]

Figure 1. Geodesics of gW on SPD(2).

Using εmax, we can obtain the injectivity radius r(A), ∀A ∈ SPD(n). Geometrically
speaking, r(A) is the maximal radius of the ball in which expA is well-defined.

Theorem 6. The Wasserstein radius r(A) : SPD(n)→ (0,+∞) can be given by

r(A) =
√

λmin(A), (25)

and the function r(A) is continuous.

Proof of Theorem 6 can be found in Appendix C. Due to the geodesic convexity, the
radius actually defines the Wasserstein distance of a point on SPD(n) to the ’boundary’ of
the manifold. It also measures the degenerated degree of a positive-definite symmetric
matrix by

√
λmin.

Figure 2 shows three maximal geodisical balls with different centers on SPD(2). From
the viewpoint of R3, the three balls have different sizes in the sense of Euclidean distance,
but on (SPD(2), gW), all of them have the same radius.

Figure 2. Three geodisical balls with the same radius.
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3.3. Connection

In this section, we will study the Riemannian connection of (SPD(n), gW), called a
Wasserstein connection. The flatness of (GL(n), gE) and the structure of the Riemannian
submersion will take a series of convenience to our work. During computation, we denote
both tensor actions of gW on SPD(n) and gE on GL(n) by 〈·, ·〉. Then, we denote the
Euclidean connection as D and the Wasserstein connection as ∇.

The main idea to express the Wasserstein connection is to compute the horizontal term
of the Euclidean covariant derivative of lifted vector fields. We shall prove:

Lemma 1. The Euclidean connection is a lift of the Wasserstein connection. For any smooth vector
fields X and Y on SPD(n), and X̃ and Ỹ are their horizontal lifts, respectively, the following
equation holds

dσ|Ã(DX̃Ỹ) = ∇XY, ∀Ã ∈ GL(n). (26)

Proof of Lemma 1 can be found in Appendix D. This lemma holds for general Rie-
mannian submersion. The reason we reprove it for the case is that we will need use some
middle results of the proof later. Using Lemma 1, we can find a direct corollary, which is
one of the essential results in this paper.

Corollary 4. The Wasserstein connection has an explicit expression:

∇XY = dY(X)− ΓA[X]AΓA[Y]− ΓA[Y]AΓA[X], (27)

where dY(X) is a Euclidean directional derivative.

Proof. From Lemma 1 and (A14) (in Appendix D), we have

∇XY = dσ|Ã(DX̃Ỹ) = ÃT DX̃Ỹ + (DX̃Ỹ)T Ã

= dY(X)− (XΓA[Y] + ΓA[Y]X) + AΓA[X]ΓA[Y] + ΓA[Y]ΓA[X]A

= dY(X)− ΓA[X]AΓA[Y]− ΓA[Y]AΓA[X].

(28)

The linearity, Leibnitz’s law and symmetry of Wasserstein connection are easily checked
from the expression.

The vertical component of lifted covariant derivative of Y along X is a vector field in
GL(n) whose value at Ã is defined by

TÃ(X, Y) := DX̃Ỹ− ∇̃XY. (29)

We say TÃ is an A-tensor. The whole vector field is denoted as T (X, Y). By definition and
previous results, we can obtain the expression of TÃ(X, Y).

Proposition 5. TÃ(·, ·) is a antisymmetric bilinear map: TASPD(n)⊗TASPD(n)→ TÃGL(n),
and it satisfies

TÃ(X, Y) = ÃΓA[Π[X, Y]]A. (30)
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Proof. Using (A12) (in Appendix D), (6) and (27), we have

TÃ(X, Y) = Ã(ΓA[dY(X)]− ΓA[XΓA[Y] + ΓA[Y]X] + ΓA[X]ΓA[Y])

− ÃΓA[dY(X)− ΓA[X]AΓA[Y]− ΓA[Y]AΓA[X]]

= Ã(−ΓA[AΓA[X]ΓA[Y]]− ΓA[ΓA[Y]ΓA[X]A] + ΓA[X]ΓA[Y])

= Ã(ΓA[X]ΓA[Y]− AΓA[ΓA[X]ΓA[Y]]− ΓA[ΓA[Y]ΓA[X]]A)

= ÃΓA[ΓA[X]ΓA[Y]− ΓA[Y]ΓA[X]]A

= ÃΓA[Π[X, Y]]A,

(31)

where (31) shows that TÃ(X, Y) depends only on Ã and the vectors on TASPD(n). The
multi-linearity and TÃ(X, Y) = −TÃ(Y, X) are easily checked.

Recalling (A14) in Appendix D, we also find that

[X̃, Ỹ] = [̃X, Y] + 2T (X, Y). (32)

In the following parts, we will show the tensor T (X, Y) plays a significant role for
computing curvature.

3.4. Curvature

In this part, we tend to understand the curvature of (SPD(n), gW). Although there
exists some relevant results giving abstract expressions for general cases, we obtain simpler
expressions and derive the scalar curvature via a special basis.

3.4.1. Riemannian Curvature Tensor

First, we derive the Riemannian curvature of (SPD(n), gW). We denote the Euclidean
curvature on bundle (null entirely) as R̃, and the Wasserstein (Riemannian) curvature on
(SPD(n), gW) as R.

Theorem 7. For any A ∈ SPD(n), and X, Y are smooth vector fields on SPD(n) , the Wasserstein
curvature tensor R(X, Y, X, Y) := 〈RXYX, Y〉A at A has an explicit expression

R(X, Y, X, Y) = 3tr(ΓA[X]AΓA[ΓA[X]ΓA[Y]− ΓA[Y]ΓA[X]]AΓA[Y]). (33)

Proof of Theorem 7 can be found in Appendix E. The expression

R(X, Y, X, Y) = ‖T (X, Y)‖2 (34)

has been derived before by other research group in similar way. However, here we use
another way to calculate curvature tensor and find a more explicit expression, which is
easier than expanding ‖T (X, Y)‖2 directly. In addition to that, from ‖T (X, Y)‖2 ≥ 0 and
(A23) (in Appendix E), we can obtain the following corollary.

Corollary 5. (SPD(n), gW) has non-negative curvatures, namely

R(X, Y, X, Y) ≥ 0. (35)

By solving the Sylvester equation with Algorithm 1, we can simplify the expression.
We give the sectional curvature K of the section span{X(A), Y(A)}

K|A(X, Y) =
R(X, Y, X, Y)

〈X, X〉〈Y, Y〉 − 〈X, Y〉2 = 12
tr(EXΛΓΛ[EX , EY]ΛEY)

tr(EXCX)tr(EYCY)− tr2(EXCY)
, (36)
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where we use the same donations as Algorithm 1. In particular, in diagonal cases, we
obverse that the sectional curvature conforms to the inverse ratio law

K|kΛ(X, Y) =
1
k

K|Λ(X, Y), ∀k ∈ R− {0}. (37)

These results conform with our visualized views of (SPD(n), gW), as presented in
Figure 1, where the manifold tends to be flat when k increases.

3.4.2. Sectional Curvature

Now, we derive more explicit expressions for sectional curvature and scalar curvature.
Conventionally, we only need to consider diagonal cases. Before that, we introduce a basis
on Sym(n), which is the tangent space of SPD(n). Define {Sp,q} as

Sp,q = [Sp,q
ij ], Sp,q

ij = δ
p
i δ

q
j + δ

q
i δ

p
j , (38)

where the superscripts p, q marks the nonzero elements in Sp,q and δ is the Kronecker delta.
Apparently, {Sp,q | 1 ≤ p ≤ q ≤ n} forms a basis of Sym(n). For simplicity, we sometimes
sign Sp,q, Sr,t with S1, S2, respectively. In this way, we can express the curvature under
this basis.

By direct calculation, we have

(S1S2)ij =
n

∑
k=1

Sp,q
ik Sr,t

kj = δ
p
i δqtδr

j + δ
p
i δqrδt

j + δ
q
i δptδr

j + δ
q
i δprδt

j . (39)

By Algorithm 1, we know that ES =
( Sij

λi+λj

)
= ΓΛS, ∀S ∈ TΛSPD(n)(Q = I in the

decomposition of Λ). Note that the elements of Λ, S1, S2 are all positive; therefore, we have

ES1 ES2 6= 0⇐⇒ S1S2 6= 0⇐⇒ {p, q} ∩ {r, t} 6= ∅. (40)

According to the anti-symmetry of curvature tensor, the non-vanishing curvature
means that {p, q} 6= {r, t}. Moreover, by definition we know Sp,q = Sq,p, Sr,t = St,r.
Without loss of generality, we only need to consider the following particular case:

p = r, q 6= t. (41)

Theorem 8. For any diagonal matrix Λ = diag(λ1, · · · , λn) ∈ SPD(n), where λ1 ≤ λ2 ≤
· · · ≤ λn, Wasserstein sectional curvature satisfies

K|Λ(S1, S2) =
3(1 + δpq)(1 + δpt)λqλt

(λp + λq)(λp + λt)(λq + λt)
, (42)

where S1 = Sp,q, S2 = Sr,t, p = r, q 6= t.

Proof of Theorem 8 can be found in Appendix F. With the above expansion for
sectional curvatures, we can easily find that sectional curvature can be controlled by
the secondly minimal eigenvalue, which implies that the curvature will seldom explode
even on a domain almost degenerated. Only when the matrices degenerate at over two
dimensions will the curvatures be very large. This phenomenon ensures the curvature
information makes sense in most applications. Some examples for this phenomenon can be
observed later.

3.4.3. Scalar Curvature

In the last part of this section, we calculate the scalar curvature directly.
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Theorem 9. For any A ∈ SPD(A), its scalar curvature ρ(A) is

ρ(A) = 3tr(UΛ(U + UT) + (U + UT)ΛU + (U + UT)ΛUΛ(U + UT)), (43)

where the diagonal matrix Λ = diag(λ1, · · · , λn) is orthogonal similar to A, and U =
(

1
λi+λj

)
i<j

.

Proof of Theorem 9 can be found in Appendix G. Figure 3 presents some examples
for scalar curvatures on (SPD(2), gW), which shows our argument in the last part of
Section 3.4.2.

Figure 3. Scalar curvatures on SPD(2).

4. Point Cloud Denoising

Denoising or outlier removal is a fundamental step of point cloud preprocessing
since real-world data are often polluted by noise. There are immense literature in point
cloud denoising and widely used algorithms packed as inline functions of softwares. For
example, PCL [16] is a popular platform for point cloud processing, which collects four
denoising schemes. However, these methods fail to give satisfactory performance when
point clouds are polluted by high density noise. To solve this problem, we consider both
the statistical and geometrical structure of data and design a new algorithm.

The idea is that by embedding the original point cloud from Euclidean space into
SPD(n), the Wasserstein scalar curvature gives essential information about noise and true
data. Therefore, our new algorithm mainly contains two steps: First, we give the desired
embedding by fitting a Gaussian distribution locally at each point. Then, we identify noise
by looking at the histogram of the Wasserstein scalar curvature. Due to the flatness of
the space of noise, it is reasonable to classify points with small curvature to be noise. The
threshold is set to be the first local minimum of the histogram. We call this new scheme
adaptive Wasserstein curvature denoising (AWCD).

In the following, we introduce two traditional denoising methods called radius outlier
removal (ROR) and statistical outlier removal (SOR). Then, we explain details about AWCD.
Additionally, we carry out experiments using different datasets, with a comparison to two
classical methods. From the experimental results, AWCD presents better performance
regardless of the data size and the density of noise. We also give a time complexity analysis
for each denoising algorithm. The results show that AWCD is as efficient as other classical
methods. Thus, it is applicable in many practical tasks.
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4.1. Radius Outlier Removal

In Radius Outlier Removal, called ROR (seeing Algorithm 2), points are clustered
into two categories according to their local density, i.e., points with low density tend to be
recognized as noise, whereas points with high density are recognized as true data. ROR
requires two parameters: a preset parameter d as the radius for local neighborhoods and α
as the least number of points in each neighborhood.

Algorithm 2 Radius Outlier Removal.
Input: initial point cloud D0, parameters d, α
Output: cleaned point cloud D1

1: search d-radius neighborhood Ni for each point Pi, where

Ni = {Nij ∈ D0|‖Nij − Pi‖ ≤ d};

2: if number of neighbors |Ni| ≥ α then put Pi into D1;
3: return D1.

As an illustration, we add uniform noise to the Stanford Bunny with 10,000 points
(see Figure 4).

(a) Stanford Bunny (b) Duke Dragon

Figure 4. Stanford Bunny with uniform noise.

Then, we apply ROR to denoise the polluted point cloud. The result is shown in
Figure 5. From a visual observation, ROR preserves almost all true points but fails to
recognize a small portion of noise at any area.

In fact, from a series of repetitive experiments we find that ROR is sensitive to the
choice of manual parameters. A small radius will make ROR inefficient, while a large
radius will wrongly recognize true points as noise. One of the disadvantages of ROR is
that there exists no universal method to determine the best parameters. Further, since ROR
uses the kernel method to find the undetermined closest neighbors, the time complexity
can reach to O(n2) where n is the number of points. Thus, in practice, it is often difficult to
make a trade-off between efficiency and effect of ROR.
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(a) Stanford Bunny (b) Duke Dragon

Figure 5. Cleaned point cloud by ROR.

4.2. Statistical Outlier Removal

Compared to ROR, Statistical Outlier Removal (SOR) considers more detailed local
structures than density does. SOR showed in Algorithm 3 is one of the most popular
methods to preprocess point clouds due to its efficiency when dealing with low density
noise. However, SOR gives worse performance than ROR when the noise is of high density.
The main idea of SOR comes from one-sigma law from classical statistics [23]. An outlier
is believed to be far from the center of its k-nearest neighborhood. Conversely, a true
point should lie in a confidence area of its neighborhoods. Let Φ be a d-variate Gaussian
distribution with expectation µ and covariance Σ, and let P be a fixed point in Rd. Then, Φ
induces a Gaussian distribution on the line {µ + tvP|t ∈ R} where vP = P−µ

‖P−µ‖ . In fact, we

write the eigendecomposition of Σ as Σ = Ediag(σ2
1 , · · · , σ2

d )ET , where E = [e1, · · · , ed] is
an orthogonal matrix. If we write

vP =
d

∑
i=1

λiei, (44)

the projected Gaussian distribution in direction vP has null expectation and variance
∑d

i=1 λ2
i σ2

i . According to one-sigma law, we say P is in the confidence area of Φ if

‖P− µ‖2 ≤
d

∑
i=1

λ2
i σ2

i , (45)

which is equivalent to
(P− µ)TΣ(P− µ) ≥ ‖P− µ‖4. (46)

This inequality is a generalization of one-sigma law in high dimensions.
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Algorithm 3 Statistical Outlier Removal.
Input: initial point cloud D0, parameter k
Output: cleaned point cloud D1

1: search kNN Ni for each point Pi;
2: compute local mean and local covariance

µi =
1
k

k

∑
j=1

Nij, Σi =
1

k− 1

k

∑
j=1

(Nij − µi)
T(Nij − µi);

3: if (Pi − µi)
TΣi(Pi − µi) ≥ ‖Pi − µi‖4 then put Pi into D1;

4: return D1.

Thus, SOR consists of three steps: first we search the k-nearest neighbors (kNN) for
every point. Then, we compute the empirical mean and covariance under the assumption of
Gaussian distribution for each neighborhood. Finally, true points are identified using (46).
SOR requires a single parameter k for kNN. Again, as an illustration, we use the data in
Figure 4. After SOR, the result is shown in Figure 6.

(a) Stanford Bunny (b) Duke Dragon

Figure 6. Cleaned point cloud by SOR.

We use KD-tree in kNN search. Thus, the time complexity is known as O(kn log n)
where k is the number of neighbors and n is the number of points. The remaining steps are
finished in O(n) time. Therefore, the total time complexity is O(kn log n).

4.3. Adaptive Wasserstein Curvature Denoising

Note that the key step in SOR is to compute the local covariance, which is a positive-
definite matrix. Motivated by the idea of SOR, we extract the covariance matrix at each
point, which is equivalent to embed the original point cloud into SPD(n). From an intuitive
perspective, since the true data presents a particular pattern, the covariance matrices should
have a large Wasserstein curvature. Conversely, for noise, the covariance matrices form a
flat region. Hence, AWCD is based on a principal hypothesis that the Wasserstein curvature
of true data is larger than noise.

Under such a hypothesis, what we need to do is to set a threshold to pick out points
with a small Wasserstein curvature. To do so, we gather all information in a histogram
counting the number of points of different curvature. By the continuity of curvature
function, true data and noise will form two different ’hills’. Figure 7 shows an example for
the histogram.
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Marked Curvature
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Figure 7. Histogram of the Wasserstein scalar curvature; x-axis: scalar curvature and y-axis:
point number.

The phase change happens at the borderline of two hills, i.e., we seek to find the
second minimal value of the histogram. In Figure 7, the critical value is annotated as
‘marked curvature’. In this way, we do not need to set the threshold manually and, instead,
achieve an adaptive selection process. Algorithm 4 shows the processing of this adaptive
denoising via wasserstein curvature.

Algorithm 4 Adaptive Wasserstein Curvature Denoising.
Input: initial point cloud D0, parameter k
Output: cleaned point cloud D1

1: search kNN neighbors Ni for each point Pi;
2: compute local mean and local covariance as before;
3: compute Wasserstein curvature ρ(Σ) as (43);
4: construct curvature histogram and determine the marked curvature ρ0;
5: if ρ(Σi) ≥ ρ0 then put Pi into D1;
6: return D1.

We use the same example as in Figure 4. The performance of AWCD is shown in
Figure 8.
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(a) Stanford Bunny (b) Duke Dragon

Figure 8. Cleaned point cloud by AWCD.

In this example, AWCD removes almost all noise far from Stanford Bunny, and
remains almost all true data. The only problem is that a small portion of noise lying on the
dragon cause the false positiveness and some true data located on the flat part are wrongly
removed.

Since the main step in AWCD is also kNN, the time complexity is the same as SOR,
which is O(kn log n). Therefore, AWCD is applicable in practice. It is remarkable that
AWCD is effective for data with dense noise and robust to the unique parameter k.

4.4. Experiments

We use ROR, SOR and AWCD to denoise polluted data sets with noise of different
levels of densities. The point clouds are from the Stanford 3D scanning repository, including
Stanford Bunny, Duke Dragon, Armadillo, Lucy and Happy Buddha. For each data set, we
add noise and record its signal-noise ratio (SNR). To show the influence of data size, we
downsample the original data sets of different scales.

We adopt three criteria to measure the performance of the algorithms, including true
positive rate (TPR), false positive rate (FPR) and signal-noise rate growing (SNRG). TPR
describes the accuracy to preserve true points from unpolluted data sets. FPR describes
the success rate to remove noisy points. SNRG explicates the promotion of SNR after
processing. For any polluted point cloud D0 = D ∪ N, where D is the points set of true
data and N is the set of noise. We obtain the cleaned point cloud D1 after the denoising
algorithms. Then, the computation of these measurements are

TPR =
|D1 ∩ D|
|D| ,

FPR = 1− |D1 ∩ N|
|N| ,

SNRG =
|D1 ∩ D|
|D1 ∩ N| ·

|N|
|D| − 1,

(47)

where | · | denotes the cardinality or size of a finite set. Intuitively, higher TPR, SNRG and
lower FPR mean better performance of an algorithm. The experimental results are shown
in Table A1 in Appendix I. In each experiment, we highlight the lowest FPR, the highest
TPR and the SNRG over 99%. Table A1 shows the superiority of AWCD to ROR and SOR.
In general, AWCD can remove almost all noise and meanwhile preserves the true data,
except for Armadillo.

5. Edge Detection

In this part, we attempt to apply the Wasserstein curvatures to detect the edges of
images with noises. This application follows the idea that the edge parts contain more
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local information while the relatively flat parts tend to be regarded locally as white noise.
Hence, the Wasserstein curvatures have natural advantages to depict the local information.
This leads to the following Wasserstein sectional curvature edge detection (WSCED) of
Algorithm 5.

Algorithm 5 Wasserstein sectional curvature edge detection.
Input: initial grayscale F0 with pixels of n×m, parameter k
Output: edge figure Fe

1: search kNN Nij for each point Pij;
2: compute every local covariance Σij to obtain the covariance image CI, which is a

(n− 2k)× (m− 2k) matrix constructed by matrixes Σij;
3: determine the section σij := Xij ∧Yij for every point Σij on CI by computing tangent

vectors Xij = (Σ(i+1)j − Σ(i−1)j), Yij = (Σi(j+1) − Σi(j−1));
4: compute the Wasserstein sectional curvature for every Kw|Σij(σij) with (36) to obtain

the curvature image Fe, which is a (n− 2k)× (m− 2k) real matrix;
5: return Fe.

Similar to what we have done in the last section, the first step of WSCED is computing
the local mean and variance after kNN, which can be regarded as a two-dimensional
embedding from a image into SPD(n). Every pixel coordinate (i, j) determines a local
covariance matrix Σij. In the second step, we compute the sectional curvature for every
Σij. The chosen section Xij ∧Yij is determined by two difference vectors along x-axis and
y-axis,

Xij := Σ(i+1)j − Σ(i−1)j,

Yij := Σi(j+1) − Σi(j−1).
(48)

According to (36), we obtain the chosen curvature KIij = Kw|Σij

(
Xij, Yij

)
on Σij. Then, we

obtain a curvature image KI. Finally, with some appropriate image transformation, we can
detect edges on KI.

In simulations, we compare WSCED to traditional edge detecting filters, including
Sobel, Prewitt and Laplacian [24]. We tend to detect edges for images with noises in high
density. From Figure 9, we find that WSCED approaches the same outcome as Sobel and
Prewitt filters, which implies the potential connection between Wasserstein curvature and
edges. This result also shows the robustness of WSCED to noises. We present more effects
of digital experiments in Figure A1 in Appendix H.
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(a) gray image (b) polluted image

(c) Sobel (d) Prewitt

(e) Laplacian (f) WSCED

Figure 9. An example to show different edge detection algorithms on the flower image.

6. Conclusions and Future Work

In this paper, we studied the geometric characteristics of (SPD(n), gW), including
geodesics, the connection, Jacobi fields and curvatures. Compared with the existing re-
sults, our results are simpler in form and more suitable for computation. Based on these
results, we designed novel algorithms for point cloud denoising and image edge detection.
Numerical experiments showed that these geometry-based methods were valid for applica-
tions. From both a theoretical and practical prospective, we gained a more comprehensive
understanding regarding the Wasserstein geometry on SPD(n), which shows that the
Wasserstein metric has both deep application potential and mathematical elegance.

In our future work, on the one hand, we aim to study Wasserstein geometry on
other matrix manifolds, such as the Stiefel manifold [25], Grassman manifold [26] and
some complex matrix manifolds [27]. On the other hand, we would like to generalize
geometry-based methods to solve more problems in image, signal processing [28] and
data science.
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Appendix A. Properties of ΓA[X]

Here, we list some basic properties, which will be used frequently in the discussions
of this paper.

Proposition A1. For any A, B ∈ SPD(n), X, Y ∈ M(n), Q ∈ O(n), k ∈ R, the following
equations hold:

1. ΓA[X + kY] = ΓA[X] + kΓA[Y];
2. ΓkA[X] = 1

k ΓA[X];
3. ΓA+B[X] = ΓA[X]− ΓA[BΓA+B[X] + ΓA+B[X]B], A + B ∈ SPD(n);
4. ΓA[AX] = AΓA[X], ΓA[XA] = ΓA[X]A;
5. ΓA−1 [X] = ΓA[AXA] = AΓA[X]A;
6. ΓQAQ−1 [QXQ−1] = QΓA[X]Q−1.

Proposition A1 will determine the geometry on (SPD(n), gW) and be involved into
every calculation repetitively and alternatively. We omit the proof since these properties
are easily checked.

Appendix B. Proof of Theorem 1

To prove Theorem 1, we shall give two lemmas first.

Lemma A1. For any Ã1, Ã2 ∈ GL(n), l(t) = tÃ2 + (1− t)Ã1, t ∈ [0, 1]. l̇(t) is horizontal if
and only if det(l(t)) > 0, and l̇(0) is horizontal at TÃ1

GL(n).

Proof.
l̇(0) = Ã2 − Ã1 is horizontal at TÃ1

GL(n)

⇔ Ã−1
1 (Ã2 − Ã1) ∈ Sym(n)

⇔ Ã−1
1 Ã2 ∈ Sym(n)

⇔ Ã−1
2 Ã1 ∈ Sym(n)

⇔ Ã−1
2 (Ã2 − Ã1) ∈ Sym(n)

⇔ l̇(1) is also horizontal at TÃ2
GL(n).

(A1)

For any s ∈ (0, 1) that satisfies det(l(s)) 6= 0, we constrict the line segment by ls(t) := l(st),
and the lemma can be induced by a horizontal of l̇s(1).

Lemma A1 ensures that a line segment is horizontal if its initial vector is horizontal,
which brings quite convenience for the following proofs of certain results.

Lemma A2. For any A1, A2 ∈ SPD(n), there exists P = A−
1
2

1 (A1 A2)
1
2 A−

1
2

2 ∈ O(n) such that

γ̃(t) = tPA
1
2
2 + (1− t)A

1
2
1 . When det(γ̃(t)) > 0, ˙̃γ(t) keeps horizontal at Tγ̃(t)GL(n).

https://search.crossref.org/funding
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Proof. First, we have

PT P = A−
1
2

2 (A2 A1)
1
2 A−1

1 (A1 A2)
1
2 A−

1
2

2

= A−
1
2

2 A−1
1 (A1 A2)

1
2 (A1 A2)

1
2 A−

1
2

2

= I.

(A2)

Then, we only need to check that A−
1
2

1
˙̃γ(0) ∈ Sym(n). In fact, we have

A−
1
2

1
˙̃γ(0) = A−1

1 (A1 A2)
1
2 − I

= A−
1
2

1 A−
1
2

1 (A1 A2)
1
2 A

1
2
1 A−

1
2

1 − I

= A−
1
2

1 (A
1
2
1 A2 A

1
2
1 )

1
2 A−

1
2

1 − I ∈ Sym(n),

(A3)

which proves the lemma.

Remark A1. Finding the orthogonal matrix P is equivalent to solving a Riccati equation. One can
see [29] for details.

To prove Theorem 1, the last step is to clarify the non-degeneration.

Proof. (Theorem 1) Due to the symmetry from (10), it suffices to prove the diagonal case
A1 = Λ. We shall prove det(γ̃(t)) > 0, ∀t ∈ (0, 1). We have

det[γ̃(t)] = det
[
tΛ−

1
2 (ΛA2)

1
2 + (1− t)Λ

1
2

]
= (1− t)ndet

[
I +

t
(1− t)

Λ−
1
2 (ΛA2)

− 1
2 Λ−

1
2

]
det
[
Λ

1
2

]
.

(A4)

Since Λ−
1
2 (ΛA2)

1
2 Λ−

1
2 is congruent to (ΛA2)

1
2 , its eigenvalues are all positive. Thus,

det[γ̃(t)] > 0 holds for all t ∈ (0, 1). Combining with Lemmas A1 and A2, the proof is
done.

Appendix C. Proof of Theorem 6

Proof. Again, with (10), we have r(A) = r(Λ) where A = QΛQT . Thus, we still focus on
r(Λ). Following the definition and discussions around (23),

r(Λ) = inf{ε(V) | V ∈ TΛSPD(n), ‖V‖gW = 1}
= inf{‖V‖gW | V ∈ TΛSPD(n), det(I + ΓΛ[V]) = 0},

(A5)

in which ‖ · ‖gW is the inner product reduced by gW . Then, we have

2r2(Λ) = inf{tr(VΓΛ[V]) | ΓΛ[V] has eigenvalue ηk = −1}. (A6)
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Denote {λi > 0} as eigenvalues of Λ, and ηj as eigenvalues of ΓΛ[V]. Let xj be
eigenvectors corresponding to ηj such that {xj} forms an orthogonal basis of Rn. By direct
calculation, we find

tr(VΓΛ[V]) =
n

∑
i=1

xT
i VΓΛ[V]xi =

n

∑
i=1

ηixT
i Vxi

=
n

∑
i=1

ηixT
i (ΛΓΛ[V] + ΓΛ[V]Λ)xi

=
n

∑
i=1

(ηi(ΓΛ[V]xi)
TΛxi + ηixT

i ΛΓΛ[V]xi)

= 2
n

∑
i=1

η2
i xT

i Λxi ≥ 2xT
k Λxk,

(A7)

where we used the facts that Γ is positive-definite and ηk = −1. The equality tr(VΓΛ[V]) =
xT

k Λxk holds if and only if ηj = 0, ∀j 6= k. In these cases, by Algorithm 1, we have

Vij

λi + λj
= (ΓΛ[V])ij = −δikδjk, (A8)

then we obtain that
Vij = −2δikδikλk, (xk)i = δki. (A9)

Thus,
tr(VΓΛ[V]) = 2xT

k Λxk = 2λk. (A10)

In particular, we obtain 2λmin as min{tr(VΓΛ[V])}, when Λk = λmin and Vij =
−2δikδjkλmin. The tangent vector V is called the speed-degenerated direction. The function
λmin(A) is certainly continuous, hence r(A) is also continuous.

Appendix D. Proof of Lemma 1

Before proving Lemma 1, we shall prove a key lemma, which points the relation
between the Lie-brackets on the total space and base space.

Lemma A3. The horizontal lift of vector fields commutes with Lie-brackets,

dσ|Ã[X̃, Ỹ] = [X, Y], ∀Ã ∈ GL(n). (A11)

Proof. (Lemma A3) On the flat manifold (GL(n), gE), the connection equals to the usual
directional derivative in the Euclidean space. Therefore, for vector fields X, Y on SPD(n),
we have

DX̃Ỹ = lim
t→0

1
t

(
Ỹ|Ã+X̃t − Ỹ|Ã

)
= lim

t→0

1
t

((
Ã + X̃t

)
ΓA+Xt[Y|A+Xt]− ÃΓA[Y|A]

)
= lim

t→0

Ã
t
(ΓA+Xt[Y|A+Xt]− ΓA[Y|A]) + X̃ΓA[Y]

= lim
t→0

Ã
t
(ΓA+Xt[Y|A+Xt]− ΓA[Y|A]) + ÃΓA[X]ΓA[Y]

= Ã(ΓA[dY(X)]− ΓA[XΓA[Y] + ΓA[Y]X] + ΓA[X]ΓA[Y]).

(A12)

With ΠA[X, Y] := ΓA[X]ΓA[Y]− ΓA[Y]ΓA[X] into (2), we obtain

ΓA[XΓA[Y] + ΓA[Y]X−YΓA[X]− ΓA[X]Y] = ΠA[X, Y]− 2ΓA[ΠA[X, Y]]A. (A13)
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Then, we compute the Lie-bracket

[X̃, Ỹ] := DX̃Ỹ− DỸX̃

= ÃΓA[dY(X)− dX(Y)] + Ã(ΓA[X]ΓA[Y]− ΓA[Y]ΓA[X])

− ÃΓA[XΓA[Y] + ΓA[Y]X−YΓA[X]− ΓA[X]Y]

= [̃X, Y] + 2ÃΓA[ΠA[X, Y]]A,

(A14)

where the last equality in (A14) comes from (A13).
Finally, we show the second term in (A14) is vertical. In fact, we have

2ÃΓA[ΠA[X, Y]]A = (2ÃΓA[ΠA[X, Y]]ÃT)Ã, (A15)

where 2ÃΓA[ΠA[X, Y]]ÃT is anti-symmetric. Thus, the proof for Lemma A3 has been
done.

By Lemma A3, the proof for Lemma 1 is clarified.

Proof. (Lemma 1) For any smooth vector field Z on SPD(n), and its horizontal lift Z̃, we
have

〈∇̃XY, Z̃〉 = 〈∇XY, Z〉

=
1
2
(X〈Y, Z〉+ Y〈Z, X〉 − Z〈X, Y〉+ 〈Z, [X, Y]〉+ 〈Y, [Z, X]〉 − 〈X, [Y, Z]〉)

=
1
2

(
X̃〈Ỹ, Z̃〉+ Ỹ〈Z̃, X̃〉 − Z̃〈X̃, Ỹ〉+ 〈Z̃, [̃X, Y]〉+ 〈Ỹ, [̃Z, X]〉 − 〈X̃, [̃Y, Z]〉

)
=

1
2

(
X̃〈Ỹ, Z̃〉+ Ỹ〈Z̃, X̃〉 − Z̃〈X̃, Ỹ〉+ 〈Z̃, [X̃, Ỹ]〉+ 〈Ỹ, [Z̃, X̃]〉 − 〈X̃, [Ỹ, Z̃]〉

)
= 〈DX̃Ỹ, Z̃〉.

(A16)

By the arbitrariness of Z, Lemma 1 is proved.

Remark A2. Proof of Lemma 1 implies that dσ|Ã(DX̃Ỹ) is independent on Ã chosen among a
fixed fiber.

Appendix E. Proof of Theorem 7

Proof. Calculating R̃|Ã(X̃, Ỹ, X̃, Ỹ) as follows

R̃|Ã(X̃, Ỹ, X̃, Ỹ) = 〈R̃X̃ỸX̃, Ỹ〉
= 〈D[X̃,Ỹ]X̃, Ỹ〉 − 〈DX̃DỸX̃, Ỹ〉+ 〈DỸDX̃X̃, Ỹ〉

= 〈D
[̃X,Y]

X̃, Ỹ〉+ 〈D2T (X,Y)X̃, Ỹ〉 − 〈DX̃∇̃YX, Ỹ〉

− 〈DX̃T (Y, X), Ỹ〉+ 〈DỸ∇̃XX, Ỹ〉+ 〈DỸT (X, X), Ỹ〉
= 〈∇[X,Y]X, Y〉+ 2〈DT (X,Y)X̃, Ỹ〉 − 〈∇X∇YX, Y〉
− 〈T (X, Y), T (X, Y)〉+ 〈∇Y∇XX, Y〉

= R|A(X, Y, X, Y) + 2〈DT (X,Y)X̃, Ỹ〉 − 〈T (X, Y), T (X, Y)〉,

(A17)

where we used (29), (32), TÃ(X, Y) ∈ V(Ã), TÃ(X, Y) = −TÃ(Y, X) and the following
equation

〈DX̃T (Y, X), Ỹ〉 = X̃〈T (Y, X), Ỹ〉 − 〈T (Y, X), DX̃Ỹ〉

= 〈T (X, Y), T (X, Y) + ∇̃XY〉
= 〈T (X, Y), T (X, Y)〉.

(A18)
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Since T (X, Y) and X̃, Ỹ are both vertical, we have

〈[T (X, Y), X̃], Ỹ〉 = 0. (A19)

Then, using DT (X,Y)X̃− DX̃T (X, Y) = [T (X, Y), X̃] we can obtain that

〈DT (X,Y)X̃, Ỹ〉 = 〈DX̃T (X, Y), Ỹ〉 = −〈T (X, Y), T (X, Y)〉. (A20)

By the definition of the directional derivative and σ(Ã + T (X, Y)) = A, we have

DT (X,Y)X̃ = lim
t→0

1
t

((
Ã + T (X, Y)t

)
ΓA[X]− ÃΓA[X]

)
= T (X, Y)ΓA[X].

(A21)

Combining (A20) and (A21), we obtain the following equation

〈T (X, Y), T (X, Y)〉 = −〈T (X, Y)ΓA[X], Ỹ〉, (A22)

and
R̃(X̃, Ỹ, X̃, Ỹ) = R(X, Y, X, Y) + 3〈T (X, Y)ΓA[X], ÃΓA[Y]〉

= R(X, Y, X, Y)− 3〈T (X, Y), T (X, Y)〉.
(A23)

Due to R̃ ≡ 0, we obtain the explicit expression for the Wasserstein curvature

R(X, Y, X, Y) = − 3〈T (X, Y)ΓA[X], ÃΓA[Y]〉
= 3tr(ΓA[X]T (X, Y)ÃΓA[Y])

= 3tr(ΓA[X]AΓA[ΠA[X, Y]]AΓA[Y]).

(A24)

Appendix F. Proof of Theorem 8

Proof. Using p = r, q 6= t, we have

(S1S2)ij = (1 + δpq)(1 + δpt)δ
q
i δt

j =

{
2δ

q
i δt

j , q = p or t = p

δ
q
i δt

j , q 6= p and t 6= p
, (A25)

and

(ES1 ES2)ij =
(1 + δpq)(1 + δpt)

(λp + λq)(λp + λt)
δ

q
i δt

j . (A26)

Then, we obtain

(ΓΛ[ES1 , ES2 ])ij =
[ES1 , ES2 ]ij

λi + λj

=
(1 + δpq)(1 + δpt)(δ

q
i δt

j − δ
q
j δt

i )

(λp + λq)(λp + λt)(λq + λt)
,

(A27)

and
n

∑
k=1

(ΓΛ[ES1 , ES2 ])ik(ΛES2 ES1 Λ)kj

=
(1 + δpq)(1 + δpt)(δ

q
i δt

k − δ
q
k δt

i )

(λp + λq)(λp + λt)(λq + λt)

(1 + δpq)(1 + δpt)λqλt

(λp + λq)(λp + λt)
δt

kδ
q
j

=
(1 + δpq)2(1 + δpt)2λqλt

(λp + λq)2(λp + λt)2(λq + λt)
δ

q
i δ

q
j .

(A28)
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Thus, we obtain the expression for curvature as follows

R|Λ(S1, S2, S1, S2) = 3tr(ES1 ΛΓΛ[ES1 , ES2 ]ΛES2)

=
3(1 + δpq)2(1 + δpt)2λqλt

(λp + λq)2(λp + λt)2(λq + λt)
.

(A29)

On the other hand, by (A26), we have

S1 6= S2 =⇒ 〈S1, S2〉 = tr(ES2 ΛES1) = tr(ΛES1 ES2) = 0, (A30)

and
〈S1, S1〉 =

1
2

tr(S1ES1) =
1 + δpq

λp + λq
,

〈S2, S2〉 =
1
2

tr(S2ES2) =
1 + δpt

λp + λt
.

(A31)

Then, we can find the area of the sectional parallelogram as

〈S1, S1〉〈S2, S2〉 − 〈S1, S2〉2 =
(1 + δpq)(1 + δpt)

(λp + λq)(λp + λt)
. (A32)

From (A29) and (A32), the proof is done consequently.

Appendix G. Proof of Theorem 9

Before proving this theorem, we need to do some preparation. For any A ∈ SPD(n)
with eigenvalues λi, i = 1, · · · , n, construct diagonal matrix Λ = diag(λ1, · · · , λn) and
upper triangle matrix U =

(
1

λi+λj

)
i<j

. In p = r, q < t cases, by Theorem 8, we have

K|A(Sp,q, Sr,t) =
3(1 + δpq)(1 + δpt)λqλt

(λp + λq)(λp + λt)(λq + λt)

= 3Uqt((U + UT)pqΛqq + δpq)((U + UT)ptΛtt + δpt)

= 3UqtΛtt(U + UT)tpδpq + 3(U + UT)pqΛqqUqtδpt

+ 3(U + UT)ptΛttUtqΛqq(U + UT)qp,

(A33)

where we used
1− δpq

λp + λq
= (U + UT)pq, (A34)

and
(1 + δpq)λq

λp + λq
=

(1− δpq)λq

λp + λq
λq +

2δpqλq

λp + λq
= (U + UT)pqλq + δpq. (A35)

Then, we can obtain the scalar curvature by summing (A33).
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Proof. Note that Uqt = 0, q ≥ t, we have

ρ(Λ) = ∑
p,q<t

K|Λ(Sp,q, Sp,t)

= ∑
p,q<t

(
3UqtΛtt(U + UT)tpδpq + 3(U + UT)pqΛqqUqtδpt

)
+ ∑

p,q<t

(
3(U + UT)ptΛttUtqΛqq(U + UT)qp

)
= ∑

p,q,t

(
3UqtΛtt(U + UT)tpδpq + 3(U + UT)pqΛqqUqtδpt

)
+ ∑

p,q,t

(
3(U + UT)ptΛttUtqΛqq(U + UT)qp

)
= 3tr(UΛ(U + UT) + (U + UT)ΛU + (U + UT)ΛUΛ(U + UT)).

(A36)

Appendix H. Effects of WSCED

Figure A1. WSCED on different polluted images. The first row shows the original RGB images. The
second row shows images with uniform noises. The third row shows edge images after WSCED.

Appendix I
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Table A1. Comparison of three denosing algorithms.

Datasource
(Size)

Original
SNR

ROR SOR AWCD

TPR FPR SNRG TPR FPR SNRG TPR FPR SNRG

Stanford Bunny
(10,000)

10 100.00% 18.10% 452.5% 87.78% 49.00% 79.1% 99.28% 4.80% 1968.3%
0.1 100.00% 100.00% 0.0% 84.44% 71.61% 17.9% 99.93% 90.53% 10.4%

Duke Dragon
(100,000)

100 100.00% 9.60% 941.7% 82.29% 51.90% 58.6% 100.00% 2.90% 3348.3%
1 100.00% 100.00% 0.0% 82.12% 70.16% 17.1% 99.88% 2.40% 4054.8%

Armadillo
(50,000)

10 62.26% 0.54% 114.3 88.06% 63.46% 38.8% 34.84% 0.01% 347.38
1 62.66% 0.41% 153.34 87.99% 69.62% 26.4% 34.84% 0.09% 404.14

Lucy
(50,000)

100 100.00% 6.00% 1566.6% 80.71% 51.80% 55.8% 99.99% 0.80% 123.99
10 100.00% 35.50% 181.7% 80.65% 66.44% 21.4% 99.99% 2.86% 3396.1%

Happy Buddha
(50,000)

100 100.00% 6.80% 1370.6% 77.82% 56.60% 37.5% 99.92% 2.40% 4063.3%
10 100.00% 13.86% 621.5% 78.24% 64.76% 20.8% 99.93% 1.88% 5215.6%
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