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Abstract: We study fluid distributions endowed with hyperbolic symmetry, which share many
common features with Lemaitre–Tolman–Bondi (LTB) solutions (e.g., they are geodesic, shearing,
and nonconformally flat, and the energy density is inhomogeneous). As such, they may be con-
sidered as hyperbolic symmetric versions of LTB, with spherical symmetry replaced by hyperbolic
symmetry. We start by considering pure dust models, and afterwards, we extend our analysis to
dissipative models with anisotropic pressure. In the former case, the complexity factor is necessarily
nonvanishing, whereas in the latter cases, models with a vanishing complexity factor are found.
The remarkable fact is that all solutions satisfying the vanishing complexity factor condition are
necessarily nondissipative and satisfy the stiff equation of state.

Keywords: LTB spacetimes; hyperbolic symmetry; general relativity; dissipative systems

PACS: 04.40.-b; 04.20.-q; 04.40.Dg; 04.40.Nr

1. Introduction

In a recent paper [1], we presented a general study on the dynamics of hyperbolic
symmetric fluids (DHSFs). Our main motivation behind such an endeavor (but not the
only one) was to describe the dynamic regime preceding the final equilibrium state of static
hyperbolic symmetric fluids described in [2], which in its turn could be used to model the
source of the hyperbolic symmetric black hole described in [3,4] where the region interior
to the horizon is described by the line element:

ds2 = −
(

2M
R
− 1
)

dt2 +
dR2(

2M
R − 1

) + R2dΩ2,

dΩ2 = dθ2 + sinh2 θdφ2. (1)

The rationale behind such a proposal stems from the well-known fact that any transfor-
mation that maintains the static form of the Schwarzschild metric (in the whole spacetime)
is unable to remove the coordinate singularity in the line element [5]. In other words,
the regular extension of the Schwarzschild metric to the whole spacetime (including the
region inner to the horizon) may be achieved, but at the price of admitting a nonstatic
spacetime inside the horizon [6,7].

Since any dynamic regime should eventually end in an equilibrium final state, it
would be desirable to have a static solution over the whole spacetime.
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Thus, the model proposed in [3] describes the space time as consisting of two four-
dimensional manifolds, one described by the usual Schwarzschild metric on the exterior
side of the horizon and a second one in the interior of it, described by (1).

The metric (1) is a static solution admitting the four Killing vectors:

K(0) = ∂t, (2)

and:

K(2) = − cos φ∂θ + coth θ sin φ∂φ,

K(1) = ∂φ, K(3) = sin φ∂θ + coth θ cos φ∂φ. (3)

The above Killing vectors (3) define the hyperbolic symmetry. Solutions to the Einstein
equations endowed with this type of symmetry have been the subject of research in different
contexts (see [8–16] and the references therein).

Besides the general properties of DHSFs analyzed in [1], some exact solutions were
found. Particular attention is owed to two nondissipative solutions, which could be re-
garded as the hyperbolic symmetric versions of the Friedman–Robertson–Walker spacetime,
since they are shear-free, nondissipative, and conformally flat. All solutions presented
in [1] satisfy the condition of the vanishing complexity factor and evolve in the quasi-
homologous regime. This last condition, in the nondissipative case, implies that the fluid is
shear-free, thereby excluding the possibility to obtain a hyperbolic symmetric version of
the LTB spacetimes under the above-mentioned conditions.

Due to the huge relevance of LTB spacetimes, we devote this work to study in some
detail its possible hyperbolic symmetric versions. To do that, we must abandon the
condition of quasi-homologous evolution.

It is worth recalling that LTB dust models [17–19] are among the most appealing
solutions to the Einstein equations. They describe the spherically symmetric distribution
of inhomogeneous nondissipative dust (see [20,21] for a detailed description of these
spacetimes). Although LTB spacetimes are usually associated with an inhomogeneous dust
source, it is known that the most general source compatible with LTB spacetimes is an
anisotropic fluid [20,22].

LTB spacetimes have been invoked as cosmological models (see [23–25] and the
references therein), in the study of gravitational collapse, when dealing with the problem
of cosmic censorship [26–31], and in quantum gravity [32,33].

The apparent accelerated expansion of the universe, as inferred from some observa-
tions of type Ia supernovae, has renewed the interest in LTB spacetimes. Indeed, even
though there is general consensus to invoke dark energy as a source of antigravity for un-
derstanding the cosmic acceleration, a growing number of researchers are now considering
that inhomogeneities may account for the observed cosmic acceleration, without resorting
to dark energy (see [34–39] and the references therein).

In this work, we present several models that could be considered as hyperbolic
symmetric versions of LTB spacetimes, in the sense that they are geodesic, shearing, and
nonconformally flat and the energy density is inhomogeneous, but with the spherical
symmetry replaced by the hyperbolic symmetry.

We consider both nondissipative and dissipative models. The general approach used
for reaching our goal was already outlined in [1]; however, for the sake of completeness,
we present the basic steps in the following sections. The last section is devoted to the
discussion of the obtained results.

2. Fluid Distribution, Kinematical Variables, and Basic Equations

We consider hyperbolic symmetric distributions of a geodesic fluid, which may be
bounded (or not) from outside by a surface Σe. As we already know (see [1] for a detailed
discussion on this point), hyperbolic symmetric fluids cannot fill the central region, and
therefore, such a region should be described either by an empty vacuole or by a fluid
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distribution not endowed with hyperbolic symmetry. Thus, our fluid is also bounded from
inside by a surface Σi.

Choosing comoving coordinates, the general metric can be written as:

ds2 = −dt2 + B2dr2 + R2(dθ2 + sinh2 θdφ2), (4)

where B and R are assumed positive and due to the symmetry defined by (3) are functions
of t and r. We number the coordinates x0 = t, x1 = r, x2 = θ, and x3 = φ.

The general energy momentum tensor Tαβ of the fluid distribution may be written as:

Tαβ = (µ + P⊥)VαVβ + P⊥gαβ + (Pr − P⊥)χαχβ

+ qαVβ + Vαqβ, (5)

where µ is the energy density, Pr the radial pressure, P⊥ the tangential pressure, and qα the
heat flux; these physical variables, due to the symmetry defined by (3), are functions of t
and r. Furthermore, Vα and χα denote the four-velocity of the fluid and a unit four-vector
along the radial direction, respectively; they satisfy:

VαVα = −1, Vαqα = 0, χαχα = 1, χαVα = 0. (6)

Since we consider comoving observers, we have:

Vα = δα
0 , qα = qB−1δα

1 , χα = B−1δα
1 . (7)

2.1. Einstein Equations

For (4) and (5), the Einstein equations:

Gαβ = 8πTαβ, (8)

read:

8πµ =

(
2

Ḃ
B
+

Ṙ
R

)
Ṙ
R
−
(

1
B

)2
[

2
R′′

R
+

(
R′

R

)2

− 2
B′

B
R′

R
+

(
B
R

)2
]

, (9)

4πq =
1
B

(
Ṙ′

R
− Ḃ

B
R′

R

)
, (10)

8πPr = −
[

2
R̈
R
+

(
Ṙ
R

)2]
+

(
R′

BR

)2

+

(
1
R

)2
, (11)

8πP⊥ = −
(

B̈
B
+

R̈
R
+

Ḃ
B

Ṙ
R

)
+

(
1
B

)2(R′′

R
− B′

B
R′

R

)
, (12)

where dots and primes denote derivatives with respect to t and r, respectively. It is worth
stressing the difference between these equations and those corresponding to the spherically
symmetric LTB case.

2.2. Kinematical Variables and the Mass Function

The expansion Θ is given by:

Θ = Vα
;α =

(
Ḃ
B
+ 2

Ṙ
R

)
, (13)
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and for the shear, we have (remember that the four-acceleration and the vorticity vanish):

σαβ = V(α;β) −
1
3

Θhαβ, (14)

where hαβ = gαβ + VαVβ.
The nonvanishing components of (14) are:

σ11 =
2
3

B2σ, σ22 =
σ33

sinh2 θ
= −1

3
R2σ, (15)

with:
σαβσαβ =

2
3

σ2, (16)

being:

σ =

(
Ḃ
B
− Ṙ

R

)
, (17)

σαβ may also be written as:

σαβ = σ

(
χαχβ −

1
3

hαβ

)
. (18)

Next, the mass function m(t, r) introduced by Misner and Sharp [40] (see also [41]) is
given by:

m = −R
2

R3
232 =

R
2

[
−Ṙ2 +

(
R′

B

)2

+ 1

]
, (19)

where the components R3
232 of the Riemann tensor are calculated with (4).

Defining as usual the “areal” velocity U of the fluid as the variation of R with respect
to proper time, i.e.,

U = Ṙ, (20)

then since U < 1, it follows at once from (19) that m is a positive defined quantity.
With the above, we can express (19) as:

E ≡ R′

B
=

(
U2 +

2m
R
− 1
)1/2

. (21)

From (19) and the field equations, we obtain:

ṁ = 4πR2(PrU + qE), (22)

and:

m′ = −4πR′R2
(

µ + q
U
E

)
. (23)

The integration of (23) produces:

m = −
∫ r

0
4πR2

(
µ + q

U
E

)
R′dr, (24)

whose partial integration yields:

3m
R3 = −4πµ +

4π

R3

∫ r

0
R3
(

µ′ − 3q
UB
R

)
dr. (25)

Then, it follows from (24) that µ is necessarily negative, if we assume the condition
R′ > 0 to avoid shell crossing and remind that m > 0.
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Furthermore, it follows from (24) that whenever the energy density is regular, then
m ∼ r3 as r tends to zero. However, in this same limit, U ∼ 0 and R ∼ r, implying because
of (21) that the central region cannot be filled with our fluid distribution. Among the
many possible scenarios, we shall assume here that the center is surrounded by a vacuum
cavity. However, this is just one of the possible choices, which even if having implications
on specific models, does not affect the general properties of the fluids endowed with
hyperbolic symmetry.

2.3. The Exterior Spacetime and Junction Conditions

In the case of bounded configurations, we assume that outside Σe, we have the
hyperbolic symmetric version of the Vaidya spacetime, described by:

ds2 = −
[

2M(v)
ρ
− 1
]

dv2 − 2dρdv + ρ2(dθ2 + sinh2 θdφ2), (26)

where M(v) denotes the total mass and v is the retarded time.
Now, from the continuity of the first differential form, it follows (see [42] for details),

dt Σe
= dv

(
2M(v)

ρ
− 1
)

, (27)

R Σe
= ρ(v), (28)

and: (
dv
dt

)−2
Σe
=

(
2M(v)

ρ
− 1 + 2

dρ

dv

)
, (29)

whereas the continuity of the second differential form produces:

m(t, r) Σe
= M(v), (30)

and:
Pr

Σe
= q, (31)

where Σe
= means that both sides of the equation are evaluated on Σe.

The corresponding junction conditions on Σi are:

m(t, r) Σi
= 0, (32)

and:
Pr

Σi
= 0. (33)

When either of the above conditions cannot be satisfied, we have to admit the presence
of thin shells.

2.4. Weyl Tensor

The Weyl tensor is defined through the Riemann tensor Rρ
αβµ, the Ricci tensor Rαβ,

and the curvature scalarR as:

Cρ
αβµ = Rρ

αβµ −
1
2

Rρ
βgαµ +

1
2

Rαβδ
ρ
µ −

1
2

Rαµδ
ρ
β

+
1
2

Rρ
µgαβ +

1
6
R(δρ

βgαµ − gαβδ
ρ
µ). (34)

In our case, the magnetic part of the Weyl tensor vanishes, whereas its electric part,
defined by:

Eαβ = CαµβνVµVν, (35)
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has the following nonvanishing components:

E11 =
2
3

B2E ,

E22 = −1
3

R2E ,

E33 = E22 sinh2 θ, (36)

where:

E =
1
2

[
R̈
R
− B̈

B
−
(

Ṙ
R
− Ḃ

B

)
Ṙ
R

]
+

1
2B2

[
−R′′

R
+

(
B′

B
+

R′

R

)
R′

R

]
+

1
2R2 . (37)

Observe that we may also write Eαβ as:

Eαβ = E(χαχβ −
1
3

hαβ). (38)

Finally, using (9), (11) and (12) with (19) and (37), we obtain:

3m
R3 = −4πµ + 4π(Pr − P⊥) + E . (39)

3. Structure Scalars and Complexity Factor

Some of the models exhibited below are obtained from the conditions imposed on a
scalar function that appears in a natural way in the orthogonal splitting of the Riemann
tensor (see [43] for details) and that is identified as the complexity factor.

Thus, let us introduce the tensor Yαβ (which is an element of that splitting [44–47]),
defined by:

Yαβ = RαγβδVγVδ. (40)

Tensor Yαβ may be expressed in terms of two scalar functions YT , YTF (structure scalars)
as:

Yαβ =
1
3

YThαβ + YTF(χαχβ −
1
3

hαβ), (41)

where:

YT = 4π(µ + 3Pr − 2Π), YTF = E − 4πΠ, (42)

with Π = Pr − P⊥.
Combining (39) with (25) and (42) produces:

YTF = −8πΠ +
4π

R3

∫ r

0
R3
(

µ′ − 3q
UB
R

)
dr. (43)

The complexity factor is a scalar function intended to measure the complexity of a
given fluid distribution (see [48–50] for details). For static hyperbolic symmetric fluids (as
well as for spherically symmetric ones), the complexity factor is identified with the scalar
function YTF defined, in the dynamic case, by Equations (42) and (43) (see [1]). The main
reason behind such a proposal resides, on the one hand, in the basic assumption that one
of the less complex systems corresponds to a homogeneous (in the energy density) fluid
distribution with isotropic pressure. Thus, any variable measuring complexity should van-
ish for this specific case. On the other hand, the scalar function YTF contains contributions
from the energy density inhomogeneity and the local pressure anisotropy, combined in
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a very specific way, which (in the static case) vanishes for the homogeneous and locally
isotropic fluid distribution. Furthermore, this scalar measures the departure of the value of
the Tolman mass for the homogeneous and isotropic fluid, produced by the energy density
inhomogeneity and the pressure anisotropy.

It is worth mentioning that the complexity factor so defined not only vanishes for the
simple configuration mentioned above, but also may vanish when the terms appearing
in its definition cancel each other. Thus, vanishing complexity may correspond to very
different systems.

In the time-dependent case, we face two different problems: on the one hand, we
have to generalize the concept of the complexity of the structure of the fluid distribution
to time-dependent dissipative fluids, and on the other hand, we also have to evaluate the
complexity of the mode of evolution. Following the strategy outlined in [49], the complexity
factor for the dissipative case of the fluid distribution is assumed to be the function
YTF, as in the static case, which now includes the dissipative variables. With respect to
the complexity of the mode of evolution, let us recall that in the past, the homologous
and quasi-homologous conditions have been used to characterize the simplest mode of
evolution. However, we know that in the nondissipative case, the homologous and the
quasi-homologous conditions imply the vanishing of the shear (see Equation (59) in [1]),
and therefore, we shall not adopt such restrictions here.

4. Hyperbolically Symmetric Lemaitre–Tolman–Bondi Metric: The Nondissipative
Dust Case

We start our search of hyperbolic symmetric versions of LTB (HSLTB) by consider-
ing the simplest case, i.e., we assume nondissipative geodesic dust. Extensions to the
dissipative, anisotropic case are discussed in the next section, along the lines developed
in [51].

Under the above-mentioned conditions, we find after integration of (10):

B(t, r) =
R′

[k(r)− 1]1/2 , (44)

where k is an arbitrary function of r.
Then, from (19) and (44), it follows:

Ṙ2 = −2m
R

+ k(r). (45)

Equation (45) implies k(r) > 2m
R . Thus, unlike the spherically symmetric LTB space-

time, we now have only one case k(r) > 0.
The solution to (45) may be written as:

R =
m
k
(cosh η + 1),

m
k3/2 (sinh η + η) = t− t0(r), (46)

where t0(r) is an integration function of r.
Thus, for the line element, we have:

ds2 = −dt2 +
(R′)2

k(r)− 1
dr2 + R2(dθ2 + sinh2 θdφ2). (47)

In order to prescribe an explicit model, we have to provide the three functions k(r),
m(r), and t0(r). However, since (47) is invariant under transformations of the form r = r(r̃),
we only need two functions of r.
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Assuming m0 = m
k = constant and t0(r) = constant, the expressions for Θ and σ read:

Θ =

√
k

m0

(
sinh η

sinh η + η
+

cosh η + 2 sinh η + 1
(cosh η + 1)2

)
, (48)

σ =

√
k

m0

(
sinh η

sinh η + η
+

cosh η − sinh η + 1
(cosh η + 1)2

)
, (49)

from which it is clear that the expansion is always positive.
Since, as we have already mentioned, our fluid distribution cannot reach the central

region, then we do not need to consider any regularity conditions there.
The only nontrivial conservation law in this case reads:

µ̇ + µΘ = 0, (50)

or:

µ̇ + µ

(
Ḃ
B
+ 2

Ṙ
R

)
= 0, (51)

producing:

µ =
h(r)
BR2 , (52)

or, using (44):

µ =
3h(r)[k(r)− 1]1/2

(R3)′
, (53)

where h(r) is a function of integration, which due to the fact that the energy density is
negative, must be necessarily negative.

Scalar YTF for (47) reads:

YTF =
R̈
R
− R̈′

R′
. (54)

As is evident from (43), since we are considering nondissipative inhomogeneous
dust, the complexity factor YTF cannot vanish. However, this situation may change in the
dissipative, anisotropic case, as we see in the models exhibited below. On the other hand,
since in the nondissipative case, the quasi-homologous condition implies the vanishing of
the shear (see Equation (59) in [1]), we have to abandon such a restriction for our models.

5. Dissipative Case

We now consider the possibility that the system radiates, and the pressure is nonvan-
ishing and may be anisotropic. To do so, following the approach presented in [51], let us
assume:

B(t, r) =
R′√

K(t, r)− 1
, (55)

then integrating (10), we find:

K(t, r)− 1 =

[∫
4πqRdt + C(r)

]2
, (56)

since in the nondissipative case, (55) becomes (44), then C(r) =
√

k(r)− 1).
Thus, the line element reads:

ds2 = −dt2 +
(R′)2dr2

[
∫

4πqRdt + C(r)]2
+ R2(dθ2 + sinh2 θdφ2). (57)
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Since we are considering dissipative systems, we need a transport equation. For sim-
plicity, we adopt here the transport equation ensuing from the so-called “truncated” the-
ory [52]; it reads:

τhαβVγqβ;γ + qα = −κhαβT,β, (58)

whose only nonvanishing independent component becomes:

τq̇ + q = − κ

B
T′, (59)

where κ and τ denote the thermal conductivity and the relaxation time, respectively.
In order to obtain specific models, we need to impose additional conditions. A first

family of models is obtained from conditions on the complexity factor, while a second
family is obtained by a specific restriction on the function B, particularly suitable for
describing situations where a cavity surrounding the central region appears.

5.1. Models Obtained upon Conditions on the Complexity Factor

In our case, the complexity factor YTF may be written as:

YTF =
R̈
R
− R̈′

R′
+

K̈
2(K− 1)

+
K̇

K− 1

(
Ṙ′

R′
− 3

4
K̇

K− 1

)
. (60)

In order to obtain the models, we shall assume that the above structure scalar has the
same form as in the nondissipative case, implying:

K̈
2(K− 1)

+
K̇

K− 1

(
Ṙ′

R′
− 3

4
K̇

K− 1

)
= 0. (61)

The integration of (61) produces:

R′
√

K̇

(K− 1)
3
4
= C1(r), (62)

where C1 is an integration function. Integrating the above equation, we obtain:

K− 1 =
4

[−C2
1

∫ dt
(R′)2 + C2(r)]2

, (63)

where C2 is another integration function.
Combining (56) and (63), it follows that:∫

4πqRdt + C(r) =
2

−C2
1

∫ dt
(R′)2 + C2(r)

, (64)

or:
C2(r) =

2∫
4πqRdt + C(r)

+ C2
1

∫ dt
(R′)2 . (65)

Using (62), it follows that C2(r) = 0; thus:

2∫
4πqRdt + C(r)

+ C2
1

∫ dt
(R′)2 = 0, (66)

implying that (64) may be written as:

2πq =
1

R
(

R′C1(r)
∫ dt

(R′)2

)2 . (67)
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Let us first try to obtain models of dissipative dust satisfying (63).
Then, using (55) and (61), we obtain:

Ḃ
B
=

Ṙ′

R′
− K̇

2(K− 1)
,

B̈
B
=

R̈′

R′
. (68)

Feeding back (68) in (11) and (12) produces:

K = 2R̈R + Ṙ2, (69)

K′ = 2R′R

[
R̈′

R′
+

R̈
R
+

Ṙ
R

(
Ṙ′

R′
−

C2
1
√

K− 1
2(R′)2

)]
. (70)

Next, taking the r derivative of (69) and replacing it in (70), we find:

Ṙ
R

C2
1
√

K− 1
2(R′)2 = 0, (71)

from which it follows at once that there are no radiating dust solutions in this case. There-
fore, in the following subsection, we relax the dust condition, and we consider models of
radiating anisotropic fluids.

P⊥ = 0, Pr 6= 0

Let us consider models with vanishing tangential pressure.
Replacing (55) in (12), the following expression for P⊥ is found:

8πP⊥ = −
[

B̈
B
+

R̈
R
+

Ṙ
R

(
Ṙ′

R′
− K̇

2(K− 1)

)]
+

K′

2RR′
. (72)

In order to obtain a model, let us choose:

Ṙ
R

Ṙ′

R′
=

K′

2RR′
, (73)

implying:
K− 1 = Ṙ2. (74)

Then, from the condition P⊥ = 0, we obtain from (72):

B̈ = 0, ⇒ B = b1(r)t + b2(r), (75)

where b1 and b2 are two arbitrary functions.
Using (55), we find for R:

R′ − BṘ = 0, ⇒ R = Φ[a1(r)t + a2(r)], (76)

where Φ is an arbitrary function of its argument: and

a1(r) = e
∫

b1(r)dr, a2(r) =
∫

b2(r)e
∫

b1(r)drdr. (77)

Then, the physical variables read:

8πµ = − 1
R2 −

Ṙ
R

K̇
(K− 1)

, (78)

4πq =
K̇

2R
√

K− 1
, (79)

8πPr = − Ṙ
R

K̇
K− 1

+
1

R2 . (80)
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To further specify the model, let us choose b1(r) and b2(r) as:

b1(r) =
β1

r + β2
, b2(r) = (r + β2)

α, (81)

implying:

a1(r) = (r + β2)
β1 , a2(r) =

(r + β2)
α+β1+1

α + β1 + 1
, (82)

and:

B =
β1t

r + β2
+ (r + β2)

α, (83)

R = (a1t + a2)
n, (84)

where β1, β2, α, and n are arbitrary constants.
Thus, the physical and kinematical variables for this model read:

8πµ = − 1
(a1t + a2)2n −

2(n− 1)na2
1

(a1t + a2)2 , (85)

4πq =
(n− 1)na2

1
(a1t + a2)2 , (86)

8πPr =
1

(a1t + a2)2n −
2(n− 1)na2

1
(a1t + a2)2 , (87)

m =
(a1t + a2)

n

2
, (88)

Θ =
b1

b1t + b2
+

2na1

a1t + a2
, (89)

σ =
b1

b1t + b2
− na1

a1t + a2
. (90)

A simple calculation of the complexity factor (YTF) for this model produces:

YTF =
(n− 1)na2

1
(a1t + a2)2 . (91)

It is worth noticing that it has exactly the same expression as q as given by (86). There-
fore, any solution of this family satisfying the vanishing complexity factor is necessarily
nondissipative. On the other hand, YTF is zero if n = 0 and/or a1 = 0 and/or n = 1.
The first two conditions are ruled out at once from (82) and (85). Thus, the solution of
this family with a vanishing complexity factor is characterized by n = 1, which using (85)
and (87), produces:

Pr = −µ. (92)

The above is the stiff equation of state originally considered by Zeldovich (see [48]).

5.2. Models with B = 1

We next assume B = 1 in order to obtain some additional analytical models. As dis-
cussed in [53], such a condition is particularly suitable for describing fluid distributions
whose center is surrounded by an empty cavity, a scenario we expect for the kind of fluid
distributions we are dealing with in this work.
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The corresponding Einstein equations may be written as:

8πµ = − 1
R2 −

2R′′

R
−
(

R′

R

)2

+
Ṙ2

R2 , (93)

4πq =
Ṙ′

R
, (94)

8πPr =
1

R2 +

(
R′

R

)2

−
[(

Ṙ
R

)2

+
2R̈
R

]
, (95)

8πP⊥ =
R′′

R
− R̈

R
. (96)

5.2.1. Nondissipative Case

Let us first consider the nondissipative case (q = 0). In this case, it follows at once
from (94) that R is a separable function, i.e., it takes the form:

R = R1(t) + R2(r), (97)

where R1 and R2 are arbitrary functions of their arguments.
Using (97) in (44), it follows at once that:

R′2 =
√

k(r)− 1. (98)

In order to exhibit an exact solution, let us further assume P⊥ = 0. Using this condition
in (96) produces:

R1(t) = at2 + b1t + c1, R2(r) = ar2 + b2r + c2, (99)

where a, b1, c1, b2, c2 are arbitrary constants.
The physical and kinematical variables for this model are:

8πµ =
1
α2

(
−1− 4aα− β2 + γ2

)
, (100)

8πPr =
1
α2

(
1− 4aα + β2 − γ2

)
, (101)

Pr + µ = − a
πα

, (102)

Θ =
2γ

α
, (103)

σ = −γ

α
, (104)

m =
α

2

(
β2 − γ2 + 1

)
, (105)

where:

α ≡ a(t2 + r2) + b1t + b2r + c1 + c2; β ≡ 2ar + b2,

γ ≡ 2at + b1. (106)

For this model, the expression for YTF reads:

YTF =
2a
α

. (107)
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Therefore, the vanishing complexity factor implies a = 0, which using (100) and (101) pro-
duces:

Pr = −µ. (108)

Thus, the solution of this family with the vanishing complexity factor condition is also
characterized by the stiff equation of state.

5.2.2. Dissipative Case

Let us now consider the dissipative case (q 6= 0). If we impose the condition P⊥ = 0,
then we obtain the equation R̈ = R′′, whose general solution is of the form:

R(t, r) = c1Ψ(t + r) + c2Φ(t− r), (109)

where c1, c2 are arbitrary constants and Ψ, Φ arbitrary functions of their arguments.
As an example, let us choose:

R(t, r) = c sin a(t− r), (110)

where a, c are constants. Then, for the kinematical and physical variables, we obtain:

8πµ = 2a2 − 1
c2 sin2[a(t− r)]

, (111)

4πq = a2, (112)

8πPr = 2a2 +
1

c2 sin2[a(t− r)]
, (113)

Θ = 2a cot[a(t− r)], (114)

σ = −a cot[a(t− r)], (115)

m =
c sin[a(t− r)]

2
, (116)

For this case, the temperature T(t, r), calculated from (59), reads:

T(t, r) = − a2r
4πκ

+ T0(t), (117)

whereas the expression for YTF is:
YTF = −a2, (118)

implying because of (110) that no solution of this family has a vanishing complexity factor.
Finally, as an alternative model, we may assume:

R = a(t− r)n, (119)

where a, n are constants.
The ensuing physical and kinematical variables are in this case:

8πµ = − 1

a2(t− r)2n −
2n(n− 1)

(t− r)2 , (120)

4πq = −n(n− 1)

(t− r)2 , (121)

8πPr =
1

a2(t− r)2n −
2n(n− 1)

(t− r)2 , (122)
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Θ =
2n

t− r
, (123)

σ = − n
t− r

, (124)

m =
a(t− r)n

2
. (125)

Using (59), the expression for the temperature becomes:

T(t, r) =
n(n− 1)

4πκ(t− r)
− n(n− 1)τ

4πκ(t− r)2 + T0(t). (126)

The complexity factor for this family of solutions reads:

YTF =
n(n− 1)
(t− r)2 . (127)

The above scalar may vanish only if n = 0 and/or n = 1. The first possibility has to
be ruled out from a simple inspection of (120), and therefore, the vanishing complexity
factor conditions require n = 1, implying because of (121) that the fluid is nondissipative
and because of (120) and (122) that the fluid satisfies the stiff equation of state Pr = −µ.

6. Discussion and Conclusions

We investigated in some detail all possible solutions of fluids endowed with the
hyperbolic symmetry (3), characterized by nonvanishing shear, inhomogeneous energy–
density, and vanishing four-acceleration (geodesics). So defined, these solutions are entitled
to be considered as hyperbolic symmetric versions of LTB spacetimes.

The first class of solution corresponds to nondissipative dust configurations. Com-
paring with the spherically symmetric case, we observe that only one family of solutions
(k(r) > 0) exists, instead of the three families existing in this latter case (k(r) S 0).

These solutions cannot satisfy the vanishing complexity factor, neither can they evolve
in the quasi-homologous regime. On the other hand, the scalar expansion is positive as
expected for pure dust submitted to a repulsive gravity.

Next, we analyzed the case of dissipative anisotropic fluids. To do this, we generalized
the expression (44) by assuming (55). Different specific models were found from two
different conditions. One class of solutions was obtained from a condition imposed on the
complexity factor (61). It was shown that in this case, the pressure must be anisotropic.
A solution of this type was found assuming further that P⊥ = 0. The subclass of this solu-
tion satisfying the vanishing complexity factor is necessarily nondissipative and satisfies
the stiff equation of state Pr = −µ.

The other class of solutions was found under the condition B = 1. For the nondis-
sipative case, a family of solutions was found under the additional condition P⊥ = 0.
In this case as well, the vanishing complexity factor condition implies the stiff equation
of state Pr = −µ. In the dissipative case, two families of solutions were found from dif-
ferent assumptions on the specific form of R. Thus, assuming (110), we found a solution
never satisfying the vanishing complexity factor condition, whereas assuming (119), such a
condition can be satisfied, implying that the fluid is nondissipative and satisfies the stiff
equation of state Pr = −µ. It is worth noticing that the temperature for the first of the above
solutions (117) does not contain terms depending on the relaxation time. In other words,
the model behaves as if the fluid is always in the thermal stationary state, a result that
becomes intelligible when we observe that the dissipative flux (112) is constant. Instead,
for the second family of solutions, the temperature (126) clearly exhibits the effects of
transient phenomena (i.e., those depending on τ).

Finally, we would like to conclude with a general comment: all the models exhibited
above were found with the sole purpose of illustrating the richness of solutions endowed
with hyperbolic symmetry and sharing the general physical and geometrical properties
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(excluding the isometry group) characterizing the LTB spacetimes. It is now up to cosmol-
ogists and astrophysicists to decide if any of the above models (or any other HSLTB not
described in this manuscript) could be of any use in the study of specific scenarios, as for
example cosmological models beyond the standard FRW solution [54,55].
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