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Abstract: Mode collapse has always been a fundamental problem in generative adversarial networks.
The recently proposed Zero Gradient Penalty (0GP) regularization can alleviate the mode collapse, but
it will exacerbate a discriminator’s misjudgment problem, that is the discriminator judges that some
generated samples are more real than real samples. In actual training, the discriminator will direct the
generated samples to point to samples with higher discriminator outputs. The serious misjudgment
problem of the discriminator will cause the generator to generate unnatural images and reduce the
quality of the generation. This paper proposes Real Sample Consistency (RSC) regularization. In the
training process, we randomly divided the samples into two parts and minimized the loss of the
discriminator’s outputs corresponding to these two parts, forcing the discriminator to output the same
value for all real samples. We analyzed the effectiveness of our method. The experimental results
showed that our method can alleviate the discriminator’s misjudgment and perform better with a
more stable training process than 0GP regularization. Our real sample consistency regularization
improved the FID score for the conditional generation of Fake-As-Real GAN (FARGAN) from 14.28
to 9.8 on CIFAR-10. Our RSC regularization improved the FID score from 23.42 to 17.14 on CIFAR-100
and from 53.79 to 46.92 on ImageNet2012. Our RSC regularization improved the average distance
between the generated and real samples from 0.028 to 0.025 on synthetic data. The loss of the
generator and discriminator in standard GAN with our regularization was close to the theoretical
loss and kept stable during the training process.

Keywords: generative adversarial networks; zero gradient penalty; real sample consistency
regularization; mode collapse

1. Introduction

Since the generative adversarial network proposed by Goodfellow [1] in 2014, it has
achieved great development [2,3] and has been applied in many ways [4–9], such as image
inpainting, super-resolution reconstruction, style transfer, and image editing. However,
researchers are still looking for ways to improve GANs, especially ways to solve the mode
collapse and instability of GANs [10–12]. Thanh-Tung [13] argued that the generated sam-
ples and the real samples in the later training stage are very similar, but the discriminator
can distinguish between the real samples and the generated samples, resulting in a gradient
explosion. In this case, the generator’s gradient in the minibatch points to samples where
the gradient explodes and mode collapse occurs.

Thanh-Tung proved that when the generated distribution approaches the real dis-
tribution, the generator’s gradient should tend to zero. Therefore, the author proposed
0GP regularization on the linear interpolation between the real samples and the generated
samples to alleviate mode collapse. Mescheder [14] proved that 0GP regularization on real
samples could guarantee convergence when initialized sufficiently close to equilibrium.

However, experiments in this paper showed that both 0GP regularizations on the
linear interpolation between real samples and generated samples and 0GP regularization
on real samples exacerbated the discriminator’s misjudgment, that is the discriminator
output has a higher value for generated samples than real samples. The discriminator’s
misjudgment makes it more difficult for the generated samples to converge to the real
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samples and guides the generator to generate unnatural images, reducing the quality of
the generation.

It is necessary for the discriminator to output higher values for some generated
samples than the real samples, because if the discriminator can perfectly distinguish the
generated samples from the real samples, this will cause the training to collapse. However,
if there are massive generated samples for which the discriminator outputs higher values,
this will reduce the quality of the generation. In the actual training, the discriminator
will direct the generated samples to point to samples with higher discriminator outputs,
regardless of whether they are real samples. If the discriminator judges that the massive
generated samples are more real than the generated samples, then the generator’s gradient
within a minibatch will be more directed toward the generated samples with a high
discriminator output rather than the real samples. The result is that the generator generates
many meaningless images, reducing the quality of the generation. 0GP regularization will
exacerbate the problem of the discriminator’s misjudgment.

Tao and Wang [15] proposed fake-as-real GAN based on 0GP regularization on real
samples. When updating the discriminator, the generated samples with the lowest discrim-
inator output in the minibatch should be regarded as real samples. However, the problem
of the discriminator’s misjudgment is still unresolved.

This paper focuses on solving the discriminator’s misjudgment and achieving better
performance with a more stable training process. Our contributions are as follows:

1. We analyze the discriminator’s misjudgment. Due to the 0GP regularization, there
will be more cases where the discriminator’s gradient at the real samples is less than
the discriminator’s gradient at the generated samples during the training process;

2. We propose Real Sample Consistency (RSC) regularization, forcing the discriminator
to output the same value for all real samples. For real samples, real sample consistency
regularization can reduce the proportion of the discriminator output to be less than 1

2 .
Experiments on synthetic and real-world datasets verified that our method achieves
better performance than 0GP regularization.

2. Related Work

Researchers have been committed to improving generative adversarial networks.
Reference [16] utilized the Wasserstein distance and the clip parameter to regularize GANs.
The Wasserstein distance can solve the vanishing gradient problem, but the clip parameters
will decrease the model’s fitting ability. Reference [17] proposed One Gradient Penalty
(1GP) regularization, which improves the fitting ability of the model, but does not guarantee
model convergence. Mescheder [14] proved that 0GP regularization on real samples could
guarantee convergence when initialized sufficiently close to equilibrium. Reference [10]
proposed spectral normalization to make the model have Lipschitz continuity to stabilize
the training process. Reference [18] proposed consistency regularization, which makes
the model insensitive to data augmentation and can maintain consistency in the semantic
feature space, thereby improving the model’s performance. Reference [15] proposed that
the generated samples with the lowest discriminator output in the minibatch should be
regarded as real samples, thus achieving better generalization.

Reference [19] proposed to replace the sigmoid cross-entropy loss in the standard GAN
with the mean-squared error loss to solve the vanishing gradient problem. Hinge loss [20]
and ResNet [21] are also applied to GANs to improve the performance. Reference [22]
utilized instance noise to alleviate the vanishing gradient problem. Reference [23] utilized
the Exponential Moving Average (EMA) to update the generator, which can stabilize the
training of the process. Reference [24] argued that only considering the current gener-
ator when updating the generator will lead to mode collapse, so the author proposed
that the current generator be considered, and the discriminator after K iterations should
be considered. References [25–27] utilized multiple generators to alleviate model col-
lapse. References [11,12,28] achieved amazing results and could generate realistic high-
resolution pictures.
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3. Approach

In this part, we focus on the problem of the discriminator’s misjudgment. We an-
alyze the problem of misjudgment by the discriminator and propose the real sample
consistency regularization.

3.1. Background

The discriminator of the Standard GAN (SGAN) proposed in 2014 maximizes:

L = Ex∼pr [log(D(x))] +Ey∼pg [log(1− D(y)], (1)

where pr represents the real distribution and pg represents the generated distribution.
Reference [1] proposed that when the generator is fixed, the optimal discriminator is:

D∗(v) =
pr(v)

pr(v) + pg(v)
, ∀v ∈ supp(pr) ∪ supp

(
pg
)

(2)

When the global optimum is reached, there are: pr = pg and D∗(v) = 1
2 . Refer-

ence [15] mentioned that for any v ∈ supp(pr) ∪ supp
(

pg
)
, when pg approaches pr, D∗(v)

approaches 1
2 , and (∇D)v → 0, thereby (∇D)x → 0, x ∈ pr.

Therefore, there are two ways to perform 0GP regularization. One enforces a zero-
centered gradient penalty of the form ‖(∇D)x‖

2, where x ∼ pr. The discriminator maximizes:

L0GP−R = Ex∼pr [log(D(x))] +Ey∼pg [log(1− D(y)]

−µEx∼pr‖(∇D)x‖2,
(3)

where µ > 0. The other enforces a zero-centered gradient penalty of the form ‖(∇D)v‖
2,

where v is a linear interpolation between real samples and generated samples. The discrim-
inator maximizes:

L0GP−I = Ex∼pr [log(D(x))] +Ey∼pg [log(1− D(y)]

−µE‖(∇D)v‖2,
(4)

where µ > 0.

3.2. Misjudgment by the Discriminator

However, no matter what the form of zero-centered gradient penalty, it is far from
perfect regularization.

Definition 1. For y0 ∈ Sg, y0 is a fake real sample if y0 ∈ {y0 : D(y0) > E[D(Sr)]}. Sr
represents the set of real samples. Sg represents the set of generated samples.

Consider the 0GP regularization on real samples. Although the 0GP regularization of
the real sample can alleviate the mode collapse, it will lead to D(y) > D(x), which indicates
that the discriminator believes that some generated samples are more real than the real
samples. We can infer that SGAN-0GP will show more fake real samples than SGAN. Since
(∇D)x → 0 only occurs near the equilibrium point and we apply 0GP regularization from
the beginning of the training, this will lead the gradient of the discriminator at the real
samples to be close to 0. Moreover, we did not impose restrictions on the gradient of the
discriminator at the generated samples. As a result, there will be more cases where the
discriminator’s gradient at the real samples is less than the discriminator’s gradient at
the generated samples during the training process. In the end, the number of fake real
samples in SGAN-0GP will be more than that in SGAN. The empirical discriminator guides
the generated samples to point to samples with higher discriminator outputs, regardless
of whether they are real samples. Therefore, the discriminator will guide the generator



Entropy 2021, 23, 1231 4 of 19

to generate more fake real samples. These fake real samples are often far from the real
samples and eventually lead to difficulty in convergence.

0GP regularization on the linear interpolation between real and generated samples
leads to D(y) > D(x) as well. Although, in this case, the zero-centered gradient penalty
is applied on the linear interpolation between real and generated samples, the number
of real samples is finite, and the number of generated samples is infinite. Assume that
Sr represents the set of real samples, Sg represents the set of generated samples, and Reg
represents the total quantity of the regularizations. Then, ‖Sr‖ �

∥∥Sg
∥∥, Reg
‖Sg‖ �

Reg
‖Sr‖ . The

penalty for the gradient of the discriminator at the generated samples is much less than that
at the real samples. Therefore, we can infer that the number of fake real samples generated
by SGAN with 0GP on real samples is similar to that on the linear interpolation between
real and generated samples.

Considering 0GP regularization on the linear interpolation between real and generated
samples is more complicated than that on real samples, and the result of interpolation may
not lie in supp(pr) ∪ supp

(
pg
)

[15]. In the rest of the paper, we use the 0GP regularization
on real samples by default.

3.3. Real Sample Consistency Regularization

In order to alleviate the problem of fake real samples, we can increase D(Sr) and
decrease D(y0). Assume that for xc ∈ Sr, {xc, yi} is a close pair for ∀ yi ∈ {y1, · · · , yn}, n >
1. According to the definition of a close pair, we can approximate yi ∈ {y1, · · · , yn} as xc,
because according to the previous assumption of n > 1, we can obtain pg(xc) > pr(xc).
Consider Equation (2); we have D∗(xc) <

1
2 . This shows that although xc is a real sample,

the discriminator’s output for xc is less than 1
2 . Therefore, we propose Real Sample

Consistency (RSC) regularization, which enforces the discriminator to output the same
value for the real samples. Considering that the proportion of the discriminator’s output
for real samples < 1

2 is low and > 1
2 is high, this alleviates the problem of the discriminator’s

output for real samples < 1
2 by enforcing the discriminator to output the same value for

the real samples. The discriminator in SGAN-RSC maximizes:

Lrsc = Ex∼pr [log(D(x))] +Ey∼pg [log(1− D(y)]−

µEx∼pr‖(∇D)x‖2 − λExs ,xt∼pr‖D(xs)− D(xt)‖2,
(5)

where µ > 0, λ > 0. The training procedure is presented in Algorithm 1.

Algorithm 1: Minibatch stochastic gradient descent training of SGAN-RSC.
input : η, the learning rate. K, the number of iterations for training. ndis, the

number of iterations of the discriminator per generator iteration. N, the
batch size.

1 for i← 1 to K do
2 for j← 1 to ndis do
3 Sample minibatch of N real examples {x1, x2, · · · , xN} from training

dataset ;
4 Sample minibatch of N generated examples {y1, y2, · · · , yN} ;
5 N real examples are randomly divided into {xs1 , xs2 , · · · , xsN/2} and

{xt1 , xt2 , · · · , xtN/2} equally. ;
6 Update the discriminator by ascending its stochastic gradient: ∇θdLrsc;
7 end
8 Sample minibatch of N generated examples {y1, y2, · · · , yN} ;
9 Update the generator by ascending its stochastic gradient:

∇θgEy∼pg log(D(y)) ;
10 end
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Definition 2. For xc ∈ Sr, yc ∈ Sg, {xc, yc} is a δ close pair if yc ∈ {yc : d(xc, yc) ≤ δ, 0 <
δ� d(xi, xj), ∀xi, xj ∈ Sr} [15]. Sr represents the set of real samples, and Sg represents the set of
generated samples.

Assume that for xc ∈ Sr, xc does not belong to any close pair, then the discriminator
will output a high value for xc. Our proposed RSC regularization can alleviate this problem.
Regularization on real samples will also affect the generated samples due to the adversarial
learning.

4. Experimental Results

To verify the effectiveness of our proposed real sample consistency regularization, we
experimented on synthetic data, CIFAR-10, CIFAR-100, and ImageNet2012. The optimizers
of all our experiments were set to RMSProp, α = 0.99, ε = 1 × 10−8. The learning rates
of the generator and the discriminator were both set to 1 × 10−4. The batch size was set
to 64. Once the discriminator was updated, the generator was updated once. To achieve
better results, instance noise [22] and the exponential moving average [23] were applied,
and the β of the exponential moving average was set to 0.999. In order to verify the
effectiveness of our method on different network architectures and different datasets, we
applied ResNet [21] and traditional network architectures [29] on CIFAR-10 and CIFAR-100.
The network architecture of ResNet was the same as [13], and the traditional network
architecture was the same as [11]. We did not use batch normalization. The FID score [30]
was selected to evaluate the generated samples, and a lower FID value represents better
generation. The FID value was obtained on 10 k generated samples. We used Pytorch for
development.

4.1. Synthetic Data

Sample N examples {x1, x2, · · · , xN} from two-dimensional normal distribution
N (0, 0; 1, 1; 0), denoted as Xsample. For each training, Xsample was fixed. The synthetic
data can be obtained by Xsynthesis = Xsample + ψZ, where ψ is 0.02, Z ∼ N (0, 0; 1, 1; 0).
In our experiment, there were three settings for N, namely 25, 50, and 100, which are
denoted as 25 Gaussians, 50 Gaussians, and 100 Gaussians, respectively. Considering the
dimension of the synthetic data to be two, we used MLP as the network architecture; see
Tables A1 and A2 in the Appendix A for the details. In this dataset, we set µ = 200, λ = 500.

We verified our previous analysis by the experiments on the synthetic dataset. As
shown in Figure 1, SGAN-0GP showed more fake real samples during the training process
than SGAN. The number of fake real samples generated by SGAN with 0GP on real samples
was similar to that on the linear interpolation between real and generated samples. We
can also find that 0GP regularization on real samples and 0GP regularization on the linear
interpolation between real and generated samples resulted in the number of fake real
samples exceeding that in SGAN. These observations are consistent with our previous
analysis in Section 3.

Figure 1 shows the qualitative results of SGAN, SGAN-0GP, and SGAN-RSC on the
synthetic data. The ideal generation is to generate samples that cover every real sample
and that every generated sample be close to the real samples. However, we note that the
green generated samples did not cover part of the orange real samples in Figure 1a, which
indicates that mode collapse occurred. In Figure 1b, although mode collapse did not occur,
many generated samples were distributed far away from the real samples. The generation
in Figure 1c was the best in the three subfigures. Not only was there no mode collapse,
but there were fewer generated samples that were far away from the real samples. The
consequence was consistent with Figure 2. Although the number of fake real samples in
SGAN was low, mode collapse occurred. According to Figures 1 and 2, the SGAN-RSC we
proposed led to fewer fake real samples and generated samples that were far away from
the real samples and avoided model collapse.
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(a) SGAN (b) SGAN-0GP (c) SGAN-RSC

Figure 1. Result of SGAN, SGAN-0GP, and SGAN-RSC on 50 Gaussians at 100 k iterations. SGAN, SAGN-0GP, and
SGAN-RSC were iterated 100 k times on 50 Gaussians. The orange dots represent real samples, and the green dots represent
randomly generated samples. There are 1000 green points in each subfigure.

Figure 2. Result of the number of fake real samples in SGAN, SGAN-0GP, and SGAN-RSC with
ResNet on CIFAR-10. We randomly sampled 1000 fake samples and counted the number of false
samples. SGAN-0GP-R represents 0GP regularization on real samples; SGAN-0GP-I represents 0GP
regularization on the linear interpolation between the real samples and the generated samples.

The quantitative results were consistent with the qualitative results in Figure 1. As
shown in Table 1, the average distance obtained by our method was less than the average
distance obtained by 0GP, and as the number of real samples increased, the better the
improvement of our method. Our method’s improvement for 25 Gaussians was less than
that for 50 Gaussians and 100 Gaussians because the 25 Gaussian dataset was simple, and
the average distance was close to the ideal average distance.

Table 1. The average distance between the generated sample and the real samples on 25 Gaussians,
50 Gaussians, and 100 Gaussians at 100 k iterations. Experiments were repeated 10 times.

SGAN-0GP SGAN-RSC

25 Gaussians 0.028 ± 0.0053 0.025 ± 0.0048
50 Gaussians 0.058 ± 0.0084 0.048 ± 0.0102

100 Gaussians 0.072 ± 0.0094 0.057 ± 0.014

4.2. CIFAR-10 and CIFAR-100

In CIFAR-10 and CIFAR-100, we set the image resolution at 32 × 32 and experimented
on both the conventional network and ResNet. We set µ = 10, λ = 20 for the conventional
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network architecture and µ = 10, λ = 500 for ResNet, see Tables A3–A6 in the Appendix A
for the details. The results are shown in Table 2.

Table 2. FID on CIAFR-10 and CIFAR-100 with ResNet and the conventional network. Experiments
were repeated 3 times.

0GP RSC

CIFAR-10
ResNet SGAN 24.15 ± 0.27 12.05 ± 0.50
ResNet WGAN 24.33 ± 0.16 12.90 ± 0.07
ResNet LSGAN 22.32 ± 0.05 14.40 ± 0.40
ResNet HingeGAN 23.39 ± 0.12 12.37 ± 0.31
ResNet FARGAN 14.28 ± 0.16 11.66 ± 0.09
Conventional SGAN 13.12 ± 0.41 10.92 ± 0.04

CIFAR-100
ResNet SGAN 34.48 ± 0.02 19.80 ± 0.19
Conventional SGAN 23.42 ± 0.29 17.14 ± 0.07

We verified our previous analysis in Section 3 by experiments on CIFAR-10 and CIFAR-
100. As shown in Figure 3, the discriminator’s output with our regularization for both real
samples and fake samples was more concentrated. For real samples, the proportion of the
discriminator with our regularization output less than 1

2 was lower than the proportion
of the discriminator with 0GP regularization output less than 1

2 . For fake samples, the
proportion of the discriminator with our regularization output greater than 1

2 was lower
than the proportion of the discriminator with 0GP regularization output greater than 1

2 .
This was consistent with the result in Figure 2. As shown in Figure 2, the number of fake
real samples in SGAN-RSC was lower than the number of fake real samples in SGAN-0GP.

(a) The distribution of discriminator output in SGAN-
0GP and SGAN-RSC

(b) The detail of SGAN-RSC in (a)

Figure 3. Result of the output of discriminator in SGAN-0GP and SGAN-RSC with ResNet on CIFAR-
10. We randomly sampled 1000 real samples and 1000 fake samples. The statistical discriminator’s
output distribution for real samples and fake samples, respectively.

The result on FARGAN and FARGAN-RSC on CIFAR-10 is shown in Figure 4. FARGAN-
RSC outperformed FARGAN. Note that the FID of FARGAN dropped quickly at the beginning
of training. However, as the training progressed, the FID of FARGAN was surpassed by the
FID of FARGAN-RSC, and the FID of FARGAN-RSC continued to decrease.
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Figure 4. Result on FARGAN and FARGAN-RSC on CIFAR-10 with the conventional
network architecture.

In order to obtain the optimal parameter λ, we selected parameter λ through ablation
experiments, as shown in Figure 5. Figure 5a shows that, when λ < 500, SGAN-RSC with
ResNet achieved better results with the increase of λ. However, when we set λ = 1000, the
result was worse than that of λ = 500. Consequently, we set λ = 500 for SGAN-RSC with
ResNet. Similarly, we set λ = 20 for SGAN-RSC with the conventional network.

(a) Result for ResNet (b) Result for the conventional network

Figure 5. Result for SGAN-RSC with different λ on CIFAR-10 with the conventional network
and ResNet.

To verify the effectiveness of our proposed real sample consistency regularization with
different network architectures, we compared SGAN-0GP and SGAN-RSC with the conven-
tional network and ResNet, respectively. Experiments were carried out on CIFAR-10 and
CIFAR-100. The result is shown in Figure 6. In all experiments, SGAN-RSC outperformed
SGAN-0GP, especially with ResNet. Note that although the FID value of SGAN-RSC with
the conventional architecture on CIFAR-100 increased slowly in the late training period,
and the lowest FID value of SGAN-RSC with the conventional architecture on CIFAR-
100 was lower than that of SGAN-0GP with the conventional architecture on CIFAR-100.
Figure 6 shows that our method was effective for different network architectures.
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(a) Result of the conventional network (b) Result of ResNet

Figure 6. FID of SGAN-0GP and SGAN-RSC. Calculated on CIFAR-10 and CIFAR-100 with the
conventional network and ResNet.

We also experimented with different GAN variants. In our experiments, 0GP on real
samples instead of 1GP was applied in WGAN [16,17,31]. We set a = c = 1, b = 0 for
LSGAN [19] and N = 64, M = 32, f = 8, and N0 = 16 for FARGAN [15]. The result is
shown in Figure 7. Note that real sample consistency regularization outperformed 0GP
regularization for all GAN variants. Although LSGAN-RSC converged slowly in the early
stages of training, it eventually reached an FID value similar to that obtained by other GAN
variants with real sample consistency regularization. Figure 7 shows that our method was
effective for different GAN variants.

Figure 7. Result of 0GP regularization and RSC regularization on different GAN variants.

The loss of the generator and discriminator with ResNet on CIFAR-10 is shown in
Figure 8. The theoretical loss was ln2 ≈ 0.693 for the generator and 2ln2 ≈ 1.386 for
the discriminator. As the training progressed, we observed that the loss of the generator
increased, and the loss of discriminator decreased significantly in SGAN-0GP. However,
the loss of the generator and discriminator in SGAN-RSC was close to the theoretical loss
and kept stable. Figure 8 shows that our method can stabilize the training of SGAN-0GP.
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(a) Loss of the generator (b) Loss of the discriminator

Figure 8. The loss of the generator and discriminator in SGAN-0GP and SGAN-RSC with ResNet on
CIFAR-10.

The qualitative result with ResNet on CIFAR-10 is shown in Figure 9. Note that
the images generated by SGAN-RSC were sharper and the structure clearer, such as
the images of horses, airplanes, and cars. SGAN-0GP generated more unnatural and
fuzzy images due to the fake real samples. Figures 9 and 10 show that our proposed
regularization outperformed 0GP regularization qualitatively on CIFAR-10 and CIFAR-100.
More qualitative results are shown in Figures A1–A4.

(a) SGAN-0GP (b) SGAN-RSC

Figure 9. Randomly images generated by SGAN-0GP and SGAN-RSC with ResNet on CIFAR-10.
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(a) SGAN-0GP (b) SAGN-RSC

Figure 10. Randomly images generated by SGAN-0GP and SGAN-RSC with ResNet on CIFAR-100.

In Figure 11, we show the images randomly generated by SGAN-RSC and the images
closest to the generated images in CIFAR-10. The results showed that our model did not
copy the images, but learned the distribution of the real images, which can guarantee the
diversity of the generation.

(a) Random generated images (b) The image closest to (a) in CIFAR-10

Figure 11. Randomly images generated by SGAN-RSC and the image closest to it in CIFAR-10. We
used the cosine distance as the basis for comparison.

We compared other state-of-the-art methods, and the results are shown in Table 3.
Real sample consistency regularization improved the FID score of FARGAN on CIFAR-10
from 14.28 to 9.8.

Table 3. Comparison with state-of-the-art GAN models including SNGAN [10], BigGAN [6], CR-
BigGAN [18], and FARGAN [15]. The FID value of FARGAN-RSC was obtained at 1200 k iterations.

Method SNGAN BigGAN CR-BigGAN FARGAN FARGAN-RSC (Ours)

FID 17.5 14.73 11.48 14.28 9.8
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4.3. ImageNet

In order to verify the effectiveness of our method on challenging datasets, we experi-
mented on ImageNet, which contains 1000 classes. We set the image resolution at 64 × 64
and experimented on ResNet; see Tables A7 and A8 in the Appendix A for details. We set
µ = 10, λ = 20. The results are shown in Table 4.

Table 4. FID of SGAN-0GP and SGAN-RSC on ImageNet with ResNet.

Method SGAN-0GP SGAN-RSC

FID 53.79 46.92

4.4. Summary of the Experimental Results

As shown in Table 5, the results of RSC regularization on all datasets surpassed the
results of 0GP regularization. This shows that our method works for different datasets.

Table 5. The best results of 0GP and RSC on different datasets. On the synthetic data, we recorded the
average distance between the generated sample and the real samples for comparison. On CIFAR-10,
CIFAR-100, and ImageNet2012, we recorded the FID for comparison.

0GP RSC

Synthetic data (distance) 0.028 0.025

CIFARA-10 (FID) 13.12 9.8
CIFAR-100 (FID) 23.42 17.14
ImageNet2012 (FID) 53.79 46.92

5. Conclusions

This paper showed that 0GP regularization introduces the discriminator’s misjudg-
ment, which is the discriminator outputting a higher value for some generated samples
than the real samples. We analyzed the discriminator’s output for the real sample, which
was that a close pair with several generated samples was less than 1

2 . We proposed a new
regularization, which forced the discriminator to output the same value for all real samples.
The experiment result showed that our proposed regularization can reduce the number
of fake real samples. Experiments on synthetic data showed that our method reduces the
distance between the real distribution and the generated distribution and avoids mode
collapse. Experiments on CIFAR-10, CIFAR-100, and ImageNet verified that our method
can stabilize the training process and significantly improve the performance.
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Appendix A

Table A1. Generator architecture in the synthetic experiment.

Layer Output Size Filter

Fully connected 64 2→ 64
RELU 64 –

Fully connected 64 64→ 64
RELU 64 –

Fully connected 64 64→ 64
RELU 64 –

Fully connected 2 64→ 2

Table A2. Discriminator architecture in the synthetic experiment.

Layer Output Size Filter

Fully connected 64 2→ 64
RELU 64 –

Fully connected 64 64→ 64
RELU 64 –

Fully connected 64 64→ 64
RELU 64 –

Fully connected 1 64→ 1

Table A3. Generator ResNet architecture in the CIFAR experiment.

Layer Output Size Filter

Fully connected 512 × 4 × 4 128→ 512 × 4 × 4
Reshape 512 × 4 × 4 –

ResNet-Block 256 × 4 × 4 512→ 256→ 256
NN-Upsampling 256 × 8 × 8 –

ResNet-Block 128 × 8 × 8 256→ 128→ 128
NN-Upsampling 128 × 16 × 16 –

ResNet-Block 64 × 16 × 16 128→ 64→ 64
NN-Upsampling 64 × 32 × 32 –

ResNet-Block 64 × 32 × 32 64→ 64→ 64
Conv2D 3 × 32 × 32 64→ 3

Table A4. Discriminator ResNet architecture in the CIFAR experiment.

Layer Output Size Filter

Conv2D 64 × 32 × 32 3→ 64

ResNet-Block 128 × 32 × 32 64→ 64→ 64
Avg-Pool2D 128 × 16 × 16 –

ResNet-Block 256 × 16 × 16 128→ 128→ 256
Avg-Pool2D 256 × 8 × 8 –

ResNet-Block 512 × 8 × 8 256→ 256→ 512
Avg-Pool2D 512 × 4 × 4 –

Reshape 512 × 4 × 4 –
Conv2D 1 512 × 4 × 4→ 1
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Table A5. Generator conventional architecture in the CIFAR experiment.

Layer Output Size Filter

Fully connected 512 × 4 × 4 128→ 512 × 4 × 4
Reshape 512 × 4 × 4 –

Conv2D 512 × 4 × 4 512→ 512
Conv2D 512 × 4 × 4 512→ 512

NN-Upsampling 512 × 8 × 8 –

Conv2D 256 × 8 × 8 512→256
Conv2D 256 × 8 × 8 256→ 256

NN-Upsampling 512 × 16 × 16 –

Conv2D 128 × 16 × 16 256→128
Conv2D 128 × 16 × 16 128→ 128

NN-Upsampling 128 × 32 × 32 –

Conv2D 64 × 32 × 32 128→64
Conv2D 64 × 32 × 32 64→ 64
Conv2D 3 × 32 × 32 64→ 3

Table A6. Discriminator conventional architecture in the CIFAR experiment.

Layer Output Size Filter

Fully connected 512 × 4 × 4 128→ 512 × 4 × 4
Reshape 512 × 4 × 4 –

Conv2D 64 × 32 × 32 3→ 64
Conv2D 64 × 32 × 32 64→ 64
Conv2D 128 × 32 × 32 64→ 128

Avg-Pool2D 128 × 16 × 16 –

Conv2D 128 × 16 × 16 128→ 128
Conv2D 256 × 16 × 16 128→ 256

Avg-Pool2D 256 × 8 × 8 –

Conv2D 256 × 8 × 8 256→ 256
Conv2D 512 × 8 × 8 256→ 512

Avg-Pool2D 512 × 4 × 4 –

Reshape 512 × 4 × 4 –
Fully connected 1 512 × 4 × 4→ 1

Table A7. Generator architecture in the ImageNet experiment.

Layer Output Size Filter

Fully connected 1024 × 4 × 4 256→ 1024 × 4 × 4
Reshape 1024 × 4 × 4 –

ResNet-Block 1024 × 4 × 4 1024→ 1024→ 1024
ResNet-Block 1024 × 4 × 4 1024→ 1024→1024

NN-Upsampling 1024 × 8 × 8 –

ResNet-Block 512 × 8 × 8 1024→ 512→ 512
ResNet-Block 512 × 8 × 8 512→ 512→512

NN-Upsampling 512 × 16 × 16 –

ResNet-Block 256 × 16 × 16 512→ 256→ 256
ResNet-Block 256 × 16 × 16 256→ 256→256

NN-Upsampling 256 × 32 × 32 –
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Table A7. Cont.

Layer Output Size Filter

ResNet-Block 128 × 32 × 32 256→ 128→ 128
ResNet-Block 128 × 32 × 32 128→ 128→128

NN-Upsampling 128 × 64 × 64 –

ResNet-Block 64 × 64 × 64 128→ 64→ 64
ResNet-Block 64 × 64 × 64 64→ 64→64

Conv2D 3 × 64 × 64 64→ 3

Table A8. Discriminator architecture in the ImageNet experiment.

Layer Output Size Filter

Conv2D 64 × 64 × 64 3→ 64

ResNet-Block 64 × 64 × 64 64→ 64→ 64
ResNet-Block 128 × 64 × 64 64→ 64→128
Avg-Pool2D 128 × 32 × 32 –

ResNet-Block 128 × 32 × 32 128→ 128→ 128
ResNet-Block 256 × 32 × 32 128→ 128→256
Avg-Pool2D 256 × 16 × 16 –

ResNet-Block 256 × 16 × 16 256→ 256→ 256
ResNet-Block 512 × 16 × 16 256→ 256→512

NN-Upsampling 512 × 8 × 8 –

ResNet-Block 512 × 8 × 8 512→ 512→ 512
ResNet-Block 1024 × 8 × 8 512→ 512→1024

NN-Upsampling 512 × 4 × 4 –

ResNet-Block 1024 × 4 × 4 1024→ 1024→1024
ResNet-Block 1024 × 4 × 4 1024→ 1024→1024

Fully connected 1 1024 × 4 × 4→ 1

(a) WGAN-0GP

Figure A1. Cont.
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(b) WGAN-RSC

Figure A1. Randomly images generated by WGAN-0GP and WGAN-RSC with ResNet on CIFAR-10.

(a) HingeGAN-0GP

(b) HingeGAN-RSC

Figure A2. Randomly images generated by HingeGAN-0GP and HingeGAN-RSC with ResNet on
CIFAR-10.
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(a) LSGAN-0GP

(b) LSGAN-RSC

Figure A3. Randomly images generated by LSGAN-0GP and LSGAN-RSC with ResNet on CIFAR-10.

(a) SGAN-0GP

Figure A4. Cont.
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(b) SGAN-RSC

Figure A4. Randomly images generated by SGAN-0GP and SGAN-RSC with ResNet on ImageNet.

References
1. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.C.; Bengio, Y. Generative

Adversarial Nets. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13
December 2014; pp. 2672–2680.

2. Jolicoeur-Martineau, A. The relativistic discriminator: A key element missing from standard GAN. In Proceedings of the
International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

3. Zhang, H.; Goodfellow, I.; Metaxas, D.; Odena, A. Self-Attention Generative Adversarial Networks. In Proceedings of the 36th
International Conference on Machine Learning, Los Angeles, CA, USA, 10–15 June 2019; Volume 97, pp. 7354–7363.

4. Gu, J.; Shen, Y.; Zhou, B. Image processing using multi-code GaN prior. In Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 3009–3018.

5. Shen, Y.; Gu, J.; Tang, X.; Zhou, B. Interpreting the latent space of GANs for semantic face editing. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 9240–9249.

6. Brock, A.; Donahue, J.; Simonyan, K. Large Scale GAN Training for High Fidelity Natural Image Synthesis. In Proceedings of the
International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

7. Ledig, C.; Theis, L.; Huszar, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al.
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

8. Shaham, T.R.; Dekel, T.; Michaeli, T. SinGAN: Learning a generative model from a single natural image. In Proceedings of the
IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 4569–4579.

9. Choi, Y.; Choi, M.; Kim, M.; Ha, J.W.; Kim, S.; Choo, J. StarGAN: Unified Generative Adversarial Networks for Multi-Domain
Image-to-Image Translation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Salt Lake City, UT, USA, 18–23 June 2018.

10. Miyato, T.; Kataoka, T.; Koyama, M.; Yoshida, Y. Spectral normalization for generative adversarial networks. In Proceedings
of the 6th International Conference on Learning Representations, ICLR 2018—Conference Track Proceedings, Vancouver, BC,
Canada, 30 April–3 May 2018.

11. Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive Growing of GANs for Improved Quality, Stability, and Variation. In
Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

12. Karras, T.; Laine, S.; Aila, T. A Style-Based Generator Architecture for Generative Adversarial Networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019 .

13. Thanh-Tung, H.; Venkatesh, S.; Tran, T. Improving generalization and stability of generative adversarial networks. In Proceedings
of the 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019; pp. 1–18.

14. Mescheder, L.; Geiger, A.; Nowozin, S. Which training methods for GANs do actually converge? In Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, Stockholm, Sweden, 10–15 July 2018; Volume 8, pp. 5589–5626.

15. Tao, S.; Wang, J. Alleviation of gradient exploding in GANs: Fake can be real. In Proceedings of the 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 1188–1197.

16. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, Australia, 6–11 August 2017; Volume 1, pp. 298–321.



Entropy 2021, 23, 1231 19 of 19

17. Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A. Improved Training of Wasserstein GANs. In Proceedings of
the 31st International Conference on Neural Information Processing Systems NIPS’17, Long Beach, CA, USA, 4–9 December 2017;
pp. 5769–5779.

18. Zhang, H.; Zhang, Z.; Odena, A.; Lee, H. Consistency Regularization for Generative Adversarial Networks. In Proceedings of the
International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020.

19. Mao, X.; Li, Q.; Xie, H.; Lau, R.Y.; Wang, Z.; Smolley, S.P. Least Squares Generative Adversarial Networks. In Proceedings of the
IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2813–2821.

20. Wu, Y.; Liu, Y. Robust Truncated Hinge Loss Support Vector Machines. J. Am. Stat. Assoc. 2007, 102, 974–983. [CrossRef]
21. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.
22. Sønderby, C.K.; Caballero, J.; Theis, L.; Shi, W.; Huszár, F. Amortised map inference for image super-resolution. arXiv 2017,

arXiv:1610.04490.
23. Klinker, F. Exponential moving average versus moving exponential average. Math. Semesterber. 2011, 58, 97–107. [CrossRef]
24. Metz, L.; Poole, B.; Pfau, D.; Sohl-Dickstein, J. Unrolled generative adversarial networks. arXiv 2016, arXiv:1611.02163.
25. Ghosh, A.; Kulharia, V.; Namboodiri, V.P.; Torr, P.H.S.; Dokania, P.K. Multi-Agent Diverse Generative Adversarial Networks.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23
June 2018 .

26. Hoang, Q.; Nguyen, T.D.; Le, T.; Phung, D. MGAN: Training generative adversarial nets with multiple generators. In Proceedings
of the 6th International Conference on Learning Representations, ICLR 2018—Conference Track Proceedings, Vancouver, BC,
Canada, 30 April–3 May 2018; pp. 1–24.

27. Arora, S.; Ge, R.; Liang, Y.; Ma, T.; Zhang, Y. Generalization and Equilibrium in Generative Adversarial Nets (GANs). In
Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Volume 70, pp.
224–232.

28. Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X. Improved techniques for training GANs. In
Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 2234–2242.

29. Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks.
In Proceedings of the 4th International Conference on Learning Representations, ICLR 2016—Conference Track Proceedings,
San Juan, PR, USA, 2–4 May 2016; pp. 1–16.

30. Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. GANs Trained by a Two Time-Scale Update Rule Converge
to a Local Nash Equilibrium. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA,
4–9 December 2017; pp. 6629–6640.

31. Petzka, H.; Fischer, A.; Lukovnikov, D. On the regularization of Wasserstein GANs. In Proceedings of the International
Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

http://doi.org/10.1198/016214507000000617
http://dx.doi.org/10.1007/s00591-010-0080-8

	Introduction
	Related Work
	Approach
	Background
	Misjudgment by the Discriminator
	Real Sample Consistency Regularization

	Experimental Results
	Synthetic Data
	CIFAR-10 and CIFAR-100
	ImageNet
	Summary of the Experimental Results

	Conclusions
	
	References

