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Abstract: In this paper, we present a verifiable arbitrated quantum signature scheme based on
controlled quantum teleportation. The five-qubit entangled state functions as a quantum channel.
The proposed scheme uses mutually unbiased bases particles as decoy particles and performs unitary
operations on these decoy particles, applying the functional values of symmetric bivariate polynomial.
As such, eavesdropping detection and identity authentication can both be executed. The security
analysis shows that our scheme can neither be disavowed by the signatory nor denied by the verifier,
and it cannot be forged by any malicious attacker.
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1. Introduction

Since Bennett and Brassard [1] proposed the quantum key distribution (QKD) protocol
in 1984, quantum cryptography has attracted extensive attention. Its security is guaranteed
by the principles of quantum mechanics such as the Heisenberg uncertainty principle and
the quantum no-cloning theorem. Quantum cryptography can provide the advantage
of unconditional security, making the research of quantum cryptography increasingly
important. Many important quantum cryptography branches have been developed, such
as quantum key distribution [2,3], quantum signature (QS) [4–6], quantum teleportation
(QT) [7], quantum authentication [8], and deterministic secure quantum communication [9].

Quantum signatures can be applied to verify the identity of the sender and the
integrity of the information. The arbitrated quantum signature (AQS), providing many
merits, has attracted much attention. In 2002, Zeng et al. [10] proposed the first arbitrated
quantum signature scheme using the Green–Horne–Zeilinger (GHZ) state and the quantum
one-time pad (QOTP). Based on the design of the classical arbitrated digital signature,
the scheme provides a re-verification service for signatory and receiver using the online
signature provided by a trusted third party arbitrator. In 2008, Curty and Lutkenhaus [11]
investigated the scheme [10], and they claimed that it was not clearly described and that the
safety analysis was incorrect. In response to the controversy of Curty et al., Zeng et al. [12]
proved the scheme [10] in more detail. In 2009, to reduce the complexity and improve the
efficiency of the protocol [10], Li et al. [13] proposed an AQS scheme based on the Bell states
rather than the GHZ states and proved its advantages in terms of transmission efficiency
and low complexity. Unfortunately, in 2010, Zou and Qiu [14] argued that Li’s AQS scheme
can be disavowed by the receiver, and they proposed an AQS protocol that uses bulletin
boards and other security schemes that do not use entangled state. Their scheme further
simplified the protocol of Li et al., and an improved AQS scheme was designed using single
particles that can resist the denunciation of the receiver, thus reducing the difficulty of
the physical implementation of AQS. However, in 2011, Gao et al. [15] conducted the first
comprehensive cryptanalysis of previous AQS schemes in terms of forgery and disavowal.
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They found that the existing AQS schemes based on QOTP encryption [13,14] all have
some security problems. In other words, the receiver Bob can realize the existence of
the forgery of a signature under the known message attack, while the sender Alice can
successfully disavow any signature of hers through a simple attack. Choi et al. [16] found
that most AQS protocols can be cracked through a specific existential forgery attack due
to the careless taking advantage of the optimal quantum one-time pad based on Pauli
operators. To overcome this weakness, they proposed a simple method to ensure the
security of the signature. As Choi et al.proved, Bob could not simultaneously forge both
the information and the signature to be verified by an arbitrator in the event of a dispute.
In the same year, Yang et al. [17] demonstrated how to construct an arbitrated quantum
signature protocol for classical messages using untrusted arbitrators. In order to solve
the security problems experienced with the AQS protocol, Zhang et al. [18] analyzed the
existing security problems [15,16] in 2013 and suggested some corresponding improvement
strategies to counter forgery attacks. In order to solve the problem proposed by Gao
et al. [15], Liu et al. [19] designed a new QOTP algorithm in 2014, which mainly relies on
inserting decoy states into fixed positions, and constructed an unconditionally secure AQS
scheme with fast signing and verifying using only a single particle state. In 2015, Li [20]
used chained CNOT operation for encryption, instead of quantum one-time pad, to ensure
the security of the protocol. To improve the efficiency of quantum bit to 100%, Yang [21]
proposed an AQS scheme with the cluster state in 2016. In 2017, in order to resist forgery
attacks and disavowal attacks, Zhang et al. [22] proposed a new quantum encryption based
on the key-controlled chained CNOT operations (KCCC encryption), and through KCCC
encryption, constructed an improved arbitrated quantum signature protocol. In 2016, Yang
et al. [23] also proposed a theoretically extensible quantum digital signature with a star-like
cluster state. In 2018, Shi et al. [24] proposed an arbitrated quantum signature scheme with
the Hamiltonian algorithm based on blind quantum computation. Due to the application
of blind quantum computation, it is not necessary to recover the original message during
verification, which can improve the simplicity and operability of AQS. In the same year,
Feng et al. [25] constructed an AQS scheme based on continuous variable squeezed vacuum
states rather than coherent states to further improve coding efficiency and performance. In
2019, Feng et al. [26] proposed an AQS scheme with quantum walk-based teleportation,
which does not require the preparation of entangled particles in advance, making the AQS
protocol more flexible and practical. In 2020, Chen et al. [27] proposed an offline arbitrated
semi-quantum signature scheme based on four-particle cluster states, in which the classical
parties can sign with the assistance of a quantum arbitrator. Different from the typical
arbitrated quantum signature schemes, the arbitrator in this protocol acts as a relay station
of signature transmission and no longer interferes with the direct authentication of the
signature, so that the signature receiver has completed authentication rights. There is no
additional direct communication between the signatory and the receiver, which reduces
the complexity of transmission. However, the above AQS scheme does not consider
authentication between signatory, arbitrator, and verifier.

Quantum teleportation is a technology that uses the entangled state or cluster state to
transmit information between two sides of communication. The first scheme of quantum
teleportation was proposed by Bennett et al. [28] in 1993. It is a scheme of teleportation through
classical channel and an EPR entangled channel. In 1998, Karlsson and Bourennane [29]
proposed controlled quantum teleportation. Its basic idea is that the receiver reconstructs the
unknown quantum state with the help of the controller. Until now, quantum teleportation
has been studied using the GHZ states [30], W. states [31,32], cluster states [33], and other
entangled states as quantum channels. In recent years, many quantum signature schemes
have used entangled states as quantum channels, and methods were proposed to transmit
unknown quantum states of a single particle [34] or double particles [35]. In 2005, Brown
et al. [36] developed a computationally feasible entanglement measurement method based
on negative bias transposition criterion, and found highly entangled four-qubit states and
five-qubit states by searching. In 2008, Muralidharan and Panigrahi [37] investigated the
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usefulness of the five-qubit state introduced by Brown et al. [36] for quantum information
applications such as quantum teleportation. The results show that this state can be used for
perfect teleportation of arbitrary single- and two-qubit systems.

In this paper, we construct an arbitrated quantum signature scheme that can verify
the identity of participants using five-qubit entangled states as quantum channels and
controlled quantum teleportation. The security analysis result shows that our AQS scheme
ensures that the signatory Alice cannot disavow, the verifier Bob cannot repudiate, and any
illegal attacker can not forge. The proposed scheme uses mutually unbiased bases particles
as decoy particles. It applies a pair of function values of symmetric binary polynomials to
perform a unitary operation on decoy particles so that eavesdropping detection and identity
verification between participants can be performed. In addition, the scheme only needs
von Neumann measurement, Bell measurement, and a unitary operation to recover the
single-particle qubit state. It replicates message from the signatory Alice to the verifier Bob,
which is an attractive advantage for realizing an actual quantum communication network.

The scheme has the following advantages:

(1) The mutually unbiased bases particles are used as decoy particles to prevent external
adversaries from eavesdropping during transmission;

(2) The receiver only needs to ask about the position of the decoy particles without asking
what the measurement bases are in the process of eavesdropping detection;

(3) The scheme provides the function of identity authentication among participants. It
uses a pair of function values of symmetric binary polynomials as parameters of the
unitary operation, which is used to act on the decoy particles to verify the identity of
participants.

The rest of this article are organized as follows. In Section 2, the concepts of the arbitrated
quantum signature, mutually unbiased bases and controlled quantum teleportation are
introduced. In Section 3, the detailed process of the proposed protocol is described. In
Sections 4 and 5, the verifiability analysis and safety analysis are conducted, respectively.
Finally, a brief conclusion is provided in Section 6.

2. Preliminaries

In this section, we first briefly review some notions concerning the arbitrated quantum
signature scheme and the definition of mutually unbiased bases, which is presented in [38].
Then, we introduce controlled quantum teleportation, which is used in constructing
the arbitrated quantum signature scheme. Finally, an example of controlled quantum
teleportation is given.

2.1. Some Notions Concerning the Arbitrated Quantum Signature

A digital signature scheme is a cryptographic primitive that provides the receiver
of a message with assurance about the integrity of the data, and the identity of the
sender/signatory. Furthermore, it offers unforgeable and undeniable property. Similarly,
the arbitrated signature scheme is a digital signature scheme finished with the help of an
arbitrator, who is a disinterested third party trusted to complete a protocol. Here “trusted”
means that all people involved in the protocol accept what he says as true and what he
does as correct, as well as that he will complete his part of the protocol [14]. The quantum
signature is a quantum version of the classical digital signature.

2.2. Mutually Unbiased Bases

Definition 1 ([38]). We suppose that A1 = {|ϕi〉}q
i=1 and A2 = {|ψi〉}q

i=1 are two sets of
standard orthogonal bases, which are defined over a q-dimensional complex space Cq. We state that
A1 and A2 are mutually unbiased if the following relationship is satisfied: |〈ϕi|ψj〉| = 1√

q .

If any two sets of standard orthogonal bases A1, A2, · · · , Am in space Cq is unbiased,
then this set is called an unbiased bases set. Additionally, one can find at most q + 1
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mutually unbiased bases if q is an odd prime number. In particular, the computation basis is
expressed as {|k〉|k ∈ D}, where D = {0, 1, ..., q− 1}. In addition to the computation basis,
the remaining q groups of unbiased bases can be expressed as |ϕ(j)

l 〉 =
1√
q ∑

q−1
k=0 ωk(l+jk)|k〉,

where ω = e
2πi

q and j ∈ D represent the number of the mutually unbiased bases and l ∈ D
list the number of vectors for the given bases. For j 6= j′ these mutually unbiased bases
satisfy the following conditions: |〈ϕl

(j)|ϕl
(j′)〉| = 1√

q .

Letting Xq = ∑
q−1
n=0 ωn|n〉〈n|, we have following operations:

Xq
x|ϕl

(j)〉 = Xq
x 1√

q ∑
q−1
k=0 ωk(l+jk)|k〉

= 1√
q

(
∑

q−1
n=0 ωxn|n〉〈n|

)(
∑

q−1
k=0 ωk(l+jk)|k〉

)
= 1√

q

(
∑

q−1
k=0 ωk(l+x)+jk|k〉

)
= |ϕl+x

(j)〉.

For the convenience of expression, Xq
x is denoted as Ux which is a unitary operator,

that is, Ux|ϕl
(j)〉 = |ϕl+x

(j)〉. Especially, we have Ul |ϕ0
(0)〉 = |ϕl

(0)〉.

2.3. Controlled Quantum Teleportation

Our arbitrated quantum signature scheme is based on controlled quantum teleportation.
The five-qubit entangled state can be used to perfect the teleportation of arbitrary single-
and two-qubit systems [37], which are suitable for maximum contact teleportation and
satisfy the biggest task-oriented definition of entangled state [36]. Due to the above
advantages, in this section, we use the five-qubit entangled state as the quantum channel
to execute controlled quantum teleportation. The design form is as follows:

|ξ〉12345 =
1
2
(
|001〉|φ−〉+ |010〉|ψ−〉+ |100〉|φ+〉+ |111〉|ψ+〉

)
12345.

In the form above, |φ+〉, |φ−〉, |ψ+〉, |ψ−〉 represent the four Bell states of two particles,
respectively, |φ±〉 = 1√

2
(|00〉 ± |11〉) and |ψ±〉 = 1√

2
(|01〉 ± |10〉). These states exhibit

true multipartite entanglement from both negative bias measurements and von Neumann
measurements. Even after tracking one or two qubits from this state, entanglement is
maintained in the resulting subsystem, which is therefore highly robust.

In the quantum teleportation process, the participants are Alice, Trent, and Bob. Alice
owns particles (M, 2, 3), Trent owns particles (1, 4), and Bob owns the particle (5).

The model of controlled quantum teleportation is shown in Figure 1.

Figure 1. The model of controlled quantum teleportation.

The working process of the controlled quantum teleportation is described below:
Step 1: Alice performs three-particle von Neumann measurements of the particles

(M, 2, 3) in her possession. The three-particle von Neumann measurement basis is {|χi〉}
(i = 1, 2, · · · , 8), as shown in Table 1.
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Table 1. The three-particle von Neumann measurement basis.

χ1 = 1√
2
(|000〉+ |111〉) χ2 = 1√

2
(|000〉 − |111〉)

χ3 = 1√
2
(|001〉+ |110〉) χ4 = 1√

2
(|001〉 − |110〉)

χ5 = 1√
2
(|010〉+ |101〉) χ6 = 1√

2
(|010〉 − |101〉)

χ7 = 1√
2
(|100〉+ |011〉) χ8 = 1√

2
(|100〉 − |011〉)

Suppose Alice carries the information of the quantum state of particle M as |γ〉M =
(α|0〉+ β|1〉)M, where the coefficients α and β are unknown and satisfy |α|2 + |β|2 = 1. The
combined state of the entire system |Ψ〉M12345 consisting of particles M and (1, 2, 3, 4, 5) is
given by the formula below.

|Ψ〉M12345 = |γ〉M ⊗ |ξ〉12345 = (α|0〉+ β|1〉)M ⊗ |ξ〉12345

= (α|0〉+ β|1〉)M ⊗
1
2
(
|001〉|φ−〉+ |010〉|ψ−〉+ |100〉|φ+〉+ |111〉|ψ+〉

)
12345

= (α|0〉+ β|1〉)M ⊗
1

2
√

2
(|00100〉

− |00111〉+ |01001〉 − |01010〉+ |10000〉+ |10011〉+ |11101〉+ |11110〉)12345

=
1

2
√

2
[α|000100〉 − α|000111〉+ α|001001〉

− α|001010〉+ α|010000〉+ α|010011〉+ α|011101〉+ α|011110〉
+ β|100100〉 − β|100111〉+ β|101001〉 − β|101010〉
+ β|110000〉+ β|110011〉+ β|111101〉+ β|111110〉]12345.

Step 2: Alice conveys her measurement outcomes to Bob through the classical channel. If
Alice uses measurement basis {|χi〉} (i = 1, 2, · · · , 8) to measure |Ψ〉M12345, then |Ψ〉M12345
will collapse into the corresponding states shown in Table 2.

Table 2. The outcomes of Alice’s measuring |Ψ〉M12345 with measurement basis
{
|χi〉

}
.

〈χ1
M23|Ψ〉M12345 = 1

4 (α|100〉+ α|111〉+ β|101〉+ β|110〉) 〈χ2
M23|Ψ〉M12345 = 1

4 (α|100〉+ α|111〉 − β|101〉 − β|110〉)

〈χ3
M23|Ψ〉M12345 = 1

4 (α|000〉 − α|011〉+ β|001〉 − β|010〉) 〈χ4
M23|Ψ〉M12345 = 1

4 (α|000〉 − α|011〉 − β|001〉+ β|010〉)

〈χ5
M23|Ψ〉M12345 = 1

4 (α|001〉 − α|010〉+ β|000〉 − β|011〉) 〈χ6
M23|Ψ〉M12345 = 1

4 (α|001〉 − α|010〉 − β|000〉+ β|011〉)

〈χ7
M23|Ψ〉M12345 = 1

4 (α|101〉+ α|110〉+ β|100〉+ β|111〉) 〈χ8
M23|Ψ〉M12345 = 1

4 (−α|101〉 − α|110〉+ β|100〉+ β|111〉)

Step 3: Trent uses Bell measurement basis {|φ+〉, |φ−〉, |ψ+〉, |ψ−〉} to perform two-particle
measurements on particles (1,4). After Trent measures 〈χi

M23|Ψ〉M12345 with Bell measurement
basis {|φ+〉, |φ−〉, |ψ+〉, |ψ−〉}, 〈χi

M23|Ψ〉M12345 collapses to the corresponding state shown
in Table 3.

Step 4: Trent sends his measurement results to Bob through the classical channel.
Step 5: Following Trent and Alice’s measurements, Bob performs an appropriate

unitary operation U(5) and successfully reconstructs the original unknown quantum state
|γ〉M on the particle (5).
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Table 3. Outcomes of Trent’s measuring 〈χi
M23|Ψ〉M12345 with Bell measurement basis.

|φ+
14〉 |φ−14〉 |ψ+

14〉 |ψ−14〉
〈χ1

M23|Ψ〉M12345 (α|1〉+ β|0〉)5 (−α|1〉 − β|0〉)5 (α|0〉+ β|1〉)5 (−α|0〉 − β|1〉)5
〈χ2

M23|Ψ〉M12345 (α|1〉 − β|0〉)5 (−α|1〉+ β|0〉)5 (α|0〉 − β|1〉)5 (−α|0〉+ β|1〉)5
〈χ3

M23|Ψ〉M12345 (α|0〉+ β|1〉)5 (α|0〉+ β|1〉)5 (−α|1〉 − β|0〉)5 (−α|1〉 − β|0〉)5
〈χ4

M23|Ψ〉M12345 (α|0〉 − β|1〉)5 (α|0〉 − β|1〉)5 (−α|1〉+ β|0〉)5 (−α|1〉+ β|0〉)5
〈χ5

M23|Ψ〉M12345 (α|1〉+ β|0〉)5 (α|1〉+ β|0〉)5 (−α|0〉 − β|1〉)5 (−α|0〉 − β|1〉)5
〈χ6

M23|Ψ〉M12345 (α|1〉 − β|0〉)5 (α|1〉 − β|0〉)5 (−α|0〉+ β|1〉)5 (−α|0〉+ β|1〉)5
〈χ7

M23|Ψ〉M12345 (α|0〉+ β|1〉)5 (−α|0〉 − β|1〉)5 (α|1〉+ β|0〉)5 (−α|1〉 − β|0〉)5
〈χ8

M23|Ψ〉M12345 (−α|0〉+ β|1〉)5 (α|0〉 − β|1〉)5 (−α|1〉+ β|0〉)5 (α|1〉 − β|0〉)5

The participants’ measurement outcomes and the unitary operation U(5) are shown in
Table 4, in which MO represents the measurement outcomes and all the Pauli matrices are
shown below.

I =
[

1 0
0 1

]
, σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
.

Table 4. The relationship between Alice’s, Trent’s measurement outcomes, and Bob’s unitary operation.

Alice’ MO Trent’ MO Bob’s State U(5) Trent’ MO Bob’s State U(5)

χ1 = 1√
2
(|000〉+ |111〉) |φ+

14〉 (α|1〉+ β|0〉)5 (σx)5 |ψ+
14〉 (α|0〉+ β|1〉)5 I5

|φ−14〉 (−α|1〉 − β|0〉)5 (−σx)5 |ψ−14〉 (−α|0〉 − β|1〉)5 −I5

χ2 = 1√
2
(|000〉 − |111〉) |φ+

14〉 (α|1〉 − β|0〉)5
(
iσy
)

5 |ψ+
14〉 (α|0〉 − β|1〉)5 (σz)5

|φ−14〉 (−α|1〉+ β|0〉)5
(
−iσy

)
5 |ψ−14〉 (−α|0〉+ β|1〉)5 (−σz)5

χ3 = 1√
2
(|001〉+ |110〉) |φ+

14〉 (α|0〉+ β|1〉)5 I5 |ψ+
14〉 (−α|1〉 − β|0〉)5 (−σx)5

|φ−14〉 (α|0〉+ β|1〉)5 I5 |ψ−14〉 (−α|1〉 − β|0〉)5 (−σx)5

χ4 = 1√
2
(|001〉 − |110〉) |φ+

14〉 (α|0〉 − β|1〉)5 (σz)5 |ψ+
14〉 (−α|1〉+ β|0〉)5

(
−iσy

)
5

|φ−14〉 (α|0〉 − β|1〉)5 (σz)5 |ψ−14〉 (−α|1〉+ β|0〉)5
(
−iσy

)
5

χ5 = 1√
2
(|010〉+ |101〉) |φ+

14〉 (α|1〉+ β|0〉)5 (σx)5 |ψ+
14〉 (−α|0〉 − β|1〉)5 −I5

|φ−14〉 (α|1〉+ β|0〉)5 (σx)5 |ψ−14〉 (−α|0〉 − β|1〉)5 −I5

χ6 = 1√
2
(|010〉 − |101〉) |φ+

14〉 (α|1〉 − β|0〉)5
(
iσy
)

5 |ψ+
14〉 (−α|0〉+ β|1〉)5 (−σz)5

|φ−14〉 (α|1〉 − β|0〉)5
(
iσy
)

5 |ψ−14〉 (−α|0〉+ β|1〉)5 (−σz)5

χ7 = 1√
2
(|100〉+ |011〉) |φ+

14〉 (α|0〉+ β|1〉)5 I5 |ψ+
14〉 (α|1〉+ β|0〉)5 (σx)5

|φ−14〉 (−α|0〉 − β|1〉)5 −I5 |ψ−14〉 (−α|1〉 − β|0〉)5 (−σx)5

χ8 = 1√
2
(|100〉 − |011〉) |φ+

14〉 (−α|0〉+ β|1〉)5 (−σz)5 |ψ+
14〉 (−α|1〉+ β|0〉)5

(
−iσy

)
5

|φ−14〉 (α|0〉 − β|1〉)5 (σz)5 |ψ−14〉 (α|1〉 − β|0〉)5
(
iσy
)

5

Based on Alice and Trent’s measurement outcomes, Bod performs the corresponding
unitary operation U(5) on particle (5) and his result is α|0〉 + β|1〉. This is the original
information particle state. That is, Alice successfully transmits the unknown quantum state
to Bob under Trent’s control.

Example 1. Suppose that the information particle states are {|0〉, |1〉, |+〉, |−〉, |+〉, |0〉, |−〉, |1〉,
|1〉,|0〉}. Alice combines each information particle state and five-particle entangled state into a
six-particle state sequence: {|0〉 ⊗ |ξ〉12345, |1〉 ⊗ |ξ〉12345, |+〉 ⊗ |ξ〉12345, |−〉 ⊗ |ξ〉12345, |+〉 ⊗
|ξ〉12345, |0〉⊗ |ξ〉12345, |−〉⊗ |ξ〉12345, |1〉⊗ |ξ〉12345, |1〉⊗ |ξ〉12345, |0〉⊗ |ξ〉12345}. Alice performs
von Neumann measurement of the particles (M,2,3) in the sequence. Suppose that von Neumann
measurement outcomes are {χ1, χ5, χ7, χ2, χ8, χ3, χ4, χ4, χ8, χ6}, and Trent’s measurement outcomes
of the particles (1,4) in the sequence are {|φ+

14〉, |φ
−
14〉, |ψ

+
14〉, |ψ

−
14〉, |φ

+
14〉, |ψ

+
14〉, |ψ

−
14〉, |φ

−
14〉,

|ψ+
14〉, |ψ

−
14〉}. At this time, the states of all particles (5) should be (α|1〉+ β|0〉)5, (α|1〉+ β|0〉)5,

(α|1〉+ β|0〉)5, (−α|0〉+ β|1〉)5, (−α|0〉+ β|1〉)5, (−α|1〉 − β|0〉)5,
(−α|1〉+ β|0〉)5, (α|0〉 − β|1〉)5, (−α|1〉+ β|0〉)5, (−α|0〉+ β|1〉)5. After Bob performs the
following unitary operation: {σx, σx, σx,−σz,−σz,−σx,−iσy, σz,−iσy, −σz}, the states of the
information particles are {|0〉, |1〉, |+〉, |−〉, |+〉, |0〉, |−〉, |1〉, |1〉, |0〉}.
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3. The Proposed Verifiable Arbitrated Quantum Signature Scheme

In our scheme, Alice the signatory, Bob the verifier, and Trent the arbitrator are defined
as the three participants. The arbitrator Trent should be trusted by both Alice and Bob. The
detailed procedures of our scheme can be described as follows.

3.1. Initializing Phase

Step I1: Alice and Trent share secret key KA and Bob and Trent share secret key KB.
The secret key distribution task can be performed using the QKD protocol, which has been
proven to provide unconditional security [39,40].

Step I2: Trent selects a k − 1-order symmetric binary polynomial: F(x, y) = a00 +
a10x + a01y + a11xy + a20x2 + a02y2 + a12xy2 + a21x2y + a22x2y2 + · · ·+ ak−1,k−1xk−1yk−1

mod q, where q is a prime number, F(x, y) ∈ GF(q)[x, y], aij ∈ Fq, i, j ∈ {0, 1, · · · , k− 1},
aij = aji, Fq is a finite field. Suppose that the public identity information for the participants
Alice, Bob, and Trent is xA, xB, xT . Trent computes two share polynomials fA(y) = F(xA, y)
and fB(y) = F(xB, y). The share polynomial fA(y) is encrypted as f

′
A(y) = EKA( fA(y))

and f
′
A(y) is sent to Alice. The share polynomial fB(y) is encrypted as f

′
B(y) = EKB( fB(y))

and f
′
B(y) is sent to Bob.

Step I3: Alice receives f
′
A(y) and decrypts it with secret key KA to obtain fA(y) =

F(xA, y). Alice calculates fA(xB) = F(xA, xB) and fA(xT) = F(xA, xT) based on Bob’s
and Trent’s public identity information xB and xT . Similarly, Bob can calculate fB(xA) =
F(xB, xA) and fB(xT) = F(xB, xT) based on Alice’s and Trent’s public identity information
xA and xT . Due to the symmetry of the binary polynomial, fA(xB) = fB(xA), fA(xT) =
fT(xA), fB(xT) = fT(xB).

Step I4: According to the value of F(xA, xB) and F(xA, xT), Alice executes the unitary
operations UF(xA ,xB)

and UF(xA ,xT)
on |µ〉 = |ϕ(0)

0 〉 =
1√
q ∑

q−1
i=0 |i〉 to produce enough decoy

particles: |µ〉A,B = UF(xA ,xB)|ϕ
(0)
0 〉 = |ϕ

(0)
F(xA ,xB)

〉 and |µ〉A,T = UF(xA ,xT)|ϕ
(0)
0 〉 = |ϕ

(0)
F(xA ,xT)

〉.
The parameter formation process of the initializing phase is shown in Figure 2.

Figure 2. Initializing phase schematic diagram.

3.2. Signing Phase

Step S1: Alice obtains a qubit string |Γ〉 based on the signature information m. Suppose
there are n qubits in the information qubit string |Γ〉 = {|γ1〉, |γ2〉, · · · , |γn〉}, where the
symbol {· · · } represents the collection and |γi〉 represents a single qubit in |Γ〉. Any
qubit |γi〉 (i = 1, 2, · · · , n) in |Γ〉 can be represented as a superposition of two eigenstates
|0〉 and |1〉, namely, |γi〉 = αi|0〉 + βi|1〉, where αi, βi are complex numbers that satisfy
|αi|2 + |βi|2 = 1. Thus, the signed quantum information string of Alice can be represented as
|Γ〉 = {α1|0〉+ β1|1〉, α2|0〉+ β2|1〉, · · · , αn|0〉+ βn|1〉}. Note that if the signature quantum
state is known, any copies of |Γ〉 can be prepared in advance. If the signature quantum
state is unknown, at least three copies of |Γ〉 are necessary, among which one is combined
with 5-particle entangled state, one produces a secret qubit string |RA〉, and the other is
sent to Bob.

Step S2: Alice transforms the information qubit string |Γ〉 into a secret qubit string
|RA〉 = MKA(|Γ〉) in terms of the secret key KA. This transform method can be seen in [14].

Step S3: Alice prepares 5-particle entangled states. Alice combines each information
qubit with 5-particle entangled state into the same long 6-particle qubit string. Each
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combinatorial state includes one information particle and five entangled particle. This
6-particle combination state can be described as follows:

|Ψi〉M12345 = |γi〉M ⊗ |ξ〉12345 = (αi|0〉+ βi|1〉)M ⊗ |ξ〉12345

=
1

2
√

2
[αi|000100〉 − αi|000111〉+ αi|001001〉 − αi|001010〉+ αi|010000〉

+ αi|010011〉+ αi|011101〉+ αi|011110〉+ βi|100100〉 − βi|100111〉
+ βi|101001〉 − βi|101010〉+ βi|110000〉+ βi|110011〉+ βi|111101〉
+ βi|111110〉]M12345

Step S4: Alice uses ΩA to represent the sequence of n (M, 2, 3) particles, where
M represents the information particle to be signed. ΩT represents the sequence of n
(1, 4) particles, and ΩB represents the sequence of n (5) particles. The decoy particles
|µ〉A,T = UF(xA ,xT)|ϕ

(0)
0 〉 = |ϕ(0)

F(xA ,xT)
〉 and |µ〉A,B = UF(xA ,xB)|ϕ

(0)
0 〉 = |ϕ(0)

F(xA ,xB)
〉 are

randomly inserted in ΩT and ΩB to form Ω
′
T and Ω′B, respectively. Alice sends Ω

′
T to Trent

and Ω′B to Bob.
Step S5: Alice performs von Neumann measurement on the particle sequence ΩA

that she has mastered. Suppose the n-group von Neumann measurement results are
δ(ΩA) = {δ(ΩA,1), δ(ΩA,2), · · · , δ(ΩA,n)}, where ΩA,i ∈ {χ1, χ2, · · · , χ8}. Alice encrypts
|RA〉 and δ(ΩA) to form the signature |S〉 = EKA(|RA〉, δ(ΩA)) by using quantum one-time
pad algorithm [41]. Note that δ(ΩA), even if sometimes described as classical bits, can be
converted to qubits from the measurement basis {χ1, χ2, · · · , χ8}. Alice sends the signature
|S〉 and 2 information qubit strings |Γ〉 to Bob.

3.3. Verification Phase

Step V1: After confirming that Bob received Ω′B, Alice tells Bob the position of the decoy
particles and Bob executes the unitary operation U−F(xB ,xA)

on the decoy particle |µ〉A,B, that
is, |µ〉B,A = U−F(xB ,xA)

|µ〉A,B. Then, Bob measures the decoy particles using measurement

basis {|ϕ(0)
l 〉 |l ∈ q}. If |µ〉B,A 6= |ϕ

(0)
0 〉, it implies that the identity authentication between

Alice and Bob cannot be passed or the decoy particle have been eavesdropped. Finally,
Bob calculates the error rate based on measurement outcomes of the decoy particles. If the
error rate is less than the previously given value, they perform the next step. Otherwise,
the execution of the protocol is aborted. After Bob passes the eavesdropping detection
and identity authentication of Ω′B, the decoy particles are removed and ΩB is restored.
Similarly, after confirming that Trent received Ω′T , Alice tells Trent the position of the
decoy particles and then Trent executes the unitary operations U−F(xT ,xA)

on the decoy
particle |µ〉A,T , that is, |µ〉T,A = U−F(xT ,xA)

|µ〉A,T . Then Trent measures the decoy particles

using the measurement basis {|ϕ(0)
l 〉|l ∈ q}. If |µ〉T,A 6= |ϕ

(0)
0 〉, it indicates that the

identity authentication between Alice and Trent cannot be passed or that the particles are
eavesdropped. Finally, Trent calculates the error rate based on measurement outcomes of
the decoy particles. If the error rate is less than the previously given value, they perform the
next step; otherwise, they abandon the agreement. After Trent performs the eavesdropping
detection and identity authentication on Ω′T , the decoy particles are removed and ΩT
is restored.

Step V2: After Bob receives |S〉 which was sent by Alice, he encrypts |S〉 and |Γ〉 with
the secret key KB to obtain YB = EKB(|S〉, |Γ〉). Bob sends YB to Trent via a quantum channel.

Step V3: After receiving YB = EKB(|S〉, |Γ〉), Trent decrypts it using secret key KB to
obtain |S〉 and |Γ〉, and decrypts |S〉 using secret key KA to obtain |RA〉 and δ(ΩA). In the
meantime, Trent measures ΩT with measurement basis {|φ+〉, |φ−〉, |ψ+〉, |ψ−〉} to obtain
the measurement outcome δ(ΩT). Trent uses the secret key KA to transform the information
qubit string |Γ〉 into |R′A〉 and compare |RA〉with |R′A〉. If |RA〉 = |R

′
A〉, Trent sets the initial

check parameter θ = 1; otherwise, he sets θ = 0. Note that this step and the subsequent
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comparison of the quantum states can be found in [14,42]. To ensure the integrity of the
signature, Trent selects an appropriate hash function H(.) and calculates H(|S〉).

Step V4: Trent encryptions |S〉, H(|S〉), δ(ΩA), δ(ΩT), θ with secret key KB and sends
YTB = EKB(|S〉, H(|S〉), δ(ΩA), δ(ΩT), θ) to Bob.

Step V5: Bob decrypts YTB to obtain |S〉, H(|S〉), δ(ΩA), δ(ΩT) and θ. If θ = 0, Bob
can assume that the signature was forged, he rejects the signature and exits the verification
process; otherwise, Bob continues with the next verification process.

Step V6: According to the values of δ(ΩA) and δ(ΩT), Bob chooses the corresponding
unitary operator U(5) in Table 4. Bob performs unitary operation U(5) on the particles in

sequence ΩB and measures them to obtain the quantum state |Γ′〉. Notice that |Γ′〉 is the
result of executing controlled quantum teleportation. Then, he compares whether it is
equal to |Γ〉. If |Γ〉 6= |Γ′〉, Bob considers the signature invalid and rejects it. If |Γ〉 = |Γ′〉,
Bob calculates H

′
(|S〉) with the same hash function and compares H

′
(|S〉) with H(|S〉).

If H
′
(|S〉) = H(|S〉), Bob accepts |S〉 as the signature of |Γ〉 from Alice; otherwise, the

signature is rejected.
The schematic diagram of the main steps of the arbitrated quantum signature scheme

is shown in Figure 3.

Figure 3. Schematic diagram of the main steps of the arbitrated quantum signature scheme.

4. Verifiability Analysis

We can prove that, in this scheme, identity authentication and eavesdropping detection
can be conducted between Alice and Bob as well as between Alice and Trent according to
the measurement outcomes of the decoy particles. An example for the proposed verifiable
arbitrated quantum signature scheme can be seen in Appendix A.

In steps I3 and I4, according to Alice’s share polynomial F(xA, y) and Bob’s publicly
identified information xB, Alice calculates F(xA, xB) and creates decoy particles |µ〉A,B =

UF(xA ,xB)
|ϕ(0)

0 〉 = |ϕ(0)
F(xA ,xB)

〉. According to Bob’s share polynomial F(xB, y) and Alice’s
publicly identified information xA, Bob calculates F(xB, xA). In step V1, after Bob receives |µ〉A,B,
he performs the unitary operation U−F(xB ,xA)

on |µ〉A,B, that is |µ〉B,A = U−F(xB ,xA)
|µ〉A,B.

According to the properties of symmetric binary polynomials, we have F(xB, xA) =

F(xA, xB) and |µ〉B,A = U−F(xB ,xA)
UF(xA ,xB)

|ϕ(0)
0 〉 = |ϕ

(0)
0 〉. Without external eavesdropping

and cheating on either side, Bob’s measurement outcomes of the decoy particles should be
|ϕ(0)

0 〉; otherwise, it can be determined that either identity cheating on both sides or external
eavesdropping are occurring. Therefore, Alice and Bob can verify whether identity cheating
is occurring according to the measurement outcomes of the decoy particles. Similarly,
identity verification and eavesdropping detection can also be conducted between Alice and
Trent according to the measurement outcomes of the decoy particles.
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5. Safety Analysis

A secure quantum signature scheme should be of an unforgeable and undeniable
property. In other words, it should meet the following requirements: (1) The signature
cannot be forged by an attacker (including external adversary Eve and malicious receiver
Bob). (2) The signatory Alice cannot disavow the message and signature she sent, and the
receiver Bob cannot disavow that he received the signature. (3) That can be arbitrated if
the receiver Bob admits the fact of receiving the signature but disavows the integrity of
the signature.

5.1. Impossibility of Forgery

If the external attacker Eve tries to forge Alice’s signature |S〉 for her own benefit, she
should know the key KA. However, due to the unconditional security of quantum key
distribution [39,40], this is not possible. In addition, the quantum one-time pad protocol [41]
is used to improve the security. Therefore, Eve’s forgery is impossible.

If the malicious receiver Bob tries to forge Alice’s signature |S〉 = EKA(|RA〉, δ(ΩA))
for his own benefit, he must also know Alice’s secret key KA. However, for the same
reason, he cannot obtain any information about the key KA. Thus, Bob cannot obtain the
correct |RA〉. Subsequently, the initial check parameter θ used in the verifying phase will
not be right, so the arbitrator Trent will discover this forgery. In a worse case, even if key
KA is exposed to Eve, she still cannot forge the signature because she cannot create the
appropriate |RA〉 and δ(ΩA) to associate with the new message. Bob uses the correlation
of the Bell state to find this kind of forged file; further verification of |RA〉 = |R′A〉 cannot
be established without the correct |RA〉. However, if Bob knew the secret key KA, forgery
would be inevitable.

We can prove that Eve, an external attacker, cannot entangle a decoy particle or an
information particle with an auxiliary particle to steal secret information and forge a
signature. See Appendix B for details.

5.2. Impossibility of Disavowal by the Signatory and the Verifier

A secure quantum signature scheme should have undeniable property. In other words,
once the quantum signature is verified as a valid signature, the signatory cannot disavow
the fact that the quantum signature is generated by them. The receiver of the signature
cannot disavow the fact that he has received the quantum signature.

5.2.1. Impossibility of Disavowal by the Signatory Alice

Suppose Alice tries to disavow the signature |S〉 that she has signed. As shown in
Figure 4, after receiving the signature |S〉, Bob cannot decrypt it without the key KA. He
can only encrypt |S〉 and |Γ〉 to obtain YB and sends YB to Trent. After receiving YB, the
arbitrator Trent decrypts YB = EKB(|S〉, |Γ〉) and |S〉 = EKA(|RA〉, δ(ΩA)) with KA and KB.
As the signature |S〉 = EKA(|RA〉, δ(ΩA)) contains the key KA shared only by Alice and
Trent, Trent can accurately confirm that the signature |S〉 was signed by Alice. Whether |S〉
is the signature of the message |Γ〉 is determined by the initial check parameter θ calculated
by the arbitrator Trent. Because |RA〉 = MKA(|Γ〉), |R′A〉 = MKA(|Γ′〉), if |RA〉 = |R′A〉,
namely θ = 1, then the signature |S〉 was signed by Alice for the message |Γ〉.

Figure 4. Diagram of transferring signature information.

5.2.2. Impossibility of Disavowal by the Verifier Bob

Similarly, as long as Trent receives the YB sent from Bob, because YB = EKB(|S〉, |Γ〉)
contains the key KB shared only by Bob and Trent, Trent can confirm that Bob received
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the signature and cannot change it, that is, Bob cannot disavow the fact that he received
the signature. If Alice changes signature |S〉 to |S′〉, her behavior will be found when Bob
calculates hash value H′(|S〉) and compares it with H(|S〉). If Bob admits to receiving the
signature, but disavows the integrity of the signature, it can be arbitrated according to the
hash value H(|S〉) of |S〉 .

In this scheme, the eavesdropping detection also functions as identity authentication,
which can strengthen the undeniable property of Alice and Bob. In conclusion, our
verifiable arbitrated quantum signature scheme has undeniable security.

6. Conclusions

In this paper, we proposed a verifiable arbitrated quantum signature scheme based on
five-qubit entangled state. The proposed scheme uses mutually unbiased bases particles as
decoy particles, and performs unitary operations on these decoy particles using the function
values of symmetric binary polynomials, which can carry out not only eavesdropping
detection, but also identity authentication among participants.

Due to the unconditional security of quantum key distribution and the quantum
one-time pad, the external attacker Eve cannot know Alice’s key KA; she cannot forge
Alice’s signature |S〉 for her own benefit. For the same reason, Bob cannot forge Alice’s
signature |S〉, either. In order to avoid Alice’s disavowal, we set that when Trent receives
Alice’s signature |S〉, the hash function value H(|S〉) of the signature is calculated to
ensure the integrity of the signature. After Trent receives YB and decrypts YB and |S〉 =
EKA(|RA〉, δ(ΩA)), the initial check parameter θ confirms that |S〉 is jointly generated
by |Γ〉 and KA, which proves that Alice did not cheat. At this time, since Trent had
no information on parameter ΩB, he could not forge a new signature. After Bob receives
YTB = EKB(|S〉, H(|S〉), δ(ΩA), δ(ΩT), θ) and decrypts it, as the information of δ(ΩA), δ(ΩT)
and ΩB are in his grasp at this time, he can use the function of quantum teleportation to
reconstruct the information qubit |Γ〉 to judge whether to accept the quantum signature |S〉
signed by Alice.

Different from the signature scheme in classical cryptography, the security of our scheme is
guaranteed by the quantum one-time pad [41] and quantum key distribution [39,40]. Therefore,
it is unconditionally secure. The five-qubit entangled state plays a key role in quantum
information processing tasks and it is the threshold number of qubits required for quantum
error correction [43]. The principle of five-photon entanglement and open teleportation
was reported in [44] and proved that von Neumann measurement, Bell measurement, and
single-particle measurement are all feasible under the current technical and experimental
conditions, so the scheme has good application value. Compared with the existing
arbitrated quantum signature scheme [10,13,14,17,27], our scheme has high stability and
can avoid being disavowed for the integrality of signature |S〉. But due to the large number
of qubits used in the scheme, it also experiences the problem of low quantum efficiency.
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Appendix A. An Example for the Proposed Scheme

Suppose that Alice wants to sign the information particles |Γ〉 = {|0〉, |1〉, |+〉, |−〉,
|+〉, |0〉, |−〉, |1〉, |1〉, |0〉}, The following procedure needs to be performed.

Appendix A.1. Initializing Phase

Step I1: Alice and Trent share secret key KA = 00101101100110101011. Bob and Trent
share secret key KB = 10101001000100101011.

Step I2: Trent selects a 4-order symmetric binary polynomial F(x, y) = 11+ 7x + 4x2 +
21x3 + 18x4 + 7y + 9xy + 5x2y + 10x3y + 13x4y + 4y2 + 5xy2 + 6x2y2 + 14x3y2 + 19x4y2 +
21y3 + 10xy3 + 14x2y3 + 22x3y3 + 2x4y3 + 18y4 + 13xy4 + 19x2y4 + 2x3y4 + 19x4y4mod23.
Suppose that Alice’s identity information is xA = 7, Bob’s identity information is xB = 3,
and Trent’s identity information is xT = 13. Trent calculates three share polynomials
fT(y) = F(13, y) = 15y4 + 11y3 + 6y2 + 12y + 20, fA(y) = F(7, y) = 11y4 + 15y3 + 16y2 +
21y + 8 and fB(y) = F(3, y) = 4y4 + 13y3 + 12y2 + 22y. Trent encrypts fA(y) and sends
f ′A(y) = EKA( fA(y)) to Alice, and encrypts fB(y) and sends f ′B(y) = EKB( fB(y)) to Bob.

Step I3: After Alice and Bob receive f ′A(y) and f ′B(y), respectively, Alice decrypts
f ′A(y) by using keys KA to get fA(y) = F(7, y) and Bob decrypts f ′B(y) by using keys KB
to get fB(y) = F(3, y). Alice calculates fA(xB) = F(7, 3) = 16 and fA(xT) = F(7, 13) = 5
based on Bob’s and Trent’s public identity information xB = 3 and xT = 13. Similarly, Bob
calculates fB(xA) = F(3, 7) = 16 and fB(xT) = F(3, 13) = 12 based on Alice’s and Trent’s
public identity information xA = 7 and xT = 13.

Step I4: Alice executes the unitary operations UF(xA ,xB)
= U16 and UF(xA ,xT)

= U5 on

|µ〉 = |ϕ(0)
0 〉 =

1√
q ∑

q−1
i=0 |i〉 to produce enough decoy particles: |µ〉A,B = U16|ϕ

(0)
0 〉 = |ϕ

(0)
16 〉

and |µ〉A,T = U5|ϕ
(0)
0 〉 = |ϕ

(0)
5 〉.

Appendix A.2. Signing Phase

Step S1: Suppose that the information qubit string |Γ〉 obtained by Alice is |Γ〉 =
{|0〉, |1〉, |+〉, |−〉, |+〉, |0〉, |−〉, |1〉, |1〉, |0〉}.

Step S2: Using secret key KA = 00101101100110101011, Alice transforms the information
qubit string |Γ〉 = {|0〉, |1〉, |+〉, |−〉, |+〉, |0〉, |−〉, |1〉, |1〉, |0〉} into |RA〉 = MKA(|Γ〉) =
σ0

x σ0+1
z |0〉 ⊗ σ0

x σ0+1
z |1〉 ⊗ σ1

x σ1+1
z |+〉 ⊗ σ0

x σ0+1
z |−〉⊗ σ1

x σ1+1
z |+〉 ⊗ σ1

x σ1+1
z |0〉 ⊗ σ0

x σ0+1
z |−〉⊗

σ1
x σ1+1

z |1〉 ⊗ σ1
x σ1+1

z |1〉 ⊗ σ0
x σ0+1

z |0〉 = σz|0〉 ⊗ σz|1〉 ⊗ σx|+〉 ⊗ σz|−〉 ⊗ σx|+〉 ⊗ σx|0〉 ⊗
σz|−〉 ⊗ σx|1〉 ⊗ σx|1〉 ⊗ σz|0〉 = |0〉(−|1〉)|+〉|+〉|+〉|1〉|+〉|0〉|0〉|0〉.

Step S3: Alice prepares 5-particle entangled states: |ξ〉12345 = 1
2 (|001〉|φ−〉+ |010〉|ψ−〉

+|100〉|φ+〉+|111〉|ψ+〉)12345. Alice combines each information qubit state with 5-particle
entangled state into the same long 6-particle qubit string. The 6-particle qubit string is
shown in Table A1.

Table A1. The 6-particle qubit string composed of information states and 5-particle entangled states.

|Ψ1〉M12345 = |γ1〉M ⊗ |ξ〉12345 = |0〉M ⊗ |ξ〉12345 = 1
2 (|0001〉|φ−〉+ |0010〉|ψ−〉+ |0100〉|φ+〉+ |0111〉|ψ+〉)M12345

|Ψ2〉M12345 = |γ2〉M ⊗ |ξ〉12345 = |1〉M ⊗ |ξ〉12345 = 1
2 (|1001〉|φ−〉+ |1010〉|ψ−〉+ |1100〉|φ+〉+ |1111〉|ψ+〉)M12345

|Ψ3〉M12345 = |γ3〉M ⊗ |ξ〉12345 = |+〉M ⊗ |ξ〉12345 = 1
2
√

2
(|0001〉|φ−〉+ |0010〉|ψ−〉+ |0100〉|φ+〉+ |0111〉|ψ+〉)M12345

+ 1
2
√

2
(|1001〉|φ−〉+ |1010〉|ψ−〉+ |1100〉|φ+〉+ |1111〉|ψ+〉)M12345

|Ψ4〉M12345 = |γ4〉M ⊗ |ξ〉12345 = |−〉M ⊗ |ξ〉12345 = 1
2
√

2
(|0001〉|φ−〉+ |0010〉|ψ−〉+ |0100〉|φ+〉+ |0111〉|ψ+〉)M12345

− 1
2
√

2
(|1001〉|φ−〉+ |1010〉|ψ−〉+ |1100〉|φ+〉+ |1111〉|ψ+〉)M12345

|Ψ5〉M12345 = |γ5〉M ⊗ |ξ〉12345 = |+〉M ⊗ |ξ〉12345 = 1
2
√

2
(|0001〉|φ−〉+ |0010〉|ψ−〉+ |0100〉|φ+〉+ |0111〉|ψ+〉)M12345

+ 1
2
√

2
(|1001〉|φ−〉+ |1010〉|ψ−〉+ |1100〉|φ+〉+ |1111〉|ψ+〉)M12345

|Ψ6〉M12345 = |γ6〉M ⊗ |ξ〉12345 = |0〉M ⊗ |ξ〉12345 = 1
2 (|0001〉|φ−〉+ |0010〉|ψ−〉+ |0100〉|φ+〉+ |0111〉|ψ+〉)M12345

|Ψ7〉M12345 = |γ7〉M ⊗ |ξ〉12345 = |−〉M ⊗ |ξ〉12345 = 1
2
√

2
(|0001〉|φ−〉+ |0010〉|ψ−〉+ |0100〉|φ+〉+ |0111〉|ψ+〉)M12345

− 1
2
√

2
(|1001〉|φ−〉+ |1010〉|ψ−〉+ |1100〉|φ+〉+ |1111〉|ψ+〉)M12345

|Ψ8〉M12345 = |γ8〉M ⊗ |ξ〉12345 = |1〉M ⊗ |ξ〉12345 = 1
2 (|1001〉|φ−〉+ |1010〉|ψ−〉+ |1100〉|φ+〉+ |1111〉|ψ+〉)M12345

|Ψ9〉M12345 = |γ9〉M ⊗ |ξ〉12345 = |1〉M ⊗ |ξ〉12345 = 1
2 (|1001〉|φ−〉+ |1010〉|ψ−〉+ |1100〉|φ+〉+ |1111〉|ψ+〉)M12345

|Ψ10〉M12345 = |γ10〉M ⊗ |ξ〉12345 = |0〉M ⊗ |ξ〉12345 = 1
2 (|0001〉|φ−〉+ |0010〉|ψ−〉+ |0100〉|φ+〉+ |0111〉|ψ+〉)M12345
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Step S4: Alice inserts decoy particles |µ〉A,T = UF(xA ,xT)
|ϕ(0)

0 〉 = UF(7,13)|ϕ
(0)
0 〉 =

|ϕ(0)
F(xA ,xT)

〉 = |ϕ(0)
5 〉 and |µ〉A,B = UF(xA ,xB)

|ϕ(0)
0 〉 = UF(7,3)|ϕ

(0)
0 〉 = |ϕ

(0)
F(xA ,xB)

〉 = |ϕ(0)
16 〉

into sequence ΩT and ΩB to form Ω
′
T and Ω

′
B, respectively. Alice sends Ω

′
T to Trent and

Ω
′
B to Bob.

Step S5: Alice performs von Neumann measurement on the particles sequence ΩA
that she has mastered. Suppose that 10-group von Neumann measurement outcomes are
δ(ΩA) = {χ1, χ4, χ2, χ7, χ3, χ6, χ8, χ5, χ1, χ7}. Alice encrypts RA and δ(ΩA) to form the
signature:

|S〉 = EKA({|0〉(−|1〉)|+〉|+〉|+〉|1〉|+〉|0〉|0〉|0〉}, {χ
1, χ4, χ2, χ7, χ3, χ6, χ8, χ5, χ1, χ7}).

Then, Alice sends the signature |S〉 and 2 information qubit strings |Γ〉 to Bob.

Appendix A.3. Verifytion Phase

Step V1: After confirming that Bob received Ω
′
B, Alice tells Bob the position of the

decoy particles, and then Bob executes the unitary operation U−F(xB ,xA)
= U−16 on the

decoy particle |µ〉A,B. That is, |µ〉B,A = U−F(xB ,xA)
|µ〉A,B = U−F(3,7)|µ〉A,B = U−16|ϕ

(0)
16 〉 =

|ϕ(0)
0 〉. Bob uses measurement basis {|ϕ(0)

l 〉|l ∈ q} to measure the decoy particles. If

|µ〉B,A 6= |ϕ
(0)
0 〉, it implies that the identity authentication between Alice and Bob cannot

be passed or the particles have been eavesdropped. Finally, Bob calculates the error rate
based on measurement outcomes of the decoy particles. If the error rate is less than the
previously given value, they perform the next step; otherwise, the execution of the protocol
is aborted. After Bob passes the eavesdropping detection and identity authentication on
Ω
′
B, the decoy particles are removed and ΩB is recovered. Similarly, after confirming that

Trent received Ω
′
T , Alice tells Trent the position of the decoy particles, and then Trent

executes the unitary operation U−F(xT ,xA)
= U−5 on the decoy particle |µ〉A,T . That is,

|µ〉T,A = U−F(xT ,xA)
|µA,T = U−5|µ〉A,T = U−5|ϕ

(0)
5 〉 = |ϕ

(0)
0 〉. Then Trent measures the

decoy particles using the measurement basis {|ϕ(0)
l 〉|l ∈ q}. If |µ〉T,A 6= |ϕ

(0)
0 〉, it implies

that the identity authentication between Alice and Trent cannot be passed or that the
particles are eavesdropped. Finally, Trent calculates the error rate based on measurement
outcomes of the decoy particles. If the error rate is less than the previously given value,
they perform the next step; otherwise, they abandon the agreement. After Trent performs
the eavesdropping detection and identity authentication on Ω

′
T , the decoy particles are

removed and ΩT is restored.
Step V2: After Bob receives the |S〉 which is sent by Alice, he encrypts |S〉 and

|Γ〉 with secret key KB to obtain YB = EKB (|S〉, |Γ〉), where YB = EKB(EKA({|0〉(−|1〉)|
+〉|+〉|+〉|1〉|+〉|0〉|0〉|0〉}, {χ1, χ4, χ2, χ7, χ3, χ6, χ8, χ5, χ1, χ7}), {|0〉|1〉|+〉|−〉|+〉|0〉|−〉
|1〉|1〉|0〉}). Bob sends YB to Trent via a quantum channel.

Step V3: After receiving YB = EKB(|S〉, |Γ〉), Trent decrypts it using secret key KB to
obtain |S〉 and |Γ〉, and decrypts |S〉 using secret key KA to obtain |RA〉 and δ(ΩA). Where
|Γ〉 = {|0〉|1〉|+〉|−〉|+〉|0〉|−〉|1〉|1〉|0〉}, |RA〉 = MKA(|Γ〉) = |0〉(−|1〉)|+〉|+〉|+〉|1〉|
+〉|0〉|0〉|0〉, δ(ΩA) = {χ1, χ4, χ2, χ7, χ3, χ6, χ8, χ5, χ1, χ7}. In the meantime, Trent measures
ΩT with measurement basis {|φ+〉, |φ−〉, |ψ+〉, |ψ−〉} to obtain the measurement outcome
δ(ΩT). We suppose that δ(ΩT) = {|φ+〉, |φ−〉, |ψ+〉, |ψ−〉, |φ−〉, |ψ+〉, |φ−〉, |φ+〉, |φ+〉,
|φ−〉}. Using the secret key KA, Trent transforms the information qubit string |Γ〉 into |R′A〉
and compares |RA〉 with |R′A〉. If |RA〉 = |R

′
A〉, Trent sets the initial check parameter θ = 1,

otherwise he sets θ = 0.
Step V4: Trent encrypts |S〉, H(|S〉), δ(ΩA), δ(ΩT), θ with secret key KB to obtain YTB =

EKB(EKA ({|0〉 (−|1〉) |+〉|+〉|+〉|1〉|+〉|0〉|0〉|0〉}, {χ1, χ4, χ2, χ7, χ3, χ6, χ8, χ5, χ1, χ7}),
H(|S〉), δ(ΩA), δ(ΩT), θ) and sends it to Bob.
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Step V5: Bob decrypts YTB to obtain |S〉, H(|S〉), δ(ΩA), δ(ΩT) and θ. If θ = 0, Bob
can assume that the signature was forged, he rejects the signature and exits the verification
process. Otherwise, Bob continues to carry out the next verification process.

Step V6: According to the values of δ(ΩA) and δ(ΩT), Bob chooses the corresponding
unitary operator U(5) = {(σx)5, (σz)5, (σz)5, −(σx)5, I5, (−σz)5, (σz)5, (σx)5, (σx)5, (−I5)}.
Bob performs unitary operation U(5) on the particles in sequence ΩB and measures them

to obtain the quantum state |Γ′〉, and then he compares whether it is equal to |Γ〉 =

{|0〉|1〉|+〉|−〉|+〉|0〉|−〉|1〉 |1〉|0〉}. If |Γ〉 6= |Γ′〉, Bob considers the signature invalid and
rejects it. If |Γ〉 = |Γ′〉, Bob computes H

′
(|S〉) and compares H

′
(|S〉) with H(|S〉). If

H
′
(|S〉) = H(|S〉), Bob accepts |S〉 as the signature of |Γ〉 sent by Alice. Otherwise, the

signature is rejected.

Appendix B. Unforgeable Property of Eve’S Entangle-Measure Attack

Appendix B.1. Eve Cannot Entangle a Decoy Particle to Forge a Signature

We can prove that the external attacker Eve cannot entangle a decoy particle with an
auxiliary particle to steal secret information and forge a signature.

Lemma A1. For the measurement basis |ϕ(0)
g 〉 = 1√

q ∑
q−1
k=0 ωkg|k〉, ω = e

2πi
q , we have ∑

q−1
m=0 |m〉 =

1√
q ∑

q−1
m=0 ∑

q−1
g=0 ω−mg|ϕ(0)

g 〉.

Proof.

1
√

q

q−1

∑
g=0

ω−mg|ϕ(0)
g 〉

=
1
√

q
[|ϕ(0)

0 〉+ ω−m|ϕ(0)
1 〉+ ω−2m|ϕ(0)

2 〉+ · · ·+ ω−m(q−1)|ϕ(0)
q−1〉]

=
1
√

q
[
q−1

∑
k=0
|k〉+ ω−m

q−1

∑
k=0

ωk|k〉+ ω−2m
q−1

∑
k=0

ω2k|k〉+ · · ·+ ω−m(q−1)
q−1

∑
k=0

ω(q−1)k|k〉]

=
1
√

q
[
q−1

∑
k=0

ω−mg|0〉+
q−1

∑
g=0

ωg(1−m)|1〉+
q−1

∑
g=0

ωg(2−m)|2〉+ · · ·+
q−1

∑
g=0

ωg(q−1−m)|q− 1〉]

1
√

q

q−1

∑
m=0

q−1

∑
g=0

ω−mg|ϕ(0)
g

=
1
q
[

q−1

∑
m=0

(
q−1

∑
k=0

ω−mg|0〉+
q−1

∑
g=0

ωg(1−m)|1〉+
q−1

∑
g=0

ωg(2−m)|2〉+ · · ·+
q−1

∑
g=0

ωg(q−1−m)|q− 1〉)]

=
1
q
[

q−1

∑
m=0

q−1

∑
k=0

ω−mg|0〉+
q−1

∑
m=0

q−1

∑
g=0

ωg(1−m)|1〉+
q−1

∑
m=0

q−1

∑
g=0

ωg(2−m)|2〉+ · · ·

+
q−1

∑
m=0

q−1

∑
g=0

ωg(q−1−m)|q− 1〉]

= 1
q [q|0〉+ q|1〉+ · · · q|q− 1〉] = ∑

q−1
m=0 |m〉.

Suppose that Eve prepares an auxiliary quantum state |E〉, and she executes unitary
operation UE, which can entangle the auxiliary quantum states onto the transmitted
particles to steal secret information by measuring the auxiliary particles. Consider the
corresponding measurement basis |ϕ(0)

l 〉 =
1√
q ∑

q−1
k=0 ωkl |k〉, which is in the attack of decoy
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particles. According to Lemma 1, the following expression can be obtained by executing
unitary operation UE.

UE|k〉|E〉 =
q−1

∑
m=0

akm|m〉|εkm〉 (A1)

UE|ϕ
(0)
l 〉|E〉 = UE

(
1
√

q

q−1

∑
k=0

ωkl |k〉
)
|E〉

=
1
√

q

q−1

∑
k=0

ωkl

(
q−1

∑
m=0

akm|m〉|εkm〉
)

=
1
√

q

q−1

∑
k=0

q−1

∑
m=0

ωklakm

(
1
√

q

q−1

∑
g=0

ω−mg|ϕ(0)
l 〉
)
|εkm〉

=
1
√

q

q−1

∑
k=0

q−1

∑
m=0

q−1

∑
g=0

ωkl−mgakm|ϕ
(0)
l 〉|εkm〉.

(A2)

where ω = e
2πi

q and |E〉 express the initial auxiliary quantum state; |εkm〉 (k, m = 0, 1, · · · , q−
1) denotes the only pure state obtained by executing unitary operation UE.

Therefore, their coefficients satisfy condition ∑
q−1
m=0 |akm|2 = 1(k = 0, 1, · · · , q− 1). The

unitary operation UE must satisfy the following conditions if there is no error introduced
by Eve:

akm =

{
0 k 6= m
1 k = m

k, m ∈ 0, 1, · · · , q− 1.
Consequently, (A1) and (A2) can be simplified as: UE|k〉|E〉 = akk|k〉|εkk〉, UE|ϕ

(0)
l 〉|E〉

= 1
q ∑

q−1
k=0 ∑

q−1
g=0 ωk(l−g)akk|ϕ

(0)
l |εkk〉.

Similarly, Eve can obtain the equations: ∑
q−1
k=0 ωk(l−g)akk|εkk〉 = 0, where g 6= l, g ∈

{0, 1, · · · q− 1}. For any l ∈ {0, 1, · · · q− 1}, we can obtain q equations. According to these
equations, the following formula can be calculated:

a00|ε00〉 = a11|ε11〉 = · · · = aq−1,q−1|εq−1,q−1〉.

This means that, no matter what quantum states are adopted, Eve can only obtain the
same information from the auxiliary particles. Therefore, Eve fails to obtain any signature
messages by conducting this kind of attack.

Appendix B.2. Eve Cannot Entangle an Information Particle to Forge a Signature

We can also prove that Eve cannot entangle an information particle with an auxiliary
particle to steal secret information and forge a signature. Since Eve does not have the
keys KA and KT , there is only one opportunity for him to attack Bob’s information
particle, i.e., during the transmission of the particle (5) from Alice to Bob in Step V6
of the verification phase. We can describe the effect of Eve’s eavesdropping on qubit (5)
using the following equations:

ŨE|0〉|E〉 = |0〉|ε00〉+ |1〉|ε01〉, ŨE|1〉|E〉 = |0〉|ε10〉+ |1〉|ε11〉,

ŨE|+〉|E〉 =
1
2
[|+〉(|ε00〉+ |ε01〉+ |ε10〉+ |ε11〉) + |−〉(|ε00〉 − |ε01〉+ |ε10〉 − |ε11〉)],

ŨE|−〉|E〉 =
1
2
[|+〉(|ε00〉+ |ε01〉 − |ε10〉 − |ε11〉) + |−〉(|ε00〉 − |ε01〉 − |ε10〉+ |ε11〉)],
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where |E〉 is Eve’s auxiliary state. {|ε00〉, |ε01〉, |ε10〉, |ε11〉} are the pure auxiliary states
determined uniquely by the unitary operation UE. Therefore, {|ε00〉, |ε01〉, |ε10〉, |ε11〉}must
satisfy the relationship ŨEŨ+

E = I, i.e., 〈ε00|ε00〉+ 〈ε01|ε01〉 = 1, 〈ε10|ε10〉+ 〈ε11|ε11〉 = 1,
〈ε10|ε00〉 + 〈ε11|ε01〉 = 0, 〈ε00|ε01〉 + 〈ε10|ε11〉 = 0. If no errors are introduced in Bob’s
detection, we can get |ε01〉 = |ε01〉 = 0. This implies that if Eve wants to attack without
introducing any error, his auxiliary state and Alice’s particle (5) will be in a tensor product
state. Therefore, if Eve tries to take an attack strategy on the particle (5), he will be detected
during the comparison between |Γ〉 and |Γ′〉 in Step V6 of the verification phase.
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