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Abstract: A large family of new α-weighted group entropy functionals is defined and associated
Fisher-like metrics are considered. All these notions are well-suited semi-Riemannian tools for the
geometrization of entropy-related statistical models, where they may act as sensitive controlling
invariants. The main result of the paper establishes a link between such a metric and a canonical
one. A sufficient condition is found, in order that the two metrics be conformal (or homothetic). In
particular, we recover a recent result, established for α = 1 and for non-weighted relative group
entropies. Our conformality condition is “universal”, in the sense that it does not depend on the
group exponential.

Keywords: Fisher metric; group Fisher metric; weighted entropy; relative group entropy; α-weighted
group entropy

1. Introduction
1.1. History

The inhabitants of the Universe of Uncertainty are probability distribution functions
(PDFs). One can try to understand them through their entropy, a property which provides
us a measure of disorder. Since its discovery, in the second part of the 19th Century, entropy
was investigated by functional, algebraic or analytical techniques. The first geometric tools
arose in the 1920s, through the work of Fisher ([1]), whose information matrix is the germ
for what today is known as the Fisher metric. The notion was generalized by Rao ([2,3]) in
the 1940’s, who put it in the appropriate context of Riemannian geometry. After a 30 years
gap, Efron ([4]) and Amari ([5,6]) reopened the interest in differential geometric invariants
associated to statistical models. Since the 1980s, the geometrization of the parameters space
of the PDFs evolved into a field with rapidly growing expanse, including (among others)
the new topics of statistical manifolds and of the dual connections ([7–11]; see in [12] for a
recent review).

Our paper is a piece of Riemannian geometry intended for entropy study. We construct
a new family of Fisher-like metrics, canonically associated to some entropy functionals,
and we establish a sufficient condition in order for two of these metrics to be conformal.
For describing the recipe, we must first sketch the story of its three main ingredients: the
weighting procedure of an entropy functional, the relative group entropy and the group Fisher
metric associated to it.

Around 1970, Belis and Guiasu ([13,14]) defined and axiomatized the concept of
weighted entropy. They modified an entropy formula, by multiplying the integrand
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(which contained quantitative, objective and probabilistic information) with a “weighting
function”, susceptible to model qualitative, subjective and non-stochastic utility data. The
notion proved useful in various applications and gave rise to many papers. We quote here
but a few: Barbu et al. [15], Batty [16], Das [17], Guiasu [18], Kayal [19], Kelbert et al. [20],
Smieja [21], Suhov [22], and Tunnicliffe et al. [23], where the interested reader may find
more details.

The notion of relative group entropy is more recent ([24]), but, as a nice coincidence,
its algebraic roots are contemporary with the papers of Rao about the Fisher metric and
distance, previously quoted. These algebraic foundations are the (Lie) formal groups,
defined by Bochner [25] in 1946, as a unifying tool between Lie groups and Lie algebras (see
also Hazewinkel [26]). Tempesta used the formal group laws, in order to define universality
classes of entropies ([27,28], see also [29,30]). Starting with a formal group logarithm

G(t) =
∞

∑
i=0

ci
ti+1

i + 1
, (ci ∈ Q , c0 = 1),

he defined ([27]) group entropy functionals of the form

SG(p) :=
∫

X
p(x)G(lnp(x)−1)dx,

where p is a PDF on X. As an application, the relative entropy (also known as the Kullback–
Leibler divergence) was generalized ([27]) to the relative group entropy.

Gomez et al. used ([24]) the relative group entropies for defining group Fisher metrics,
as “universal” extensions of the classical Fisher metrics arising from the classical Boltzmann-
Gibbs entropy. Their main result states that the previous pairs of metrics are homothetic,
and the constant of homothety depends on G′(0) and G′′(0).

1.2. Motivation

Our vision about entropy will be naive and formal, without entering into deep inter-
pretation about the physical or informational meanings. Our goal is to filter the details
and to see the nude invariants of geometric nature which might enlighten us to the general
behavior of the various (and apparently too many) types of entropy avatars. For more
details and hints about statistical interpretations, the reader is encouraged to look into the
inspirational papers [24,27,31,32].

1.3. Contents of the Paper

In Section 2, we try to systematize and to unify different definitions for the entropy
functions associated to PDFs. Two procedures of refinement are recalled: through “weight-
ing” and through “powering” the PDFs. We shall need both in Sections 4 and 5.

In Section 3, we review, in a creative manner, various methods to obtain semi-
Riemannian metrics associated to families of entropy functions or functionals, as part
of what we call “the geometrization problem for the entropy”. In particular, we have the
Fisher metrics, the Hessian metrics and the group Fisher metrics. Generalizations include
“mean” Hessian metrics, with the (“partial”) Hessian appearing under the integral sign.

Section 4 is the main part of the paper and is devoted to a generalization of the result
of Gomez et al. [24]. The Theorem 1 provides a formula, linking a canonical weighted
and powered Fisher-like metric to another one, which is, moreover, associated to a group
exponential. We give a sufficient condition in order the two metrics be conformal or even
homothetic. This conformality condition is, in some sense, “universal”, in that it does not
depend on the group exponential.

Section 5 contains examples which illustrate the application of the general method
from Section 4. We consider a normal PDF on the real line, with two parameters, with
particular weighting functions and particular powers. As the compatibility relation is satis-
fied, it follows that, for any formal group exponential, we can construct a weighted Fisher



Entropy 2022, 24, 120 3 of 15

metric, homothetic with the standard one. In addition to the construction of homothetic
metrics in [24], our examples provide an additional control tool, through the weighting
function. Moreover, our examples are well suited to be easily adapted and extended in
more general frameworks.

1.4. Conventions

All the integrals are supposed to be correctly defined. Partial derivatives are supposed
to commute with the integral. All the geometric objects are supposed to be differentiable,
even if, in some cases, a weaker assumption would suffice (for example continuity or
integrability).

2. Preliminaries

We review in a creative way some entropy-related notions, following mainly those
in [14,27,28].

Consider X ⊂ Rm the domain of a real valued random variable x. Let p = p(x) be a
(differentiable) probability density function (PDF), with p(x) ≥ 0 and

∫
X p(x)dx = 1. Let

f : R× X → R be a differentiable controlling function.

Definition 1. The generalized entropy corresponding to the pair (p, f ) is the real number
H = H(p, f ), where

H := −
∫

X
f (p(x), x)dx. (1)

If the controlling function f depends on p and does not depend on x, we write f : R→ R and we
say the entropy

H = −
∫

X
f (p(x))dx (2)

is classical.

Using the convention in Section 1, we may write (1) and (2) in the equivalent normal-
ized form

H := −
∫

X
p(x)h(p(x), x)dx, H = −

∫
X

p(x)h(p(x))dx, (3)

where f ((p(x), x) = p(x)h((p(x), x) and f (p(x)) = p(x)h(p(x)), respectively. Normaliz-
ing does not change the property of an entropy to be generalized or classical, respectively.

A slightly more general type of normalization is to consider some positive real number
α and the entropy functions of the form

H(α) := −
∫

X
pα(x)h(p(x), x)dx, H(α) = −

∫
X

pα(x)h(p(x))dx.

This “powering” of the PDF acts as a control tool over the set of entropy functions and
enables -sometimes- a useful refinement of the models. However, we must be aware of the
fact that, with an appropriate notation, the previous entropy functions may be rewritten in
the form (3).

Example 1. Almost all the known entropies used in statistical mechanics and information geometry
are classical. We list but a few, from simple to more sophisticated ones.

(i) The functional f (p) := p log(p) gives the Boltzmann–Gibbs–Shannon (BGS) entropy.

(ii) For any fixed a ∈ R\{1}, f (p) := p pa−1−1
a−1 provides a Tsallis entropy; when a→ 1 we

recover the BGS entropy.
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(iii) Considering one more PDF q, the functional f (p) := p log( q
p ) leads to the relative

entropy (also known as the Kullback–Leibler divergence [24]) between them, which is the normalized
classical entropy

D(p ‖ q) :=
∫

X
p(x)log(

p(x)
q(x)

)dx. (4)

We accept (formally) that 0 · log( 0
q ) = 0 and p · log( p

0 ) = 0. More generally, we may start with

k ≥ 1 more PDFs p1, . . . , pk and a differentiable function F : Rk+1 → R. Then, the functional
f (p) := F(p, p1, . . . , pk) produces a relative entropy of p w.r.t. p1, . . . , pk, namely, the normalized
classical entropy

D(p ‖ p1, . . . , pk) :=
∫

X
p(x)F(p(x), p1(x), . . . , pk(x))dx. (5)

Moreover, this one may be viewed as a generalized entropy associated to the functional pi →
F(p, p1, . . . , pk), for every i = 1, k.

(iv) Let G = G(t) be a formal group logarithm, which is a differentiable real valued function
with some special algebraic properties, inspired from the formal series linking Lie groups to Lie
algebras. (We refer to [24,27,28] for details about these functions). The group entropy functional
associated to it is defined by ([24,27])

SG(p) :=
∫

X
p(x)G(lnp(x)−1)dx, (6)

which is a normalized classical entropy of the form (3).
If q is another PDF, then the relative group entropy functional of p and q is defined ([24]) by

DG(p ‖ q) :=
∫

X
p(x)G(ln

( q(x)
p(x)

)−1
)dx, (7)

which is another normalized classical entropy of the form (3). Generalization for k PDFs leading to
a relative group entropy of the form (5) is also possible, but we leave this step to the reader.

Remark 1. Consider, moreover, an arbitrary differentiable function w : X → R. The weighted
generalized entropy corresponding to the triple (p, f , w), associated to the generalized entropy (1),
is another generalized entropy, given by

H := −
∫

X
w(x) f (p(x), x)dx.

Similar weighted entropies may be defined starting from (2) and (3). For example, the weighted
Tsallis entropy writes

H = −
∫

X
w(x)p(x)

(p(x))a−1 − 1
a− 1

dx.

Weighting does not change the property of an entropy to be generalized or normalized, respectively.
Instead, weighting may transform a classical entropy into a generalized one.

3. Fisher Metrics for Generalized Entropy Functions

We review in a creative way the main notions related to the Fisher metric derived
from a family of generalized entropies, associated to some parameterized PDFs, following
mainly the work in [24].

Consider the case when the PDF p in Section 2 depends, moreover, on n real pa-
rameters θ1, . . . , θn, that is, p : X × Rn → R, p = p(x, θ), with θ := (θ1, . . . , θn). Let
f : R× X×Rn → R be a differentiable controlling function, f = f (p, x, θ). The dependence
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on the parameter θ provides, via the relation (1), a generalized entropy function (loosely
denoted also by) H : Rn → R, given by

H(θ) = −
∫

X
f (p(x, θ), x, θ)dx. (8)

Analogously, classical entropy functions and normalized ones arise naturally, from param-
eterizing with θ the relations (2) and (3), respectively.

The geometrization problem for the entropy functions. Associate a relevant geometric
structure to the function H (given by (8) or by any other avatar), whose invariants might provide
information about the PDF p. Use f as a control tool in this process.

Remark 2. The fist idea that comes to mind is to consider the (classical) Hessian tensor field
associated to H, with coefficients

(HessH)ij(θ) := −
∫

X

∂2 f (p(x, θ), x, θ)

∂θi∂θ j dx, i, j = 1, n. (9)

If HessH is non-degenerate, it provides a semi-Riemannian metric (of constant signature) on Rn,
called Hessian metric. Its geometry was subject to many papers (see, for example, in [33,34] and the
references therein) and is useful in understanding the extremum points of H, as a semi-Riemannian
optimization topic.

A simple example is the Euclidian metric gij = δij, arising as Hessian metric from Formula (9),

by taking n = 2, θ = (θ1, θ2) and f (p(x, θ), x, θ) := − (θ1)2+(θ2)2

2 p(x, θ).

Remark 3. On another hand, consider a controlling function h : R×Rn → R, with h = h(p, θ),
and its associated normalized classical entropy function

H(θ) = −
∫

X
p(x, θ)h(p(x, θ), θ)dx. (10)

Define

gij(θ) := −
∫

X
p(x, θ)

∂2h(p(x, θ), θ)

∂θi∂θ j dx, i, j = 1, n. (11)

If the matrix (gij)i,j=1,n is nowhere vanishing, we obtain the (semi-Riemannian) Fisher metric
associated to H (or h) [24]. An example is included in Section 5, for a PDF of exponential type.

Denote h̃(x, θ) := h(p(x, θ), θ). Then,

gij(θ) = −
∫

X
p(x, θ)

∂2h̃(x, θ)

∂θi∂θ j dx = −
∫

X
p(x, θ)(Hessh̃)ij(x, θ)dx , i, j = 1, n. (12)

This formula does not define (in general) a Hessian metric. In fact, this might be called “mean”
Hessian metric, as we do not derivate the whole integral, but only a factor of the integrand. (Here
we consider the Hessian for h̃ as function depending on θ only.)

However, in some particular cases, the Fisher metrics may (eventually) borrow the appearance
of a Hessian metric, but w.r.t. other appropriate function, as in the following case [34]. Consider the
PDF of exponential type p : X×Rn → R, p = p(x, θ), with θ := (θ1, . . . , θn),

p(x, θ) := exp{C(x) +
n

∑
i=1

Fi(x)θi − ν(θ)},

where C = C(x), F1 = F1(x), . . . , Fn = Fn(x) and ν = ν(θ) are smooth functions. The associated
Fischer metric on Rn is g = Hessν, a Hessian metric w.r.t. ν, which is not derived from an entropy
function like in Formula (9).
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Example 2. In the case of the BCS-entropy, h = log ◦ p, h̃(x, θ) = log(p(x, θ)) and we get the
well-known classical Fisher metric

gij(θ) = −
∫

X
p(x, θ)(Hessh̃)ij(x, θ)dx =

∫
X

p(x, θ)
∂log(p(x, θ))

∂θi
∂log(p(x, θ))

∂θ j dx.

Its scalar curvature is interpreted as the average statistical uncertainty of a density matrix ([24]).
This claim is quite natural, as the scalar curvature is obtained from the curvature tensor by taking
the trace (a “mean”) two times successively, while the curvature tensor measures a “force” associated
to the “matter” in the “Universe” Rn driven by g.

Denote the entropy function H(θ) = −
∫

X p(x, θ)log(p(x, θ))dx. We calculate

(HessH)ij(θ) =
∫

X
p(x, θ)(Hessh̃)ij(x, θ)dx−

∫
X
(Hessp)ij(x, θ)log(p(x, θ))dx

= −gij(θ)−
∫

X

∂2 p
∂θi∂θi (x, θ)log(p(x, θ))dx

This formula expresses the Fischer metric g in terms of the Hessian of H and of the “mean” Hessian
of p, “weighted” by h̃.

Remark 4. (i) Consider now a classical entropy function H : Rn → R, given by

H(θ) = −
∫

X
f (p(x, θ))dx

and an associated weighted classical entropy function Hw : Rn → R, given by

Hw(θ) = −
∫

X
w(x) f (p(x, θ))dx.

Their Hessians have the components

ĝij(θ) :=
∂2H

∂θi∂θ j (θ) = −
∫

X

∂2 f (p(x, θ))

∂θi∂θ j dx

and

(ĝw)ij(θ) :=
∂2Hw

∂θi∂θ j (θ) = −
∫

X
w(x)

∂2 f (p(x, θ))

∂θi∂θ j dx.

In case of simultaneous non-degeneracy, the corresponding (semi-Riemannian) Hessian metrics ĝ
and ĝw provide a (geo)metric tool for studying the impact of the weighting function w upon the
entropy of the system.

(ii) Suppose the entropy function and the weighted entropy function are given in the normal-
ized form

H(θ) = −
∫

X
p(x, θ)h(p(x, θ))dx

and
Hw(θ) = −

∫
X

w(x)p(x, θ)h(p(x, θ))dx.

Denote f (p(x, θ)) := p(x, θ)h(p(x, θ)). Then, we may calculate the components of the respective
Hessians ĝ and ĝw, as in (i). Eventually, in case of non-degeneracy, we get Hessian metrics and
follow the strategy from (i).

For H and Hw, we may associate also the “mean” Hessian metrics g and gw, as in (12).
Therefore, we have the Fisher metrics on Rn, given by

gij(θ) = −
∫

X
p(x, θ)

∂2h(p(x, θ))

∂θi∂θ j dx
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and

(gw)ij(θ) = −
∫

X
w(x)p(x, θ)

∂2h(p(x, θ))

∂θi∂θ j dx

(iii) Similar Hessians or “mean” Hessians can be associated to relative entropy functions, as
in Example 1,(iii), or to entropy group functionals, as in Example 1, (iv). If non-degenerate, they
become semi-Riemannian Hessian metrics or Fisher metrics ([24,27,28]).

(iv) Analogous entropy functions and metrics arise when weighting by functions w = w(x, θ),
instead of w = w(x). In fact, this is a more flexible weighting procedure, as it does not impose
universal weighting constraints upon the whole family of PDFs.

4. A Step Further: Passing From the Fisher Metric Group to a Weighted One

Consider a PDF p depending on n real parameters θ1, . . . , θn; that is, p : X×Rn → R,
p = p(x, θ), with θ := (θ1, . . . , θn). Let g be the Fischer (semi)-Riemannian metric on Rn,
whose coordinate functions are given by

gij(θ) =
∫

X
p(x, θ)

∂log(p(x, θ))

∂θi
∂log(p(x, θ))

∂θ j dx.

Let G = G(t) be a formal group logarithm, as in Example 1, (iv). Consider H :
Rn ×Rn → R the double parameterized group entropy functional associated to it ([24]), by

H(θ, θ̃) :=
∫

X
p(x, θ) G(ln

p(x, θ)

p(x, θ̃)
)dx. (13)

The Hessian tensor field gG, with components

(gG)ij(θ̃) :=
∂2H(θ, θ̃)

∂θi∂θ j |θ=θ̃ ,

is called the group Fisher metric in [24]. The main result in [24] states that the metrics g
and gG are homothetic, via the formula

gG = (G′(0) + G′′(0))g. (14)

From it follows the well-known correspondence between the main invariants of g and gG, such
as the Christoffel coefficients, the Riemann curvature coefficients and the scalar curvatures.

We prove now that this result remains true, in the more general assumption of α-
weighted group entropy functionals.

Theorem 1. Let α be a positive real number. Let w : X ×Rn → R be a weighting function for
(13), providing the double-parameterized weighted α-normalized group entropy functional

Hw,α(θ, θ̃) :=
∫

X
w(x, θ̃)pα(x, θ) G(ln

p(x, θ)

p(x, θ̃)
)dx. (15)

Consider the α-weighted group Fisher metric gw,α
G , with components

(gw,α
G )ij(θ̃) :=

∂2Hw,α(θ, θ̃)

∂θi∂θ j |θ=θ̃ =
∫

X
w(x, θ̃)

∂2

∂θi∂θ j {pα(x, θ) G(ln
p(x, θ)

p(x, θ̃)
)} |θ=θ̃ dx ,

and the α-weighted Fisher metric gw,α, with components

(gw,α)ij(θ) :=
∫

X
w(x, θ)pα(x, θ)

∂log(p(x, θ))

∂θi
∂log(p(x, θ))

∂θ j dx.
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Then, the metrics gw,α and gw,α
G are related, via the formula

(gw,α
G )ij(θ) = {(2α− 1)G′(0) + G′′(0)}(gw,α)ij(θ) (16)

+G′(0)
∫

X
w(x, θ)pα−1(x, θ)

∂2 p(x, θ)

∂θi∂θ j dx.

Proof. We begin by deriving

∂Hw,α

∂θ j (θ, θ̃) =
∫

X
αw(x, θ̃)pα−1(x, θ)

∂p(x, θ)

∂θ j G(ln
p(x, θ)

p(x, θ̃)
)dx

+
∫

X
w(x, θ̃)pα−1(x, θ)

∂p(x, θ)

∂θ j G′(ln
p(x, θ)

p(x, θ̃)
)dx,

∂2Hw,α

∂θi∂θ j (θ, θ̃) =
∫

X
α(α− 1)w(x, θ̃)pα−2(x, θ)

∂p(x, θ)

∂θi
∂p(x, θ)

∂θ j G(ln
p(x, θ)

p(x, θ̃)
)dx

+
∫

X
αw(x, θ̃)pα−1(x, θ)

∂2 p(x, θ)

∂θi∂θ j G(ln
p(x, θ)

p(x, θ̃)
)dx

+
∫

X
αw(x, θ̃)pα−2(x, θ)

∂p(x, θ)

∂θi
∂p(x, θ)

∂θ j G′(ln
p(x, θ)

p(x, θ̃)
)dx

+
∫

X
(α− 1)w(x, θ̃)pα−2(x, θ)

∂p(x, θ)

∂θi
∂p(x, θ)

∂θ j G′(ln
p(x, θ)

p(x, θ̃)
)dx

+
∫

X
w(x, θ̃)pα−1(x, θ)

∂2 p(x, θ)

∂θi∂θ j G′(ln
p(x, θ)

p(x, θ̃)
)dx

+
∫

X
w(x, θ̃)pα−2(x, θ)

∂p(x, θ)

∂θi
∂p(x, θ)

∂θ j G′′(ln
p(x, θ)

p(x, θ̃)
)dx.

We assign θ := θ̃ and use the properties: G(0) = 0 and
∫

X p(x, θ)dx = 1. We get

(gw,α
G )ij(θ̃) := [(2α− 1)G′(0) + G′′(0)]

∫
X

w(x, θ̃)pα−2(x, θ̃)
∂p(x, θ̃)

∂θi
∂p(x, θ̃)

∂θ j dx

+G′(0)
∫

X
w(x, θ̃)pα−1(x, θ̃)

∂2 p(x, θ̃)

∂θi∂θ j dx

= [(2α− 1)G′(0) + G′′(0)]
∫

X
w(x, θ̃)pα(x, θ̃)

∂log(p(x, θ̃))

∂θi
∂log(p(x, θ̃))

∂θ j dx

+G′(0)
∫

X
w(x, θ̃)pα−1(x, θ̃)

∂2 p(x, θ̃)

∂θi∂θ j dx

= [(2α− 1)G′(0) + G′′(0)](gw,α)ij(θ̃) + G′(0)
∫

X
w(x, θ̃)pα−1(x, θ̃)

∂2 p(x, θ̃)

∂θi∂θ j dx,

which concludes the proof.

Corollary 1. In the hypothesis and with the notations from Theorem 1, suppose there exists a
function ϕ : Rn → R, such that, for every i, j = 1, n,

∫
X

w(x, θ)pα−1(x, θ)
∂2 p(x, θ)

∂θi∂θ j dx = ϕ(θ)
∫

X
w(x, θ)pα−2(x, θ)

∂p(x, θ)

∂θi
∂p(x, θ)

∂θ j dx. (17)

Then the metrics gw,α and gw,α
G are conformal, via the formula

gw,α
G = {(2α− 1)G′(0) + ϕ G′(0) + G′′(0)}gw,α. (18)
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If, moreover, ϕ is constant, then the metrics gw,α and gw,α
G are homothetic.

Remark 5. (i) In [24], the notation θ0 is used, instead our notation θ̃. We consider it more
appropriate, for not creating the (possible wrong) impression of “constancy” of the variable.

(ii) We used the terminology from [24], when calling gw,α
G a group Fisher entropy metric, but,

in our opinion, it is but a Hessian-like metric, not Fisher-like (i.e., of a “mean” Hessian type, see
Section 2).

(iii) Taking w(x) = 1 and α = 1 in Corollary 1, we get ϕ = 0 and we recover the result
from [24], outlined in the preamble of the section.

(iv) The relation (17) writes also∫
X

w(x, θ)pα−2(x, θ){p(x, θ)
∂2 p(x, θ)

∂θi∂θ j − ϕ(θ)
∂p(x, θ)

∂θi
∂p(x, θ)

∂θ j }dx = 0. (19)

A strong sufficient condition for (19) to hold true is the Hessian matrix of p (w.r.t. to θ) is propor-
tional with the matrix ( ∂p(x,θ)

∂θi
∂p(x,θ)

∂θ j )i,j. Relation (19) is satisfied iff the respective proportionality
holds as a mean, through the intermediate of the integral, and weighted by wpα−2.

(v) We may also understand Corollary 1 in the following way: let p be a parameterized PDF
with an entropy function (13); if there exists a weighting function w, a positive integer α, and a
function ϕ, such that (19) is satisfied, then the metrics gw,α

G and gw,α are conformal, via (18). Thus,
the search for pairs of conformal metrics is controlled by a triple “tool box”. A nontrivial example
will be given in the next section.

Moreover, we may conjecture that given a PDF p, there exist w, ϕ and α such that (19)
holds. Preliminary calculations provide hints that this might be true, at least for PDFs “of exponen-
tial type”.

(vi) In (18), the conformal factor depends on α, only through the intermediary of the “speed”
of G around 0, not (also) through the “acceleration” of G around 0.

(vii) The condition (19) does not depend on G. In this sense, it is an “universal” condition,
and we suspect it may hidden some (remarkable?) unraveled family of PDFs.

(viii) We introduce a new function ψ, related to the conformal factor in (18), by

e2ψ := (2α− 1)G′(0) + ϕ G′(0) + G′′(0).

(We suppose the right side positive.) Denote ρw,α
G and ρw,α the scalar curvatures of gw,α

G and gw,α,
respectively. Then,

e2ψρw,α
G = ρw,α − 2(n− 1)∆ψ− (n− 2)(n− 1)(dψ)2.

Scenario: suppose p, w, α are given, such that the conformality condition (19) holds. Calculate the
scalar curvature ρw,α (together with all the invariants associated to the metric gw,α). Then, the previ-
ous formula allows a conformal variation of ρw,α, controlled by the set of formal group logarithms G,
which is more flexible than the homothetic variation in [24]. Homothetic transformations of the met-
rics are quite rigid, as they preserve the qualitative behavior of the main invariants semi-Riemannian
(distance, geodesics, curvature). By contrast, conformal non-homothetic transformations produce
significant geometric changes, such as passing from a plane to a sphere.

5. Examples

In what follows, consider X = R and the normal PDF p : R×R× (0, ∞)→ R,

p(x; θ1, θ2) =
1√

2πθ2
e
− (x−θ1)2

2(θ2)2 . (20)
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Denote by p1, p2, p11, p12, p22 the partial derivatives of p, of order one and two, w.r.t. θ1

and θ2. We calculate, successively,

p1 =
x− θ1

(θ2)2 p, p2 = { (x− θ1)2

(θ2)3 − 1
θ2 } p,

p11 = { (x− θ1)2

(θ2)4 − 1
(θ2)2 } p, p12 = { (x− θ1)3

(θ2)5 − 3(x− θ1)

(θ2)3 } p,

p22 = { (x− θ1)4

(θ2)6 − 5(x− θ1)2

(θ2)4 +
2

(θ2)2 } p.

The classical Fisher metric g has the components g11 = (θ2)−2, g12 = g21 = 0 and
g22 = 2(θ2)−2 (see, for example, [10]).

Let α be a positive real number and consider the particular weighting function w(x, θ) :=
(x− θ1)2. We calculate the coefficients of the α-weighted Fisher metric gw,α:

gw,α
11 = 3(

√
2πθ2)1−αα−

5
2 , gw,α

12 = 0, gw,α
22 = (α2 − 6α + 15)(

√
2πθ2)1−αα−

7
2 .

We prove now that, in the particular case of α = 3+
√

57
2 , with the function ϕ := 1− α

3 =
3−
√

57
6 , the relation (19) is identically satisfied. We evaluate the left side integral in (19), in a

case-by-case calculation.

(i) The case i = 1, j = 2:

∫ ∞

−∞
(x− θ1)2 pα(x, θ){ (x− θ1)3 − 3(x− θ1)(θ2)2

(θ2)5 − ϕ
(x− θ1)3 − (x− θ1)(θ2)2

(θ2)5 }dx = 0 ,

as pα is an even function and all the binomial integrands are odd functions, w.r.t. (x− θ1).
(We see that here we did not use the particular form of ϕ, so the result is valid for any
positive α and any function ϕ = ϕ(θ).)

(ii) The case i = 1, j = 1:

∫ ∞

−∞
(x− θ1)2 pα(x, θ){ (x− θ1)2 − (θ2)2

(θ2)4 − (1− α

3
)
(x− θ1)2

(θ2)4 }dx = 0 .

(We see that here we did not use the particular form of α, so the result is valid for any
positive α and for the function ϕ = 1− α

3 .)

(iii) The case i = 2, j = 2:

∫ ∞

−∞
(x− θ1)2 pα(x, θ){ (x− θ1)4 − 5(x− θ1)2(θ2)2 + 2(θ2)4

(θ2)6 −

−(1− α

3
)
(x− θ1)4 − 2(x− θ1)2(θ2)2 + (θ2)4

(θ2)6 }dx = k(α2 − 3α− 12) = 0 ,

where k is a nowhere vanishing function, depending on α and θ2. (We see that here we
used both the particular form of α and of the function ϕ.)

Let G be any formal group logarithm. As the relation (19) is verified for a constant
function ϕ, it follows that the α-weighted group Fisher metric gw,α

G is homothetic to gw,α.
Using Formula (18), we obtain

gw,α
G = {5(3 +

√
57)

6
G′(0) + G′′(0)}gw,α. (21)
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Remark 6. Similar examples may be obtained: for w(x, θ) := (x − θ1)a, with even a; for a
polynomial function w with variable (x− θ1) (the odd powers are irrelevant); for w(x) := xa (or a
polynomial function in x), with a significant increase of the complexity of the calculations.

Remark 7. Consider the PDF (20), a positive real number α and a weighting function w(x, θ) =

l( (x−θ1)2

2(θ2)2 ), where l : R → R is an arbitrary continuous function (satisfying, eventually, some
additional specific hypothesis, in order the following integrals exist). The cases i = 1, j = 1 and
i = 1, j = 2 of the relation (19) are identically satisfied, for the constant function

ϕ = 1− α

2

∫ ∞
0 l( t

α )t
− 1

2 e−tdt∫ ∞
0 l( t

α )t
1
2 e−tdt

.

First, let us remark that this family of examples cannot lead to conformal non-homothetic
transformations of the metric, via the relation (18). Second, we must impose that condition (19)
holds, for i = 2, j = 2 also, and this provides a strong additional constraint on ϕ and α.

Unfortunately, the existence of a suitable value of the power α is not guaranteed. For example,
in the particular case of l(u) := 1 + e−u, we get

ϕ = 1− α(α + 1)
2α + 1−

√
α(α + 1)

.

Then, from the case for i = 2, j = 2 in (19), it follows that α is non-real or non-positive.

Example 3. We consider now a particular case of the previous example. Let p = p(x, θ) be the
two-variate PDF from (20); the weighting function w(x, θ) = (x− θ1)2; α = 3+

√
57

2 .
(i) Let G be the Thallis group logarithm, given [24] by

G(t) =
e(1−q)t − 1

1− q
, q ∈ R , q 6= 1.

When q → 1, we get G(t) → t, i.e. the BGS group logarithm. By abuse, from now on, we shall
suppose q ∈ R.

Denote

A := 3
√

2π
− 1+

√
57

2 (
3 +
√

57
2

)−
5
2 , B :=

√
2π
− 1+

√
57

2 45− 3
√

57
2

(
3 +
√

57
2

)−
7
2 .

The α-weighted Fisher metric writes

(gw,α
ij ) =

(
A(θ2)1−α 0

0 B(θ2)1−α

)
.

Its Christoffel coefficients are

(Γ1
ij) =

(
0 1−α

2θ2
1−α
2θ2 0

)
, (Γ2

ij) =

(
− A

B
1−α
2θ2 0

0 1−α
2θ2

)
.

We calculate successively the Riemann–Christoffel coefficients

R1
212 =

∂Γ1
22

∂θ1 −
∂Γ1

21
∂θ2 + Γ1

11Γ1
22 + Γ1

21Γ2
22 − Γ1

12Γ1
21 − Γ1

22Γ2
21 =

1− α

2
1

(θ2)2 .

R1212 = g11R1
212 = A(θ2)1−α 1− α

2
1

(θ2)2 =
A(1− α)

2
(θ2)−α−1.
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and the scalar curvature ρ = ρ(θ2),

ρ =
2R1212

det(gij)
=

2 A(1−α)
2 (θ2)−1−α

AB(θ2)2−2α
=

1− α

B
(θ2)α−3.

We have G′(0) = 1 and G′′(0) = 1− q. From the relation (21) we calculate the scalar curvature of
the associated α-weighted group Fisher metric gw,α

G :

ρG(θ
2, q) = (

21 + 5
√

57
6

− q)−1 · 1− α

B
(θ2)α−3.

We restrain the study for q < 21+5
√

57
6 .

As already pointed out in Example 2, the scalar curvature measures the average statistical
uncertainty. In this case, both scalar curvature functions ρ and ρG take strictly negative values, so
the uncertainty is proportional to their module. The variation of ρG is depicted in Figure 1.

Figure 1. The variation of ρG, with the notation x := θ2 and y := q.

(ii) If we replace the Tsallis group logarithm with the Kaniakidis group logarithm [24]

G(t) =
sinh(1− q)t

1− q
, q ∈ R , q 6= 1,

the scalar curvatures ρ and ρG differ by a constant only. The reason is that G′(0) = 1 and
G′′(0) = 0, and ρG gets no new variables from (21).

(iii) Instead, replacing the Tsallis group logarithm with the Abe group logarithm [24]

G(t) =
eat − ebt

a− b
, a, b ∈ R , a 6= b,

leads to a behavior of ρG versus ρ similar to (i), because G′(0) = 1 and G′′(0) = a + b. In this
case, ρG depends on a, b and θ2.

Remark 8. Let p = p(x, θ) be the two-variate PDF from (20); the weighting function w(x, θ) =
(x− θ1)2; α an arbitrary positive real number; G an arbitrary group logarithm. In general, the
hypothesis of the Corollary 1 is not fulfilled anymore. This implies that the metrics gw,α and gw,α

G
might not be conformal, and all we deduced previously for their scalar curvatures did not remain
true, in general.

However, in this case we can study what can be derived, directly from Theorem 1, via the
relation (16). A tedious calculation produces the following formulas:

(gw,α
G )11 = C · (θ2)1−α, (gw,α

G )12 = 0, (gw,α
G )22 = D · (θ2)1−α,
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where we denoted
C = [5α G′(0) + 3G′′(0)] ·

√
2π

1−α · α−
5
2

D = [(2α3 − 11α2 + 21α) · G′(0) + (α2 − 6α + 15) · G′′(0)] ·
√

2π
1−α · α−

7
2

The scalar curvature writes
ρG =

1− α

D
(θ2)α−3.

Until now, G was arbitrary. Let us particularize it: consider G(t) = t, i.e., the BGS group
logarithm. The scalar curvature of the corresponding α-weighted relative group metric is

ρG =
1− α

2α3 − 11α2 + 21α
·
√

2π
α−1 · α

7
2 · (θ2)α−3.

Its “macroscopic” variation with respect to θ2 and α can be seen in Figure 2.

Figure 2. The variation of ρG, with the notation x := θ2 and y := α > 0.

We remark the special case α = 1, when the metrics gw,1 and gw,1
G become locally Euclidean

and all the related curvature invariants (including the scalar curvature) vanish. For α > 1, both
scalar curvatures are negative and this behavior is clearly visible in Figure 1. For α ∈ (0, 1), both
scalar curvatures are positive; to see it, we must take a magnified detail, as in Figure 3.

Figure 3. The variation of ρG, with the notation x := θ2 and y := α ∈ (0, 1).
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Similar calculations can be made for other group logarithms also, following the same line. For
the Tsallis group logarithm, the scalar curvature will depend also on the third variable q; for the Abe
group logarithm, the scalar curvature will depend also on two more variables, namely, a and b.

6. Discussion

The main motivation of our research was the discovery of new metrics, able to ge-
ometrize properties of statistical phenomena. We succeeded a double-folded generalization
of the construction from in [24], extending the “homothetization” of the group Fisher
metric to a “conformalization” of the α-weighted ones. These are semi-Riemannian metrics
associated to entropy functions depending on arbitrary weighting functions and to powers
of the PDFs. However, the generalization has a price: the existence of the conformal trans-
formation requires a compatibility relation between the weighting functions, the powers
of the PDFs and the PDFs (the relation (19)). We conjectured that, for a given PDF, there
exists a weighting function and a power of the PDF, such that the relation (19) holds. We
speculate that the elegance of (19) suggests a deeper property, whose hidden meaning
remains to be revealed.

From now on, several directions of study open, hierarchically ordered upon the
complexity/difficulty of the calculations involved:

(i) the constructions of new examples, by appropriate α-weighting the PDF from
Section 5, as suggested in the Remark 6.

(ii) the constructions of new examples, similar to those in Section 5, for other remark-
able PDFs on the real line, depending on two parameters (as the lognormal, the Gamma
and the Beta distributions, following the classical approach from [10] ).

(iii) passing from m = 1 and n = 2 (as in (i) and (ii)) to arbitrary integers m and n, and
appropriate α-weighting of classical examples of PDFs.

(iv) deepening the differential geometric study of the previous new metrics, and
finding new geometric invariants for the modeling and the control of statistical phenomena.
For example, the study of the distance related topics (see [35]), of the geodesics (see [36–38])
and of the various types of curvature tensor fields (see [10,39–42] for samples of the needed
geometric tools).

(v) finding conformal, non-homothetic examples for which relation (19) holds. (These
examples may also provide hints and support for our previously described conjecture.)
Beyond the dreaded complications of the formalism, await the rewards of the much richer
conformal geometry.
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