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Abstract: The main research question concerned the identification of changes in the COVID-19
epidemiological situation using fuzzy clustering methods. This research used cross-sectional time
series data obtained from the European Centre for Disease Prevention and Control. The identification
of country types in terms of epidemiological risk was carried out using the fuzzy c-means clustering
method. We also used the entropy index to measure the degree of fuzziness in the classification and
evaluate the uncertainty of epidemiological states. The proposed approach allowed us to identify
countries’ epidemic states. Moreover, it also made it possible to determine the time of transition from
one state to another, as well as to observe fluctuations during changes of state. Three COVID-19
epidemic states were identified in Europe, i.e., stabilisation, destabilisation, and expansion. The
methodology is universal and can also be useful for other countries, as well as the research results
being important for governments, politicians and other policy-makers working to mitigate the effects
of the COVID-19 pandemic.
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1. Introduction

In the recent past, the coronavirus has become an anomalous part of everyday life
worldwide. Moreover, it deepens a sense of insecurity in society and brings confusion due
to the lack of standards and rules to fit the new reality. The spread rate of the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes COVID-19 and its scale has
clearly made everyone aware of how powerful the phenomenon we are dealing with is.
In the macro-social dimension, it was associated with disturbances in the economy, i.e.,
an increase in unemployment, inflation, the budget deficit or a decrease in GDP cf. [1].
On the one hand, people were looking for solutions that would rationalise their everyday
life, consisting in a change in everyday functioning, reorganisation of professional life, or
changes in the education system. On the other hand, the authorities, started actions aimed
at counteracting the unfavourable phenomena in the economy and society. There are many
studies and articles on COVID-19 that point to different human behaviour, adaptation to
COVID reality, and people’s fear of changes, as well as the process of entering the “new
normality” but also negating this phenomenon [2–25]. These papers contribute to the
literature on the potential healthcare, financial, social, and economic impacts of the COVID-
19 pandemic. The importance of this research is highlighted by the European Commission’s
“Sustainable Europe 2030”, in which more than half of the ten essential changes needed
in the fight the pandemic are economic. These include support for restoring the economy;
job protection; financial aid for EU member states; broadening European solidarity, and
assisting the economic sectors hit hardest. This goes to show just how vital it is to research
the pandemic’s effects.
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There are analyses of the situation in countries such as Italy [26], the United States [27,28],
United Kingdom [4], Poland [10], Russia [29], Germany [30], China [21,31], Lebanon [23],
Kenya [22], Uganda [22,32], Brazil [33], and India [6]. Analyses in these countries reveal
various problems, such as rural areas with fewer opportunities for medical services, poorer
health and sanitation infrastructure, insufficient social care and numerous problems in
managing rural areas, and sometimes endemic poverty. In many countries, such as Canada,
the United States, Australia, and Norway, people escaping to the countryside from cities is
also a problem, because rural areas have been recognised as places of relative safety [34].

Some studies address issues of studying COVID-19 and its consequences using various
mathematical models. Many possible approaches for this modelling can be considered, i.e.,
non-linear regression, Markov models, differential equation systems (continuous time), and
difference equations (discrete time). There are many infectious disease-spread models, such
as SIR, SIS, SIRS, SEIR, SEIRD, and SEIHR see e.g., [35,36]. Ivorra et al. [31] developed a
mathematical model for the spread of the coronavirus. They proposed the θ-SEIHRD model
based on the Be-CoDiS model. Rajaei et al. [37] proposed a different type of nonlinear model
for COVID-19. They used a state-estimation-based nonlinear robust control method for
state estimation, tracking control, and robustness against uncertainties. Earlier, Sharifi and
Moradi [38] proposed a nonlinear epidemiological model of influenza. Shadabfar et al. [28]
proposed a probabilistic method to predict the spreading profile of the coronavirus. Their
research applied an extended susceptible-exposed-infected-vaccinated-recovered (SEIVR)
epidemic model. Moreover, Monte Carlo sampling was used to calculate the exceedance
probabilities for three parameters, i.e., the final number of deaths and recovered cases, as
well as the maximum number of the infected cases. Moreover, artificial intelligence was
applied “in battling against the difficulties the outbreak has caused” [39].

However, there is little research on multiple country analyses together. An interesting
example is research by Mahmoudi et al. [40], who studied the situation in the United
States, Spain, Italy, Germany, the United Kingdom, France, and Iran. They used a fuzzy
clustering technique to compare and cluster the distributions of the spread of COVID-19. It
should be noted that, recently, approaches based on soft clustering algorithms have become
more popular, having fewer limitations and disadvantages than traditional hard clustering
algorithms. Just and Łuczak [41] stated that the “application of classical clustering methods
is burdened with some restrictions, which often result in an oversimplification of the actual
course of investigated phenomena”. They also added that “the clustering methods based
on fuzzy sets provide a much greater amount of information on clustering of objects than
classical methods, which only allow the unambiguous assignment each element to one of
the clusters”.

Mirkin [42] pointed out that it is possible to “distinguish two overlapping mainstreams
potentially leading to bridging the gaps within the clustering discipline. One is related
to modeling cluster structures in terms of observed data, and the other is connected with
analyzing particular kinds of phenomena”. It is worth adding an observation by Sato-
Ilic and Jain [43] that “fuzzy clustering is one method which can capture the uncertainty
situation of real data and it is well known that fuzzy clustering can obtain a robust result as
compared with conventional hard clustering”.

The statement of these facts leads to reflection on the current situation countries and
its changes during the COVID-19 pandemic. Research gaps were identified based on a
broad review of the source literature on the classification of objects and studies related to
the COVID-19 pandemic. Our goal was to fill a significant research gap in the assessment of
the epidemiological situation and its changes in European countries during the coronavirus
pandemic on the basis of empirical studies and on this basis to formulate answers to the
following research questions:

Q1. What were the typical epidemiological states in Poland and other European
countries, from 4 March to 24 June 2020?

Q2. What was the variability of the epidemiological states in the countries analysed
from the beginning of the epidemic in Poland until the end of the second stage of the survey?
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Q3. Were epidemiological states clearly recognizable in the countries analysed during
the given time period?

The main objective of this paper is to identify the epidemic states in the countries
investigated from 4 March 2020 (the beginning of the epidemic in Poland) to 24 June 2020
(the first phase—the abolition of most restrictions related to COVID-19 in Poland). Fur-
thermore, the following research hypothesis was formulated: the epidemiological situation
in Poland in the period from 4 March to 24 June 2020 was stable compared to other Euro-
pean countries.

To fill the existing research gap, our study identified epidemic states in European
countries using the fuzzy c-means classification method. The proposed approach not only
makes the identification of epidemic states possible, but also provides information on the
time of transition from one state to another. Thus, this paper is an important complement
to and extension of existing studies on changes in the situation of countries affected by the
COVID-19 epidemic. Other authors’ contribution concerned the ability of the entropy of
the classification to signal the uncertainty of epidemiological states.

Apart from the introduction, the paper is composed as follows: part 2 presents the
methods and data used in the empirical study; part 3 presents the results of the research
on the epidemiological situation and its changes in European countries. The final parts
(5–7) of the paper present a discussion of the research together with conclusions and
recommendations.

2. Materials and Methods

The study includes the identification of epidemic states, as well as their changes in
European countries from the beginning of the epidemic in Poland (4 March 2020) until the
abolition of most restrictions related to COVID-19 in Poland (24 June 2020). The country
types were distinguished regarding their epidemiological risk. The cross-sectional time
series data from the European Centre for Disease Prevention and Control [44] constitute the
empirical basis of the study. Changes in the countries’ epidemic states were identified using
the fuzzy c-means clustering (FCM) method. FCM “is one of the most classical prototype-
based clustering methods” [45]. Yang and Sinaga [46] noted that this method has been
“widely extended and applied in various real-world problems, such as pattern recognition,
image segmentation, medical diagnostic, economics, cell formation, gene expression, and
data mining”.

A methodological approach based on clustering methods was proposed (Figure 1). The
clustering process consists in the grouping of similar objects [47]. “Clustering mainly aims
to partition data into clusters with a maximum similarity in a cluster (homogeneous), as
well as a maximum dissimilarity between clusters (heterogeneous)” [48] (p. 297). In other
words, Liao [49] (p. 1857) states that “the within-group-object similarity is minimized
and the between-group-object dissimilarity is maximized”. It aims to identify relatively
homogeneous groups of objects in terms of similar characterising variables. The most
frequent clustering methods are the disjoint methods, where each object is assigned only
to one class. This indicates that each object is assigned properties of only one type. Such
an identification of types is a great simplification of the state of the objects examined, as
they frequently possess variables of many types. Methods based on the fuzzy-sets theory
help to resolve this issue [50]. This theory was developed to describe highly complex
phenomena or poorly defined concepts which cannot be precisely described by the classical
mathematical apparatus. In fuzzy-clustering methods, objects may belong to different
classes. These methods make it possible to assign objects to all classes with a certain degree
of membership.

Prior to the clustering process, it is necessary to establish the main criterion regarding
the process (e.g., identification of pandemic states), as well as the objects (e.g., coun-
tries) intended for clustering (stage 1). An important stage in the clustering process
comprises an appropriate selection of variables (stage 2), which is based on substantive
and statistical analyses. The established values of the K variables for n countries and T
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moments in time are compiled in T · N×K dimensional data matrix X∗ =
[
x∗tik
]
, where x∗tik

(t = 1, 2, . . . , T; n = 1, 2, . . . , N; k = 1, 2, . . . , K ) is the value of the k-th variable for the
i-th country at time t.
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Variables describing the objects examined may assume a different nature and their
range of maximum and minimum values also varies. The values of variables should be
standardised to ensure comparability of data (stage 3). The standardisation, recorded in
the form of a matrix X∗, is conducted according to the formula:

xtik =
x∗tik − x∗k

s∗k
(t = 1, 2, . . . , T; i = 1, . . . , N; k = 1, . . . , K), (1)

where xtik—the standardised value of the k-th variable for the i-th object at time t, x∗tik—an
initial value of the k-th variable for the i-th object at time t, x∗k —arithmetical mean of the
k-th variable, and s∗k —a standard deviation of the k-th variable.

The clustering process is based on the distances between pairs of the multi-variable ob-
jects [51–53]. The most frequently applied distance measure is the Minkowski distance [52]:

dts =
{
∑K

k=1|xtik − xsik|p
}1/p

(t, s = 1, . . . , T; i = 1, . . . , N) (2)

The formula (2) for p = 1 comprises a city block (taxicab, Manhattan) distance,
which for p = 2 is referred to as a Euclidean distance, while for p→ ∞ as a Chebyshev
distance. The application of the city block distance results in cubic clustering, while
spherical clustering is identified for Euclidean distances. It should be emphasised that the
Minkowski distance is employed to study the similarity of objects with regard to the level
of the variable values.

Moreover, it is necessary to add that it is not possible to indicate a universal clustering
method. All methods involve a limitation related to the interpretation of the results ob-
tained, which decreases with the number of objects classified. The most common clustering
methods include the k-means method and its rarely used fuzzy c-means version, both
of which were used in this study (stage 4). Knowledge regarding the number of classes,
as well as the initial clustering of objects, is required in case of the application of these
methods. In the subsequent stages of the clustering process, objects are transferred from
one class to another in a way that enables them to minimise the difference from certain
class variables (prototypes) within the specific class. The iterative process is repeated until
the clustering approaches the assumed level of stability [43,51,54,55].

The clustering of objects requires the number of classes to be determined (stage 5),
which may be established by different methods [56,57]. In this paper, the number of classes
was determined in two steps. In the initial step, separable clustering was generated using
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the k-means method, then assessed with the Krzanowski–Lai [58] clustering quality index
calculated according to the formula

KL(G) =

∣∣∣∣ DIFF(G)

DIFF(G + 1)

∣∣∣∣, KL(G) ∈ R (3)

where DIFF(G) = (G− 1)2/KtrW(G− 1)− G2/KtrW(G). When KL(G) reaches the first
local maximum for the number of clusters G *, the best partition of the population is into
G * clusters.

In the fifth stage of the clustering, the number of classes adopted was determined by
the chosen disjoint clustering method for the identical data matrix. Next, the clustering
was conducted using the fuzzy c-means method [59–61]. The problem of fuzzy clustering
was presented as a non-linear issue of mathematical programming [59–61]:

Minimise Jm(U, C, X) = ∑T
t=1 ∑N

i=1 ∑G
g=1 um

tig ∑K
k=1 (xtik − cgk)

2 (4)

Subject to:

∑G
g=1 utig = 1 (t = 1, . . . , T; i = 1, . . . , N) (5)

∑T
t=1 ∑N

i=1 utig > 0 (g = 1, . . . , G), (6)

utig ≥ 0 (t = 1, . . . , T; i = 1, . . . , N; g = 1, . . . , G), (7)

where T—the number of moments in time (e.g., days), N—the number of objects (e.g.,
countries), G—the number of fuzzy classes, K—the number of variables, m—the parameter
which regulates the degree of fuzziness of the clustering process, U =

[
utig
]
− (T·N × G),

a dimensional matrix of the degrees of membership of objects belonging to fuzzy classes,
C =

[
cgk

]
− (G× K), a dimensional matrix of the centroids (centres of gravity) of classes,

and X = [xtik] − (T·N × K), a dimensional data matrix, where xtik represents the standard-
ised value of the k-th variable in the i-th object at time t.

As a result of the fuzzy clustering process, each object (e.g., a country at a given
moment of time) is classified into each class (epidemic states) with a certain degree of
membership, that is, a number between 0 and 1. Additionally, the sum of degrees of
membership for each object equals one. The degree of membership determines the strength
with which a given object belongs to a particular class (epidemic states). The higher the
degree of membership, the more strongly the object is characterised by the variables of
a given state. Fuzzy clustering methods provide more information on the clustering of
objects than classical methods, which only make it possible to unambiguously assign each
object to one of the classes (states) created. The proposed approach not only allows for the
identification of epidemic states but also provides information on the time of transition
from one state to another, as well as presenting the opportunity to illustrate the fluctuations
occurring when states change.

The next stage of the procedure is to identify epidemic states (stage 6). The identifica-
tion of states may be divided into the formal and the substantive. Formal identification
consists of determining the name, while substantive identification involves descriptive
statistics of indicators. It is likewise worth paying attention to the fuzziness degree of the
classification—we used the entropy index to measure this and at the same time to assess
the uncertainty of epidemiological states. Entropy is a measure of the indeterminacy, chaos,
and degree of disorder in a structure. It is greater when the states are more equal, and
smaller when one state is more pronounced. The entropy of a fuzzy set [62] is a measure
of the total amount of information in the missing fuzzy structure, given by a fuzzy set, to
such a state that there is no uncertainty in the classification of the elements. The research
used the normalized entropy index see [53,60,63,64]:

Hi =
1
T ∑T

t=1 ∑G
g=1 h

(
utig
)
(i = 1, . . . , N) (8)
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where:

h
(
utig
)
=

{
−utig loga utig for utig > 0
0 for utig = 0

(9)

utig is the degree of membership of the i-th object (country) at time t belonging to g-th fuzzy
class, and a ∈ (1, ∞ ), but usually a = G. Then, this index ranges from 0 to 1. The lower the
entropy value, the lower the hesitancy of the states in the period analyzed. In other words,
the lower the entropy, the more pronounced is one state, while the higher the entropy, the
higher the uncertainty states.

We also determine the changes in the epidemiological states using the daily entropy index:

Hti =
G

∑
g=1

h
(
utig
)

(10)

Equation (10) “represents Shannon’s measure of statistical uncertainty” [65]. The daily
entropy is computed similarly to the normalized entropy index, but aggregating per day.
The greater Hti, the greater the uncertainty of fuzzy classification; the greater the fuzziness,
and the greater the uncertainty in the identification of epidemiological states. It is worth
noting that in two extreme cases, if Hti = 0 then there is no uncertainty in the identification
of states, and if Hti = 1 then we identify the most uncertain situation.

3. Results

The examination of the epidemiological situation, as well as its changes, initiates the
adoption of the main objective of the clustering process, comprising the identification of
epidemic states. The study covered the European countries and was based on daily data
from 4 March to 24 June 2020. A set of four variables (indicators) was selected to identify
the epidemic states in the countries studied, as follows:

• COVID-19 cases per 100,000 population (x1),
• COVID-19 deaths per 100,000 population (x2),
• share of COVID-19 deaths in COVID-19 cases (%) (x3),
• active cases—cumulative number for 14 days of COVID-19 cases per 100,000 (x4).

A statistical description of the variables was presented in Table 1. On this basis, it may
be concluded that the variables selected significantly differentiate the countries analysed.
Such a conclusion is indicated by a significant range between the maximum and minimum
values, as well as by the analysis of the variation coefficient. The largest diversity of
values characterised the x2 COVID-19 deaths per 100,000 population, in which the average
diversity of values of this variable in European countries was 339.94%. In European
countries, the coefficient of variation of the x1 COVID-19 cases per 100,000 population was
also high (329.17%). The analysis of the variable values based on positional statistics reveals
a slightly lower differentiation in their values.

Selected diagnostic variables constitute important information on the epidemiological
situation of the countries studied. Initially, sequences of disjoint classifications from 2 to
10 classes were generated using the k-means method. The calculations were performed
in the R program [66] with the clusterSim package [67]. As part of this package, we
used a function of the same name, cluster. Sim, for a k-means method with the classical
standardisation formula for data. The divisions were assessed using the Krzanowski–
Lai index, which achieved the first local extremum for three classes. It was therefore
assumed that three epidemiological states would be identified in the countries analysed.
Subsequently, applying information from the previous research stage, the fuzzy clustering
of objects was conducted based on the fuzzy c-means method. The calculations were
performed in the R program with the fclust package [68]. We used the FKM procedure
including the fuzzy c-means clustering algorithm. The results of the state identification in
the countries analysed are presented in Figure 2.
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Table 1. Values of the selected descriptive statistics of variables characterising the epidemiological
situation in the countries examined from 4 March to 24 June 2020.

Variables
Classical Measures Positional Measures

min mean max SD CV Q1 Q2 Q3 IQR QCOD

x1 0.00 3.04 490.80 10.00 329.17 0.16 0.82 2.65 2.48 88.41
x2 0.00 0.16 17.42 0.53 339.94 0.00 0.01 0.09 0.09 100.00
x3 0.00 6.07 400.00 16.27 268.05 0.00 0.72 6.39 6.39 100.00
x4 0.00 39.80 858.90 74.90 188.20 3.77 12.74 40.78 37.02 83.09

Note: SD—standard deviation, CV—coefficient of variation (%), Q1—1st quartile, Q2—median, Q3—3rd quartile,
IQR—interquartile range, QCOD—quartile coefficient of dispersion (%). Source: own calculation based on
statistical data from [44].

Figure 2 presents the degrees of membership of countries to the three epidemic states
in the period examined. The closer the line is to 1, the more identifiable is the state. The
change in the membership degrees of countries to specific states indicates a change in
the epidemiological state. The method applied makes it possible not only to identify the
epidemic states but also provides information on the time of transition from one state
to another.

We observed that for Germany, from 20 March 2020 the values of the degrees of mem-
bership of the stabilisation state began to decline. This situation lasted until 30 March 2020,
with slight fluctuations in the degrees of membership to the stable state. The transition time
from stable to destabilisation in Germany was 11 days. On 31 March the degrees of member-
ship to the state of stabilisation and destabilisation were identical at 0.48. From 1 April 2020
Germany entered the state of destabilisation, which finished on 16 April 2020. For the next
19 days, the situation was unstable, and on 5 May (as on March 31), there was no single
dominant state and the degrees of membership to the stabilisation and destabilisation
states were 0.48. It was only on 6 May that Germany entered the state of stabilisation of the
epidemiological situation.

In France, too, the situation began to destabilise around 20 March 2020. The state
of destabilisation began after a week. Although this state prevailed until 9 May 2020,
sometimes it was only partial (a degree of membership less than 0.5). The situation was
ambiguous for the 19 days following 10 May 2020. Only on 29 May 2020 did France enter a
state of relative stabilisation of the epidemiological situation. Until the end of the period
studied, one can observe a quite regular—about a week apart—sharp decrease in the degree
of membership of the state of stabilisation.

In Italy, from 9 March a decrease in the degree of membership of the stabilisation state
was observed, lasting about a week. From 16 to 23 May 2020, a state of destabilisation
was observed. However, for 23 days from the beginning of May, declining degrees of
membership of this state was mostly identified, indicating a potential change in state.
For three weeks from 24 May 2020, the situation was unclear. The state of epidemiological
stabilisation was mostly identified, but to a large extent it was partial. For three more
weeks the situation was not clear. It was only from 14 June that the situation began to
stabilise. It should be noted that in Germany, France and Italy the transition from stabilised
to destabilised was faster than the other way around.

In Spain, the situation was more complicated. On 16 March 2020 there was a sharp
decline in the degree of membership. However, from 12 March a slight decrease in the
values of membership degrees was already observed. After about a week, Spain went into
a destabilised state. After another week, the expansion of the epidemiological situation
already dominated and was identified until 13 April 2020. From 14 April a partial state
of destabilisation began to manifest itself, which after a week was already quite intense
(membership degrees above 0.7). After another week (27 April 2020), there was a one-day
breakdown, followed by a state of destabilisation for the next 19 days. From 17 May 2020
the situation began to stabilise for nine days. This was clear until the end of the period
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analysed, excluding 16 June 2020, where the degrees of membership to the states were
similar (approximately 0.3).
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Figure 2. Epidemic states in selected European countries from 4 March to 24 June 2020. Note: The
ordinate axis shows the membership degrees of a country for states of the epidemic. Source: own
elaboration based on statistical data from [44].

Some countries displayed a stable state throughout the study period. These include
Poland, the Czech Republic, and Slovakia. However, Greece was dominated by one epi-
demiological state—stabilization, but sometimes it was only partial (degrees of membership
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less than 0.5). This was especially visible in two-week intervals, from 7 to 21 April, from 5
to 19 May and from 22 May to 2 June at intervals of two to four days.

However, in the latter two countries, a less stable dominant state, as well as small
periodic fluctuations were observed. Additionally, Figures 3 and 4 show the values of the
COVID-19 cases and present deaths per 100,000 population.
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Figure 3. COVID-19 cases per 100,000 population in selected European countries from 4 March to
24 June 2020. Source: own elaboration based on statistical data from [44].
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Figure 4. COVID-19 deaths per 100,000 population in selected European countries from 4 March to
24 June 2020. Source: own elaboration based on statistical data from [44].

Table 2 presents the affiliation of countries to specific states in three crucial periods:
4 March 2020 (the start of the epidemic in Poland), 15 April 2020, and 24 June 2020. The
study identified three main epidemic states in the European countries defined as follows:
stabilization, destabilization, and expansion of COVID-19. A state was defined as partial,
provided that the highest membership degree of the country was less than 0.5. The degree of
membership determines the strength with which a country belongs to a particular epidemic
state. The higher the degree of membership, the more strongly the country is characterised
by the variables of a given state. The typology of states was conducted using the average
values of variables for epidemic states identified in European countries (Table 3).
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Table 2. Pandemic states in European countries in crucial study periods.

Date States Types of State (1) Countries (2)

4 March 2020

1 destabilisation not identified

2 expansion not identified

3 stabilisation

France (0.98) (3), Austria (0.97), Belarus (0.97), Belgium (0.97), Croatia
(0.97), Czechia (0.97), Denmark (0.97), Estonia (0.97), Finland (0.97),

Germany (0.97), Iceland (0.97), Ireland (0.97), Italy (0.97), Netherlands
(0.97), Norway (0.97), Poland (0.97), Portugal (0.97), Romania (0.97),

Russia (0.97), Spain (0.97), Sweden (0.97), Switzerland (0.97), Ukraine
(0.97), United Kingdom (0.97), San Marino (0.84)

15 April 2020

1
destabilisation

Germany (0.89), Netherlands (0.89), Switzerland (0.87), Portugal (0.8),
Sweden (0.76), Italy (0.69), France (0.63), Denmark (0.62), Norway

(0.59), Czechia (0.51)

partial destabilisation United Kingdom (0.48), Iceland (0.46), Luxembourg (0.43)

2
expansion Ireland (0.70), San Marino (0.57),

partial expansion Belgium (0.49), Spain (0.46)

3 stabilisation

Armenia (1.00), Kosovo (0.99), Russia (0.99), Slovakia (0.99), Ukraine
(0.99), Bosnia and Herzegovina (0.99), Georgia (0.98), Lithuania (0.98),
Latvia (0.98), Poland (0.96), Greece (0.94), Liechtenstein (0.94), Finland
(0.92), Belarus (0.9), Malta (0.88), Bulgaria (0.87), Albania (0.82), Cyprus
(0.81), Romania (0.79), Slovenia (0.79), Croatia (0.77), Moldova (0.77),

Montenegro (0.72), Monaco (0.63), Serbia (0.63), Austria (0.62),
Hungary (0.61), Estonia (0.54), North Macedonia (0.53),

24 June 2020

1
destabilisation Moldova (0.65), North Macedonia (0.65), Sweden (0.51), Belarus (0.51)

partial destabilisation Ireland (0.48), Russia (0.48), Lithuania (0.47)

2 expansion Armenia (0.85)

3 stabilisation

Belgium (1.00), Czechia (1.00), Denmark (1.00), Germany (1.00),
Bulgaria (0.99), Serbia (0.99), Spain (0.99), Albania (0.98), Bosnia and

Herzegovina (0.98), Croatia (0.98), Cyprus (0.98), Estonia (0.98), Finland
(0.98), Georgia (0.98), Greece (0.98), Iceland (0.98), Luxembourg (0.98),
Malta (0.98), Monaco (0.98), Montenegro (0.98), Norway (0.98), Poland
(0.98), Switzerland (0.98), Ukraine (0.98), Hungary (0.97), Latvia (0.97),

Liechtenstein (0.97), Slovakia (0.97), San Marino (0.96), Netherlands
(0.94), Romania (0.93), Austria (0.90), Portugal (0.85), France (0.84),
United Kingdom (0.80), Kosovo (0.76), Italy (0.72), Slovenia (0.72)

Note: (1) A type of state was defined as partial, provided that the highest membership degree of the country to
a specific state amounted to less than 0.5. The research also included: Armenia, Kosovo, Georgia and Cyprus.
(2) Countries reporting COVID-19 in a particular period. (3) The highest membership degree of a country to the
specific state. The calculations were performed with the fclust package [68] in R. Source: own elaboration based
on statistical data from [44].

Table 3. The average values of variables for epidemic states identified in European countries (average
values for fuzzy classes).

Specification
Variables

x1 x2 x3 x4

State 1 5.66 0.39 13.55 76.73
State 2 13.70 0.67 14.23 183.62
State 3 1.57 0.06 3.65 19.64

Mean 3.04 0.16 6.07 39.80
Source: own elaboration based on statistical data from [44].

The analysis of the variable values in the period examined made it possible to identify
three epidemic states in Europe. The first state was defined as a total or partial destabilisa-
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tion. Such a nomenclature was influenced by high values of the indicators. Each of these
exceeded the average for Europe as a whole. The number of COVID-19 cases amounted
to 5.66 per 100,000 population, with the average for European countries close to 3. It
should be noted that there were almost 4 COVID-19 deaths per 1 million population, which
represented more than 13.5% of the total COVID-19 cases (%). Simultaneously, the active
number of cases within the destabilisation state amounted to nearly 77 COVID-19 cases
per 100,000 population. This state constitutes a threat to countries’ economies; however,
the level of variables associated with infections and deaths allows for a certain limited
functioning of economies.

We called the second state expansion, which constitutes an escalation of the phe-
nomena, noticeable in various intensities. The indicators for state 2 assume significantly
worse values than for state 1. The state of expansion was characterised by more than
twice as many COVID-19 cases than the state of destabilisation. In the state of coronavirus
expansion, the number of active cases increased rapidly, amounting to over 183 COVID-19
cases per 100,000 population. The values of indicators enabled the formulation of a the-
sis assuming that the situation threatens the country’s stability. They also comprise the
basis for social and economic restrictions, resulting in a loss of economic security in the
micro- and macro-economic dimensions. Such a state should constitute a premise for a
complete or significant closure of the economy to prevent a further uncontrolled expansion
of the disease.

In state 3—stabilisation—the values of the indicators were below the European average.
The number of COVID-19 cases amounted to 1.57 per 100,000 population, while deaths
were at 1 person in over a million. The number of active cases was therefore low (19.64 per
100,000 population), with the European average at 39.8. State 3 does not pose a significant
threat to national economies. It appears to constitute a premise for complying with certain
hygiene and safety standards, such as the use of masks, hand-washing, and refraining
from shaking hands; however, it should not result in a freeze of the national economies.
Unfortunately, the absence of recognition of the disease’s effects caused many countries to
introduce lockdowns at this level, which resulted in their economic destabilisation.

Figure 5 shows values of the normalised entropy index in selected European countries.
A high value of the entropy index was revealed for Italy (0.653). This proves the high
uncertainty of the epidemiological situation in the period analysed. A slightly lower value
of the entropy index was identified for France (0.537) and Spain (0.510). A very low entropy
index value and, at the same time, the most stable epidemiological situation was observed
in Poland (0.084). In even greater detail, the uncertainty in the epidemiological situation of
countries is shown in the daily entropy index (Figure 6). The results showed that a period
of low entropy in countries primarily matches the epidemiological state of stabilisation.
This situation was observed especially in Poland (during almost the entire period analysed),
Czechia, and Slovakia (from March to until around mid-April and from the end of May
to June).
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Figure 5. Values of normalised entropy index in selected European countries. Source: own elaboration
based on statistical data from [44].
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Figure 6. Changes in daily entropy index in selected European countries from 4 March to 24 June 2020.
Source: own elaboration based on statistical data from [44].

After COVID-19 cases and deaths increased, the entropy was heightened. This shows
a destabilisation of the epidemiological situation in Germany, France, Italy, and Spain
during almost the entire period considered. In Germany, France, and Italy, during the
period studied, there was a transition from a stabilization state (with fewer COVID-19 cases
and deaths) to destablilization (with a sharp increase in COVID-19 cases and deaths) and



Entropy 2022, 24, 14 13 of 18

back to a stabilization state (Figure 2). In Spain, the situation was similar, but the state of
expansion was also partially identified. Moreover, since the end of May, when the number
of COVID-19 cases and deaths was lower, the stabilization state was identified (Figure 2),
and the daily entropy index was predominantly at a very low level (Figure 6).

In Greece, the situation was quite different. In this case entropy measure describes
the high degree of chaoticity. Although the epidemiological state in the country was
mainly identified as stabilization (Figure 2), and the entropy index is quite low—0.243
(Figure 5), the daily entropy shows great variability. This demonstrates the instability of
the epidemiological state, despite the country keeping closer to the state of stabilization.

4. Discussion

Some studies use models (e.g., the recursive bifurcation model) to describe the infection
processes as first- and second-order phase transitions. Such approaches make it possible to
show two states, i.e., “the possibility of the population returning to a state with a low level
of cases or the epidemic returning” [35]. The advantage of our approach is that more than
two states of the epidemic can be revealed. In addition, the proposed fuzzy technique also
makes it possible to observe the fluctuations and transition times from one state to another.
Variability of states shows the intensity of the process and the hidden diversity in phases of
the pandemic.

Moreover, the idea of the proposed fuzzy clustering approach proposed is based on
more complex mathematical modelling then in the case of traditional clustering. Important
in this approach is the concept of partial membership of a country in more than one class
(state). Each country can belong to more than one epidemic state at the same time, but one
state a day tends to predominate. The transition from membership to non-membership is
gradual. An abrupt transition from one state to another is less common. This relates to
the fuzziness of the degree of membership, because “the essence of fuzzy clustering is to
consider not only the belonging status to the clusters, but also to consider to what degree
do the objects belong to the clusters” [43].

Mahmoudi et al. [40] compared and clustered selected countries using the fuzzy
clustering approach. This work describes the distributions of the spread of COVID-19. They
also state that “to determine the policies and plans, the study of the relations between the
distributions of the spread of this virus in other countries is critical”. Although our research
differs, we agree with this statement. It should be emphasised that our research brings a
new quality by proposing a fuzzy classification approach to the study of epidemic states in
European countries. This approach makes it possible to identify states of pandemic and
define the time of transition from one state to another. Our manuscript presents research
on the situation of selected European countries, but the research has been conducted
for all other countries for which data were available. Our research complements other
studies around the world. It outlines the most important background aspects on the
epidemiological situation and changes in European countries.

D’Urso et al. [69] used spatial robust fuzzy clustering to identify a clustering structure
for the 20 Italian regions according to the main variables related to the COVID-19 pandemic.
The exponential distance-based fuzzy c-medoids clustering algorithm based on B-splines
with a spatial penalty term was applied to the clustering of time series. Although a different
fuzzy approach was used and objects at the regional level were studied, three clusters were
identified, similar to our study at the European country level. D’Urso et al. [69] obtained
“on the entire period almost the same partition”. Our research showed that the variability
of epidemic states differed depending on the country. According to our research, in Italy,
epidemic states fluctuated even in the initial months of the epidemic.

We should also mention interesting research carried out by Afzal et al. [70]. They
used c-means and fuzzy c-means algorithms for partitioning COVID-19 data. Their results
focused mainly on the comparison of the optimum cluster size obtained using both methods.
They stated that “the clustering of COVID-19 data from the available data revealed that
there were five optimal clusters based on the location and the cases observed so far”, but
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that “the three main COVID-19 clusters have been identified”. The main number of clusters
is therefore in line with our research, although the characteristics of the classes are different
and, in our case, more detailed and specific. In our opinion our research allows for a more
complex analysis.

Moreover, Ghanbari et al. [71] mentioned that “entropy is related to the missing
information on the concrete state of a system and it shows a measure of the disorder of a
system”. In that sense we point out that entropy of fuzzy classification can be an effective
measure for assessment of an epidemiological situation in a country because it can express
a grade of uncertainty (or sometimes stability) of the situation as a single number per day
or in a given time period.

It should be emphasised that our research can be extended to include other elements.
The research is ongoing and in our opinion, it is interesting to find a connection between
studies from the initial pandemic period, which we present in this manuscript, and further
studies covering the later phases of the pandemic (e.g., from an annual perspective) and
other types of research during the COVID-19 pandemic.

5. Conclusions

The study attempted to identify of the COVID-19 epidemic states in European coun-
tries. During the period studied, epidemic states and their changes in Poland and other
European countries were therefore identified. The fuzzy c-means clustering method al-
lowed us to identify countries’ epidemic states. This approach also made it possible to
determine the time of transition from one state to another, as well as to observe fluctuations
during changes of state. The innovation is the application of fuzzy clusters, which are more
appropriate for the characteristics of the variability epidemic states because they avoid a
binary split between membership and non-membership.

With this work, we have demonstrated that the entropy analysis of fuzzy classification
can contain relevant information concerning the epidemiological states of COVID-19.
We demonstrated that the entropy measure of classification can be used to detect the
grade of uncertainty in countries’ epidemiological situations. The greater value of the
entropy index for a country, the more equal the degrees of membership and, consequently,
epidemiological states are less unrecognized (i.e., no one state predominates); the smaller
the entropy, the more pronounced is one state. It proved possible to positively verify the
paper’s research hypothesis, which stated that the epidemiological situation in Poland
from 4 March to 24 June 2020 was stable compared to the other European countries. Three
COVID-19 epidemic states were identified in Europe, i.e., stabilisation, destabilisation,
and expansion. Our research revealed that one state, defined as stability, dominated the
period studied in Poland. The Czech Republic and Slovakia displayed a similar state;
however, they had greater fluctuations in the values of the indicators analysed during
the same period. Additionally, we also propose a simple way of visualising the countries’
epidemic trajectories in order to enable trend observation and easy comparison. The graphic
representation allows for day-by-day monitoring of the epidemic state and its changes.

The message of this research is also that the new public policies currently being
introduced have positive but insufficient effects on preventing the spread of COVID-19, and
increasing their effectiveness is a must. Hence, the search for new solutions through various
types of analysis and research paths concerning the assessment of the epidemiological
situation of countries, including changes in their states and dynamics, is very important.
Quickly recognising not only states but also the timing of changes from one state to another
is extremely important in regard to the authorities’ possible reactions. Producers and
consumers alike react to these changes, trying to adapt to them to a certain extent. The
accurate identification of any dependencies will, in the future, allow faster responses to
threats at an earlier stage.

We believe that research into the epidemiological situation in countries is important in
order to understand the trajectory of the COVID-19 pandemic. We believe that scientific
analysis and understanding of the various changes in the COVID-19 pandemic can help
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society better prepare for future outbreaks and support informed decision making in light
of societal values. In addition, it should be added that the research results are important
for governments, politicians, and other decision-makers who are involved in the process of
preventing and reducing the effects of the COVID-19 pandemic.

6. Recommendations

The research results can be useful in deepening the understanding of the phenomenon
of the COVID-19 pandemic. Above all, the research is significant in illustrating the links
between theory and practice in terms of the study of the epidemiological situation in
countries. Understanding states of COVID-19 as well as their evolution is of paramount
importance for controlling and preventing this disease, and also mitigating the devastating
effects of the pandemic. They can therefore be useful in diagnosing and solving real
problems, and thus will be useful for decision-makers and politicians involved in the
process of developing and implementing COVID-19 prevention policies. Undoubtedly, our
research may be useful because it allows us to classify certain groups of countries, to which
aid as well as tools for counteracting unfavourable circumstances within the economy and
society can, to a greater extent, be standardised. The research makes it possible to get to
know the essence of the phenomenon and, as a result, create strategies to prevent threats
from occurring or, at the very least, mitigate their effects in the future.

The research concerned European countries, but the results may also be useful for
other countries. It is emphasised that the results of this research are based on the state
of the COVID-19 pandemic in European countries during its first months, but we are
also convinced that the results of this study can be useful for further research during its
future phases.
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