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Abstract: Interaction between variables is often found in statistical models, and it is usually expressed
in the model as an additional term when the variables are numeric. However, when the variables
are categorical (also known as nominal or qualitative) or mixed numerical-categorical, defining,
detecting, and measuring interactions is not a simple task. In this work, based on an entropy-
based correlation measure for n nominal variables (named as Multivariate Symmetrical Uncertainty
(MSU)), we propose a formal and broader definition for the interaction of the variables. Two series of
experiments are presented. In the first series, we observe that datasets where some record types or
combinations of categories are absent, forming patterns of records, which often display interactions
among their attributes. In the second series, the interaction/non-interaction behavior of a regression
model (entirely built on continuous variables) gets successfully replicated under a discretized version
of the dataset. It is shown that there is an interaction-wise correspondence between the continuous
and the discretized versions of the dataset. Hence, we demonstrate that the proposed definition of
interaction enabled by the MSU is a valuable tool for detecting and measuring interactions within
linear and non-linear models.

Keywords: interaction; intrinsic interaction; categorical data; patterned data; multivariable correla-
tion; gain in multiple correlation; multivariate symmetrical uncertainty

1. Introduction

Correlation measures started early in the history of Statistical Science. Given two
numeric variables X and Y, Pearson proposed a linear correlation based on covariance and
the standard deviations of X and Y [1]. Spearman employed the same way of computation
using the ranks of X and Y instead of their values and obtained a measure that is robust in
the presence of outliers [2]. These initial measures dealt with a linear correlation between
two variables, but a drawback is that they are limited to a pair of variables.

Multiple Correlation. In the multivariate world, many of the observed phenomena
require a nonlinear model, and hence, a good measure of correlation should be able
to detect both linear and nonlinear correlations. The so-called Coefficient of Multiple
Correlation R2 is computed in multiple regression from the square matrix Rxx formed by
all the paired correlations between variables [3]. It measures how well a given variable can
be predicted using a linear function of the set of the other variables. In effect, R measures
the linear correlation between the observed and the predicted values of the target attribute
or response Y.

Seeking to achieve a nonlinear correlation measure for numeric variables, Viole and
Nawrocki’s approach [4] builds a piecewise-linear relationship on each pair of dimensions,
obtaining a non-linear correlation along with an indicator of dependence. For categorical
variables, it is not so common to find a multiple correlation measure; we mention the one
proposed by Colignatus [5], which is based on contingency tables and determinants.
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In the Information Theory approach, several information measures have been intro-
duced to analyze multivariate dependencies [6–13].

These multivariate information measures have been applied in fields such as physical
systems [14], biological systems [15], medical data analysis [16], and neuroscience [17].
Such measures have also been applied to feature selection in order to understand how a
single feature can be considered irrelevant when treated as an independent feature, but it
may become a relevant feature when combined with other features through its unique and
synergistic contribution [18,19].

Carrying the work forward with information theory, the symmetrical uncertainty
(SU) was introduced by Arias et al. [20] based on comparison of entropies. As a natural
extension, the authors of the present article have proposed the Multivariate Symmetrical
Uncertainty (MSU) [18,21,22]. Both SU and MSU offer the advantage that their values
range from 0 to 1, thus saving us from negative correlation values that would have no
simple interpretation in the multivariate case. In addition, MSU values naturally allow the
formation of groups of correlated variables, which is useful in feature selection tasks.

In feature selection, correlation has been associated with similarity and redundancy,
and along with relevancy, these are the concepts most studied and analyzed [23–25].
However, in recent works, new concepts, such as synergy [26], interaction [16] and com-
plementarity [27], are being studied to understand the various relationship types among
features. In this context, for categorical variables, the terms correlation and interaction
have been used interchangeably for some time, as in [6,7].

It is important to note that multivariate situations presenting categorical variables or a
mix of categorical and numerical variables have been studied within specific areas, such as
the processing of mix-type data and categorical data clustering [28–30]. However, these
tools are applicable to observation points, whereas statistical interaction occurs between
variables in any given dataset. We may see MSU or any multiple correlation measure as
a tool that works in the space of random variables as opposed to the space of individual
observation points.

Interaction. Consider a pure multivariate linear regression model of a continuous
random variable Y explained by a set of continuous variables X1, X2, . . . , Xn. From here
on, we adopt statistical usage whereby capital letters refer to random variables and the
corresponding small case letters refer to particular values or outcomes observed. Each
outcome yi is modeled as a linear combination of the observed variable values [31],

yi = b0 + b1x1i + b2x2i + . . . + bnxni (1)

where bi is a real number. Sometimes, an additional complexity may appear, where yi is
also dependent on the product of two or more of the variables; for example, bjkxjixki, where
1 ≤ j ≤ k ≤ n. In statistics, this extra term is called an interaction term, and it expresses
how the values of xji and xki work together to determine yi. An interaction term is usually
the product of two or more variables, but it could also involve logs or other nonlinear
functions.

The above description allows to operationalize the estimation of an interaction term
in statistical regression and analysis of variance. However, a formal definition is necessary
for the concept of statistical interaction that could possibly cover the case of categorical
random variables as well.

Joint simultaneous participation of two or more variables that determine the value of
a response can also be found in the world of categorical variables. A variable X1 that seems
irrelevant when taken in isolation with a response Y may be jointly relevant to that response
when considered with another variable X2; this is notably exemplified in the XOR behavior
described in [22]. This is a manifestation of the interactions between categorical variables.
To determine the statistical relevance of a feature with respect to a response variable,
we need a suitable correlation measure for categorical variables. The detection of n-way
interactions will become easier if the measure can also assess multivariate correlations
within groups of 3, 4, or more variables, as will be shown in the following sections.
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The main objective of this work is to achieve a formal definition of interaction in the
statistical sense, applicable to both continuous and categorical variable models. In our first
series of experiments, we discover that datasets in the form of patterns of records actually
produce MSU correlation values lying within a subinterval of [0, 1], depending on the
particular sample obtained. Thus, in this work, we use the MSU measure of correlation
because its computation scheme lends itself to finding the subinterval of correlation values
by simulating frequency histograms of the pattern records on a spreadsheet. We will see
that for each given pattern, these values play a role in the size of interaction.

Consider two sets of variables A and C, where A ⊂ C. If MSU(A) < MSU(C), the
added variables coming from C strengthen the dependency within the group, and we can
see this strengthening as a positive interaction between variables in A and variables in
C −A. In the second series of experiments, we put to the test this “cohesion boost” view of
interaction in the context of classical statistical regression.

Testing the statistical significance of a categorical variable interaction by analyzing
the focal predictor’s effect on the dependent variable separately for each category is
common in psychological research for moderation hypotheses [32]. Thus, interaction
between explanatory variables also has a crucial role across different kinds of problems
in data mining, such as attribute construction, coping with small disjuncts, induction
of first-order logic rules, detection of Simpson’s paradox, and finding several types of
interesting rules [33].

Contributions. The main contribution of this paper is that it proposes a formalization
of the concept of interaction for both continuous and categorical responses. Interaction is
often found in Multiple Linear Regression [31] and Analysis of Variance models [34], and
it is described as a departure from the linearity of effect in each variable. However, for an
all-categorical-variables context, there is no definition of interaction. This work proposes
a definition that is facilitated by the MSU measure and shows that it is suitable for both
types of variables. The detection and quantification of interactions in any group of features
of a categorical dataset is the second aim of the work.

The article begins by presenting a multivariate situation, introducing the concepts
of patterned datasets and interactions, both among continuous and categorical random
variables, in Section 2. Synthetic databases are then used in Section 3 to study interaction in
a patterned dataset, measured as a change in the MSU value when increasing the number
of variables from j to j + 1. This experimentation allows us to propose a formal definition
of interaction and how to measure it for categorical patterned data at the end of this section.
In Section 4, two regression problems are presented to compare: a continuous case without
interaction vs. its discretized version, and similarly, a continuous case with interaction
vs. its discretized version. The appropriateness of the proposed definitions is indicated
by the correspondence of computed interaction results with the coefficients estimated by
the regression tool. Section 5 discusses how a linear model without significant interac-
tion impacts a small minimum instrinsic interaction value on its discretized counterpart.
Conclusions and future work are presented in Section 6.

2. Patterned Records and the Detection of Interactions

Let D be a population of records, each being an observation of n categorical variables
X1, . . . , Xn. Assume no missing values in the dataset. These variables have cardinalities
c(X1), . . . , c(Xn), each representing the number of possible categories or values in the
attributes. The variety of records that may be sampled from D is given by

V =
n

∏
i=1

c(Xi) (2)

corresponding to the number of different n-tuples that can be formed by combining cate-
gories in the given order.
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Without the loss of generality, we assume that each row of the dataset is a record full
of value; that is, no column has an empty or missing value. Hence, it is always possible to
impute a value where necessary, according to a procedure of our choosing.

In practice, the V different types of records are not always present or do not even exist
at the time a sample is taken from the field. This sort of natural incompleteness in certain
datasets brings us to the notion of patterns, defined as follows.

Definition 1. An n-way pattern P is any proper subset of unique n-tuples taken from D.

Definition 2. We say that a sample S taken from D is patterned after P if every record in S can
be found in P .

The size of the sample need not be fixed, and a given record may appear one or
more times in the sample. That is, a sample may contain repeated records, for instance,
when two or more individuals happen to have the same attribute values for the variables
being considered.

Example 1. Figure 1 shows a population with 3 attributes, age, sex, and car make, which are
assumed to have been recorded as a finite dataset. Four of the records exemplify a pattern. Of the
many different possible samples, the 6-record sample in the figure happens to follow this pattern.

Figure 1. Dataset, pattern, and sample in a 3-variable example. The dataset (or population) may
contain many records, of which only a sample is actually collected. Pattern is the name given to the
set of distinct records in the sample.

By focusing attention on a certain pattern P , we can study the behavior of correlations
across the many samples that follow P . For that purpose, we use the Multivariate Symmet-
rical Uncertainty (MSU) to measure correlations in samples of categorical variables. MSU is
a recently developed entropy-based correlation measure formally presented in [18]. For the
reader’s convenience, we recall here the definition of MSU as well as its main properties
we are going to need.

Definition of MSU. Let Xi be a categorical (discrete) random variable with cardinality
c(Xi) ∈ N, and possible values xij with j = {1, . . . , c(Xi)}. Let P(Xi) be its probability
mass function. The entropy H of the individual variable Xi is a measure of the uncertainty
in predicting the value of Xi and is defined as:

H(Xi) := −∑
j

P(xij) log2(P(xij)), (3)
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where P(xij) is the prior probability of the value xij of Xi. This can be expressed in a simpler
manner as

H(Xi) := −∑
xi

P(xi) log2(P(xi)). (4)

where, as indicated in the Introduction, the small case xi represents the observed values
of Xi. H(Xi) can also be interpreted as a measure of the amount of information a discrete
random variable Xi produces or the variety inherent to Xi [35].

Given a set of n random variables X1, . . . , Xn with a joint probability mass function
P(x1, . . . , xn), their joint entropy is defined as [21]

H(X1, . . . , Xn) = H(X1:n) := −∑
x1

. . . ∑
xn

P(x1, ..., xn) log2[P(x1, . . . , xn)] (5)

The Multivariate Symmetrical Uncertainty is then defined as follows:

MSU(X1:n) :=
n

n− 1

[
1− H(X1:n)

∑n
i=1 H(Xi)

]
. (6)

That is, the joint entropy (5) is compared with the sum of individual entropies (4) by
way of a ratio. This measure of correlation and its properties were presented in [21]. Some
key properties are:

(a) The MSU values are in the unit range, MSU(X1:n) ∈ [0, 1];
(b) Higher values in the measure correspond to higher correlation among variables, i.e., a

value of 0 implies that all variables are independent while a value of 1 corresponds to
a perfect correlation among variables; and

(c) MSU detects linear and non-linear correlations between any mix of categorical and/or
discretized numerical variables.

We perform most of our MSU calculations on a spreadsheet for easier handling and
better understanding of the pattern’s behavior.

Interaction among continuous variables. Let us begin with a two-variable example.
Consider the regression model

y = b0 + b1x1 + b2x2 + b12x1x2 (7)

where b0, b1, b2, and b12 are parameters to be estimated using the sample data. If b12 = 0,
we have a linear model, with additive effects from x1 and x2. If b12 differs from 0 (with
significance testable via p-values in the regression summary output), we say that there
is interaction among the three variables. With a nonzero interaction term, the individual
contributions of x1 and x2 are still present, but obtaining the predicted y value also depends
on a nonlinear function of both of them—in this case, their product x1x2.

Naturally, models with interaction may have more than two independent variables
and possibly more than one interaction term. Each interaction term may have other types of
nonlinear functions, containing, for instance, powers or logs of the independent variables.

To sum up, regression models, such as Equation (7), and analysis of variance models
with continuous responses, include a coefficient indicating the strength of association
between each variable or combination and the response. This allows detecting interaction
if it is postulated as part of the model.

Interaction among categorical variables. Categorical or nominal features are also
employed to build various types of multivariate models with a categorical response. Es-
tablished modeling techniques include, for example, Categorical Principal Components
Analysis, Multiple Correspondence Analysis, and Multiple Factor Analysis [36]. In this
realm, we can measure the strength of association between two, three, or more categorical
variables by means of both MSU and the study of patterns’ behavior; this will, in turn,
allow us to detect interactions.
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3. Simulations Using Patterns

Given a pattern P of records, the simplest sample patterned after P is the one having
each category combination appearing just once (single-frequency sample). However, it is
also possible to obtain samples with different frequencies on each category. Since MSU
estimations from samples are based on the actual frequencies found, each of these different
samples will have a specific MSU estimate.

This section reports simulation experiments performed on records patterned after
well-known logic gates (also known as truth tables). There is no reason for choosing
logic gates other than their simplicity, which may help uncover specific characteristics of
the interaction behavior. Simulations seek to gain insight on the sensitivity of our MSU
multiple correlation estimate under a variety of sampling scenarios. Later in the paper we
will present patterns induced by “real-life” data collected as continuous variables.

3.1. Three-Way XOR

The three-way Exclusive OR pattern contains four distinct records. Assuming that the
four record types are equally likely (probability 0.25 on each record), its resulting MSU is
just 0.5.

However, samples with more than four records also allow unequal likelihoods, and we ob-
serve that the computed sample MSU increases. Intuitively, this happens because some combina-
tions of A and B co-occur with their respective C values more frequently than other combinations,
inducing more correlation. For example, the probability vector (0.25; 1× 10−80; 1× 10−80; 0.75)
gives an MSU of 0.75. Table 1 shows both calculation scenarios.

Table 1. MSU values of 3-way XOR: minimum of 0.5 and maximum of 0.75. Here C = A
⊕

B where⊕
represents the XOR operation.

3-way collective 3-way ABC 1-way A 1-way B 1-way C

A B C X P(X)

P(X)

logP(X)

P(X)

logP(X)

P(X)

logP(X)

P(X)

logP(X)
0 0 0 000 0.25 −0.5

0 1 1 011 0.25 −0.5 −0.5 −0.5 −0.5

1 0 1 101 0.25 −0.5

1 1 0 110 0.25 −0.5 −0.5 −0.5 −0.5

H(X) 2 1 1 1
MSU 0.5
3-way collective 3-way ABC 1-way A 1-way B 1-way C

A B C X P(X)

P(X)

logP(X)

P(X)

logP(X)

P(X)

logP(X)

P(X)

logP(X)
0 0 0 000 0.25 −0.5

0 1 1 011 1.00 × 10−80 −2.66 × 10−78 −0.5 −0.31 −5.30 × 10−78

1 0 1 101 1.00 × 10−80 −2.66 × 10−78

1 1 0 110 0.75 −0.311 −0.311 −0.5 0.

H(X) 0.811 0.811 0.811 5.30 × 10−78

MSU 0.75

Every simulation run amounts to computing the value of function MSU based on
k probability or frequency values, where k is the number of rows in the pattern under
consideration. In the three-way XOR, we have k = 4. By varying some or all of the k values
in the column of frequencies P(X), the MSU value is modified; we want to find the k
probabilities P(X) that produce the minimum and the maximum MSU values.

3.2. Four-Way XOR

The four-way Exclusive OR pattern contains eight distinct records. If the eight of them
are equally likely, the MSU for the plain pattern (three-variables plus the XOR column) is
exactly 1/3.
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Again, samples of more than eight cases allow unequal likelihoods, increasing the
MSU of the sample. With seven very small P(X) values and one large P(X), we observe a
maximum four-way MSU value of almost 0.75.

Table 2 shows both calculation scenarios.

Table 2. MSU values of the 4-way XOR with a minimum of 1/3 and a maximum of 0.746. Here
D = A

⊕
B
⊕

C.

4-Way Collective 4-Way ABCD 1-Way A 1-Way B 1-Way C 1-Way D

A B C D X P(X)

P(X)

logP(X)

P(X)

logP(X)

P(X)

logP(X)

P(X)

logP(X)

P(X)

logP(X)

0 0 0 0 0000 0.125 −0.375

0 0 1 1 0011 0.125 −0.375

0 1 0 1 0101 0.125 −0.375

0 1 1 0 0110 0.125 −0.375 −0.5 −0.5 −0.5 −0.5

1 0 0 1 1001 0.125 −0.375

1 0 1 0 1010 0.125 −0.375

1 1 0 0 1100 0.125 −0.375

1 1 1 1 1111 0.125 −0.375 −0.5 −0.5 −0.5 −0.5

H(X) 3 1 1 1 1
MSU 0.333

A B C D X P(X)

P(X)

logP(X)

P(X)

logP(X)

P(X)

logP(X)

P(X)

logP(X)

P(X)

logP(X)

0 0 0 0 0000 1.000 0.000

0 0 1 1 0011 1.00 × 10−80 −2.66 × 10−78

0 1 0 1 0101 1.00 × 10−80 −2.66 × 10−78

0 1 1 0 0110 1.00 × 10−80 −2.66 × 10−78 0.0 0.0 0.0 0.0

1 0 0 1 1001 1.00 × 10−80 −2.66 × 10−78

1 0 1 0 1010 1.00 × 10−80 −2.66 × 10−78

1 1 0 0 1100 1.00 × 10−80 −2.66 × 10−78

1 1 1 1 1111 1.00 × 10−80 −2.66 × 10−78 −1.06 × 10−77 −1.06 × 10−77 −1.06 × 10−77 −1.06 × 10−77

H(X) −1.86 × 10−77 −1.06 × 10−77 −1.06 × 10−77 −1.06 × 10−77 −1.06 × 10−77

MSU 0.746

3.3. Four-Way AND

In the four-way AND pattern, the three variables A, B and C must be True (one of
eight cases) in order for AND to be true. The other seven cases give a False on the AND
column; so, nearly regardless of the combination of values, AND is false. That is, the
correlation is weak.

With eight equally likely records, the MSU for the plain pattern (three-variable plus
the AND function) is 0.2045.

With unequal likelihoods, the sample MSU increases again. The maximum MSU is 1
when P(X) is (0.2; 1× 10−80; . . . ; 1× 10−80; 0.8) or any permutation thereof.

See Table 3 displaying the computation for equally likely records.
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Table 3. MSU values of the 4-way AND show a minimum of 0.2045 and a maximum of 1. Here,
D = A ∧ B ∧ C.

4-Way Collective 4-Way ABCD 1-Way A 1-Way B 1-Way C 1-Way D

A B C D X P(X)

P(X)

logP(X)

P(X)

logP(X)

P(X)

logP(X)

P(X)

logP(X)

P(X)

logP(X)

0 0 0 0 0000 0.125 −0.375

0 0 1 1 0011 0.125 −0.375

0 1 0 1 0101 0.125 −0.375

0 1 1 0 0110 0.125 −0.375 −0.5 −0.5 −0.5 −0.169

1 0 0 1 1001 0.125 −0.375

1 0 1 0 1010 0.125 −0.375

1 1 0 0 1100 0.125 −0.375

1 1 1 1 1111 0.125 −0.375 −0.5 −0.5 −0.5 −0.375

H(X) 3 1 1 1 0.544
MSU 0.205

From these examples, one might think that equiprobable sampling scenarios always
produce a minimum MSU value. However, this is not always true as two of the OR cases
in Table 4 and an example later on will demonstrate.

3.4. Further Simulations

Table 4 shows a number of similar experiments performed, using a variety of patterns
and variable cardinalities. Here is a comparison of the MSU behavior in the previous and
other specific patterns.

3.5. Discussion and Interpretation of Results

In multiple regression and analysis of variance with a numeric response, each term’s
coefficient gives an indication of the strength of association in the positive or negative
direction. For instance, in Equation (7), we say that there is interaction if the coefficient of
the (nonlinear) product term is different from 0.

When the response is categorical, the MSU correlation measure for each variable or
combination of variables indicates how strong an association is; hence, we can use MSU to
establish a parallel with the numeric responses. For example, in Table 4, the second OR
row has bivariate correlations of 0.344 for AC and BC, whereas the correlation for the ABC
combination is 0.433. It is reasonable for taking MSU as a basis for defining interactions
between categorical variables.

Definition 3. Let A, B, and C be any three categorical variables in a dataset. The gain in multiple
correlation obtained by adding B (or BC) to AC, forming ABC is defined as

G(AC, ABC) := MSU(ABC)−MSU(AC).

Referring to the above Table 4 and taking the second OR row as an example,

G(AC, ABC) = MSU(ABC)−MSU(AC) = 0.433− 0.344 = 0.089 (8)

is the gain in multiple correlation. Note that G also equals MSU(ABC)−MSU(BC). Let
us now define the interaction that can be found when one increases dimensionality (the
number of variables) of the dataset from j to k.
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Table 4. Comparative behavior of MSU for some patterns.

Name n c k Probab Distribution Partial MSU Values Global MSU

XOR

3 2 4 Equal likelohoods
MSU(AC) = 0

MSU(ABC) = 0.5
MSU(BC) = 0

3 2 4 0.25; 1.00 × 10−80; 1.00 × 10−80; 0.75
MSU(AC) = 0

MSU(ABC) = 0.75
MSU(BC) = 0

XOR

4 2 8 Equal likelihoods
MSU(AD) = 0

MSU(ABCD) = 0.333MSU(BD) = 0
MSU(CD) = 0

4 2 8 1; 1.00 × 10−80; 1.00 × 10−80; . . .
MSU(AD) = 0.371

MSU(ABCD) = 0.746MSU(BD) = 0.371
MSU(CD) = 0.371

AND
3 2 4 Equal likelihoods

MSU(AC) = 0.258
MSU(ABC) = 0.433

MSU(CD) = 0.258

3 2 4 0.25; 1.00 × 10−21; 1.00 × 10−21; 0.75
MSU(AC) = 0.75

MSU(ABC) = 1
MSU(CD) = 0.75

AND

4 2 8 Equal likelihoods
MSU(AD) = 0.179

MSU(ABCD) = 0.205MSU(BD) = 0.179
MSU(CD) = 0.179

4 2 8 0.2; 1.00 × 10−80; . . . ; 1.00 × 10−80; 0.8
MSU(AD) = 1

MSU(ABCD) = 1MSU(BD) = 1
MSU(CD) = 1

OR

3 2 4 1.00 × 10−21; 0.1; 1.00 × 10−21; 0.9
MSU(AC) = 0

MSU(ABC) = 0
MSU(BC) = 0.654

3 2 4 Equal likelihoods
MSU(AC) = 0.344

MSU(ABC) = 0.433
MSU(BC) = 0.344

3 2 4 0.4; 1.00 × 10−21; 1.00 × 10−21; 0.6
MSU(AC) = 1

MSU(ABC) = 1
MSU(BC) = 1

OR

4 2 8
1.00 × 10−80; 0.001; 0.001; MSU(AD) = 0

MSU(ABCD) = 0.0050.009; 0.01; 0.125; MSU(BD) = 0
0.125; 0.729 MSU(CD) = 0

4 2 8 Equal likelihoods
MSU(AD) = 0.179

MSU(ABCD) = 0.205MSU(BD) = 0.179
MSU(CD) = 0.179

4 2 8 0.2; 1.00 × 10−80; . . . ; 1.00 × 10−80; 0.8
MSU(AD) = 1

MSU(ABCD) = 1MSU(BD) = 1
MSU(CD) = 1

A ∧ notB
3 2 4 1.00 × 10−21; 0.25; 1.00 × 10−21; 0.75

MSU(AC) = 0
MSU(ABC) = 0

MSU(BC) = 0.654

3 2 4 1.00 × 10−21; 1.00 × 10−21; 0.1; 0.9
MSU(AC) = 0

MSU(ABC) = 0.75
MSU(BC) = 1

n = Number of attributes; c = Cardinality of each attribute (all of them equal c); k = Number of record configura-
tions in sample.

Definition 4. Consider a dataset D of n categorical random variables. Let A = {A1, . . . , Aj}
and C = {C1, . . . , Ck} be sets of variables in D, with 2 ≤ j < k ≤ n and A ⊂ C. We define the
interaction among variables in C on top of j variables as

minj G(A, C) = minj [MSU(C) −MSU(A)] = MSU(C) − maxj MSU(A).

Thus, the interaction on top of j variables is the smallest gain in the multiple correlation
found by adding to A the k − j variables of the complement C − A over all possible
j-element sets A ⊂ C.
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It can be seen that the reason to choose the smallest gain in multiple correlation is that
this lowest gain is achieved by finding the j-variable subset A that has maximum group
correlation.

Note that M = maxj MSU(A) is the largest known correlation of j variables included in
C. By adding k− j more variables, the resulting global correlation may be larger or smaller
than M. If larger, the interaction G(A, C) is positive; if smaller, the interaction is negative.

Example 2. Example: XOR revisited. Let X1, X2, and X3 be three variables in a XOR pattern of
equally likely records. For this pattern, j = 2, k = 3, A = {X1, X2}, and C = {X1, X2, X3}. The
interaction among the three variables in C from adding variable X3 to A is

minj G(A, C) = MSU(C)−max2 MSU(A) = 0.5− 0 = 0.5. (9)

In positive interaction, group correlation is strengthened by the added variables; in
negative interaction, group correlation is weakened. When modeling, we want to identify
groups of variables or factors that work in the same direction; hence, variables that bring
in a negative interaction would not usually be included in a group by a researcher.

Complexity of Interaction Calculation. The following approach is module-based.
In a dataset of r observation rows on n variables, let ci be the cardinality of the i-th
variable. The two sets being considered are C with k variables and A with j variables, such
that A ⊂ C.

The cost of obtaining MSU(C), where C is a k-variable subset of the n variables in the
dataset, has components of three types:

• Entropy of each attribute—For each attribute Xi, there are ci frequencies P(xi) and
ci logarithms log2(P(xi)), which are multiplied according to Equation (4), giving 3ci

operations. This is conducted k times, giving 3 ∑k
1 ci.

• Joint entropy of all k attributes—There are ∏k
1 ci combinations of values, and for each

one of them, the frequencies as well as their logarithms are calculated and multiplied
according to Equation (5), giving 3 ∏k

1 ci operations. This is conducted one time.
• msucost(C)—Using Equation (6), the costs of the numerator and the denominator are added,

followed by one division and one difference. This gives 3 ∑k
1 ci + 3 ∏k

1 ci + 2 operations.

For the cost of obtaining each of the MSU(A), we only need to consider that we have j
attributes instead of k. In order to obtain the maximum value of Definition 4, we assume
that the MSU values for all subsets A need evaluation. Therefore, the cost b of running the
algorithm is

b = msucost(C) +
(

k
j

)
·msucost(A)

= 3
k

∑
1

ci + 3
k

∏
1

ci + 2 +
(

k
j

)
· (3

j

∑
1

ci + 3
j

∏
1

ci + 2)

(10)

Since individual entropies are used over and over, each of them needs only be calcu-
lated once and then saved to a disk or temporary memory during the calculation. Thus,
the term 3 ∑

j
1 ci can be dropped, and we have

b = 3
k

∑
1

ci + 3
k

∏
1

ci + 2 +
(

k
j

)
· (3

j

∏
1

ci + 2) (11)

Thus, b depends on ci, the number of categories of each variable, and the relative sizes
of k and j. Often in statistics, k and j differ by only 1 as the researcher wants to know how
much interaction is due to adding one variable. The number of rows r in the dataset is
hidden within the ci since each P(xi) is computed as a category count divided by r. Further
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economies in the calculation effort may be achieved by organizing the joint entropies of the
A sets in a hierarchical fashion.

We know that the calculated values of MSU and of any interaction measure depend
on the specific sample obtained. Hence, when several samples are taken from the same
patterned dataset, MSU values may vary within the interval [0, 1]. Actually, the minimum
and maximum MSU values for each pattern as found through simulations (Table 4) indicate
that the sample MSU often ranges over a sub-interval of [0, 1]. A primary interest is the
minimum value that the MSU can attain, so we formally address this situation in the
following theorem, which is based on the numerator being smaller than the denominator
in the MSU formula (6).

Theorem 1. Consider a categorical patterned dataset such that the joint entropy of all n variables
is strictly less than the sum of their n individual entropies, and let M be the set of values attained
by the MSU measure. Then, the minimum value of M over all possible frequencies observable in the
pattern is a positive value ML > 0.

Proof. We refer to the proof of Lemma 4.3 in [18]. From the final line of that proof,

MSU(X1:n) ≥ E(R̂) > 0, (12)

where R̂ is the natural estimate of MSU obtained by the quotient between the estimate of
the numerator and the estimate of the denominator.

The Lemma also implies from its proof that the last inequality is strict as long
as H(X1:n) < ∑n

i=1 H(Xi), which is the initial condition in this Theorem. Therefore,
ML > 0.

The minimum value ML being strictly positive for a categorical pattern allows the
possibility of finding some interactions of a positive sign. Note that a non-patterned dataset
(where all category combinations are present) may also have a positive ML. However, as
patterned sets that satisfy the Theorem 1 condition are so common in the real world, it
is important to provide evidence that it is plausible to look for interactions in patterned
datasets where ML > 0.

Our simulation procedure in the previous four sections consisted of keeping a pat-
tern fixed and then running different sampling scenarios under that pattern. Through
this somewhat extreme choice of patterns, it is observed that every n-variable pattern is
characterized by a lower MSU bound ML and an upper MSU bound MU .

In practice, most of the time we only get to see one sample for each dataset, and from
this sample, we obtain a point estimation of G, the gain in multiple correlation. In general,
if further samples from the given pattern were available, G would have varied from one
sample to another. Although M in the above theorem can be seen as a continuous function
of k variables, where k is the number of rows in the pattern, an algebraic or calculus
procedure to find its global minimum and maximum may be cumbersome. However, with
some computing power, we can find ML and MU via simulation runs.

Definition 4 provides a simple way to compute the interaction due to increasing the
number of dimensions considered in a given sample. However, the interaction calculated
at ML may or may not also be the minimum of the interaction values. This distinction can
be expressed in the following

Definition 5. Consider a pattern P of n categorical variables, and let ML be the minimal value
of the MSU measure when considering all n variables. If the interaction calculated at ML is also
the minimum IL of all interaction values, we say that IL = ML is the intrinsic interaction due to
pattern P .

The difference MU −ML can be considered an additional correlation induced by the
variation in relative frequencies from configuration ML to configuration MU .
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4. Comparison with Interaction on Continuous Variables

We now want to apply our method to a model from real life comprised of all-
continuous variables. To do so, we consider the data in Table 5, which was taken from [37],
and shows among various body measurements, the skinfold thickness (st) and the midarm
circumference (mc) proposed as possible predictors of body fat (bf ). It is also desired to find
whether there is any evidence of interactions among the three variables. Skinfold thickness
and midarm circumference have been centralized with respect to their means.

Table 5. Original Body Fat Data.

# st.c mc.c bf
1 −5.805 1.48 11.9
2 −0.605 0.58 22.8
3 5.395 9.38 18.7
4 4.495 3.48 20.1
5 −6.205 3.28 12.9
6 0.295 −3.92 21.7
7 6.095 −0.02 27.1
8 2.595 2.98 25.4
9 −3.205 −4.42 21.3

10 0.195 −2.82 19.3
11 5.795 2.38 25.4
12 5.095 0.68 27.2
13 −6.605 −4.62 11.7
14 −5.605 0.98 17.8
15 −10.705 −6.32 12.8
16 4.195 2.48 23.9
17 2.395 −1.92 22.6
18 4.895 −3.02 25.4
19 −2.605 −0.52 14.8
20 −0.105 −0.12 21.1

Let us start with a two-variable regression model of the form

b f = k + a · st + b ·mc + c · st ·mc (13)

where k, a, b, and c are parameters to be estimated.
The regression model that fits the data is:

b f = 20.375 + 0.9815 · st− 0.4234 ·mc + 0.0226 · st ·mc, (14)

with the coefficient of multiple determination r2 = 0.7945 indicating that the data are quite
close to the fitted regression line. These results were obtained using an online regression
calculator [38]. The summary table from the calculator (not shown here) informs that the
interaction term st ·mc is not significant in this case, with a p-value of 0.4321, which makes
the term negligible.

Regression variables are usually continuous, but their values may be the expression
of underlying patterns. In order to detect patterns in the dataset, we can discretize the
variables to enable the calculation of the MSU. We expect that the implied ML value will
correspond to the interaction found by the model.

The adopted strategy is as follows.

• Discretize bf, st and mc;
• Take as pattern the set of distinct observed records, discretized;
• Simulate sampling scenarios to find ML;
• Check whether the ML value reveals interactions.
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4.1. Discretization

The discretization of bf, st, and mc into three categories according to their numeric
value (low/medium/high) each, using percentiles (0, 33, 67, 100) as the cutoff points, gives
us an all-categorical-variable database, as shown on Table 6. Under this discretization, the
correlation from the sample is MSU(dst, dmc, db f ) = 0.3667.

Table 6. Original Body Fat Data discretized.

# dst dmc dbf

1 low high low
2 med med high
3 high high low
4 high high med
5 low high low
6 med low med
7 high med high
8 med high high
9 low low med

10 med low med
11 high high high
12 high med high
13 low low low
14 low med low
15 low low low
16 high high high
17 med low med
18 high low high
19 low med low
20 med med med

Some duplicates can be seen among these 20 records. By removing duplicates, we will
have a pattern that can be analyzed.

4.2. Seeking Interaction in the Pattern

Pattern 1—the 13 unique records obtained from the above 20 records implied by
this database—is shown below (Table 7). A simulation of sampling scenarios leads to
ML = 0.236828 as the lowest value of MSU. This is even lower than in the equiprobable
configuration, whose MSU is 0.32646521.

Table 7. Pattern 1 from body fat regression and empirical finding of its lowest MSU value.

Pattern 1 P(X) P(X) log(P(X)) 1-Way dst 1-way dmc 1-Way db f
low low low 0.027 −0.141 −0.302 −0.360 −0.390
low low med 0.027 −0.141
low med low 0.008 −0.054
low high low 0.023 −0.126
med low med 0.015 −0.093 −0.228 −0.194 −0.530
med med med 0.008 −0.054
med high high 0.023 −0.126
high low high 0.046 −0.205 −0.186 −0.209 −0.507
high med high 0.019 −0.110
high high low 0.077 −0.285
high high med 0.332 −0.528
high high high 0.386 −0.530

Entropy: 2.448 0.716 0.763 1.428
MSU: 0.237
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Thus, the original data presented, with a regression model of no significant interaction
term of the multiplicative type st · mc, maps to a discretized dataset whose ML value
is 0.23683.

4.3. Creating Ad Hoc Interaction

In order to exhibit the st ·mc interaction, we modify some values on the bf column so
that they follow their corresponding product term, seeking to display a more definite trend.
This is accomplished by plotting bf against st ·mc and dragging some points up or down to
make the graph more linear and less horizontal. For convenience in constructing the graph,
we use transformed versions of st.c and mc.c centralized with respect to their means. The
new, modified points are shown in Figure 2, with arrows pointing at the squares that will
replace the original diamonds.

Figure 2. Moving a few body fat data points to produce an interaction: On a graph of bf as a function
of product st.c ·mc.c, six points were moved to induce interaction in the linear regression.

The data table with modified points (3, 7, 12, 13, 15, and 18) is shown in Table 8.
Thus, the model becomes

b f = 19.9453 + 0.4108 · st− 0.2549 ·mc + 0.2265 · st ·mc (15)

with r2 = 0.8055. This time the interaction term is significant as per the summary table,
with a p-value very close to 0.

4.4. Discretizing the Modified Data

Again, we discretize bf, st, and mc into three categories each. Six bf values were
manually modified, most of them being increased, so that percentiles (0, 33, 67, 100)
recomputed on bf produce slightly higher interquartile limits or cutoff values for this
discretization. The resulting categorical database is shown in Table 9. A starred dbf
value indicates that its underlying numerical value had been modified to yield interaction
detected in the model of Equation (15). Other dbf values are marked with an o exponent,
meaning that they have been recategorized just because of modified cutoff values. All this
can be verified by comparing Table 9 with Table 6.
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Table 8. Modified Body Fat Data with Interaction.

# st.c mc.c bf.mod
1 −5.805 1.48 11.9
2 −0.605 0.58 22.8
3 5.395 9.38 31
4 4.495 3.48 20.1
5 −6.205 3.28 12.9
6 0.295 −3.92 21.7
7 6.095 −0.02 24
8 2.595 2.98 25.4
9 −3.205 −4.42 21.3

10 0.195 −2.82 19.3
11 5.795 2.38 25.4
12 5.095 0.68 22
13 −6.605 −4.62 28
14 −5.605 0.98 17.8
15 −10.705 −6.32 32
16 4.195 2.48 23.9
17 2.395 −1.92 22.6
18 4.895 −3.02 17
19 −2.605 −0.52 14.8
20 −0.105 −0.12 21.1

Table 9. Modified Body Fat Data discretized. Superscript symbol o denotes recategorized data
because of modified cutoff values. Superscript symbol ∗ denotes underlying numerical value
modified to produce interaction.

# dst dmc dbf

1 low high low
2 med med med o

3 high high high *
4 high high low o

5 low high low
6 med low med
7 high med high *
8 med high high
9 low low med

10 med low low o

11 high high high
12 high med med *
13 low low high *
14 low med low
15 low low high *
16 high high high
17 med low med
18 high low low *
19 low med low
20 med med med

4.5. Interaction in the New Pattern

Once again, the removal of duplicate records produces a pattern for analysis. The
implied Pattern 2 shown on Table 10 through simulation of sampling scenarios leads us to
find ML = 0.300573. This higher ML value also means that Pattern 2 can accommodate a
larger interaction than Pattern 1. This is indeed the case, as shown by Table 11.
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Table 10. Pattern 2 from body fat regression and empirical finding of its lowest MSU value.

Pattern 2 P(X) P(X) log(P(X)) 1-Way dst 1-Way dmc 1-Way dbf
low low med 0.04 −0.185 −0.523 −0.521 −0.468
low low high 0.06 −0.244
low med low 0.08 −0.292
low high low 0.13 −0.383
med low low 0.06 −0.244 −0.435 −0.494 −0.423
med low med 0.03 −0.152
med med med 0.03 −0.152
med high high 0.05 −0.216
high low low 0.11 −0.350 −0.491 −0.515 −0.514
high med med 0.06 −0.244
high med high 0.07 −0.269
high high low 0.18 −0.445
high high high 0.1 −0.332

Entropy: 3.506 1.449 1.530 1.406
MSU: 0.301

Table 11. Comparative behavior of MSU and interaction for two discretized patterns.

Name n c k Record Frequencies Partial MSU Values Global MSU Interaction

Pattern1

3 3 13
7, 7, 2, 6, 4, 2 MSU(dst, dbf) = 0.142

MSU(dst, dmc, dbf) = 0.237 0.095
2, 6, 12, 5, 20, 86, 100 MSU(dmc, dbf) = 0.012

3 3 13
2, 1, 2, 2, 3, 1, 1, 1, 1, 2, 1, 1, 2 MSU(dst, dbf) = 0.441

MSU(dst, dmc, dbf) = 0.367 −0.074
(original observations) MSU(dmc, dbf) = 0.097

3 3 13 Equal frequencies
MSU(dst, dbf) = 0.312

MSU(dst, dmc, dbf) = 0.326 0.014
MSU(dmc, dbf) = 0.043

Pattern2

3 3 13
4, 6, 8, 13, 6, 3 MSU(dst, dbf) = 0.037

MSU(dst, dmc, dbf) = 0.301 0.176
3, 5, 11, 6, 7, 18, 10 MSU(dmc, dbf) = 0.124

3 3 13
1, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 3 MSU(dst, dbf) = 0.152

MSU(dst, dmc, dbf) = 0.367 0.206
(original observations) MSU(dmc, dbf) = 0.161

3 3 13 Equal frequencies
MSU(dst, dbf) = 0.043

MSU(dst, dmc, dbf) = 0.326 0.186
MSU(dmc, dbf) = 0.141

n = Number of attributes; c = Cardinality of each attribute (all of them equal c); k = Number of record configurations in sample.

We have defined interaction as the difference between the MSU computed on a “large”
set of variables and the MSU of one of its proper subsets (Definition 4). This comparison
between patterns exemplifies MSU’s ability to detect levels of interaction. Pattern 2 displays
higher interaction values at the three cases being simulated. As for ML, the low ML value
of 0.237 in Pattern 1 could be interpreted as a possibly weak form of interaction, perhaps of
a non-multiplicative type. That is, interaction could be based on an expression different
from st ·mc, and in that case, it will not be correctly captured by this particular regression
model in use.

5. Discussion on ML and Linear Models

The body fat example shows that a linear model with no significant interaction tends
to have a small ML value compared to a model whose data has revealed interaction.

In a three-way XOR pattern with equal frequencies, it is easy to check that any two of
the variables have no correlation with the third one, giving MSU(A, C) = MSU(B, C) = 0.
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That is, A and B are independent from C. However, when we consider the full three-way
pattern the MSU(A, B, C) = ML = 0.5. Thus, it is fair to say that 0.5 is the intrinsic interaction
due to the XOR pattern.

In the body fat example with the frequencies as first found in Pattern 1, if we look
at variables pairwise, we have MSU(dst, db f ) > 0 and MSU(dmc, db f ) > 0 (as shown in
Table 11). That is, both dst and dmc are relevant to db f as opposed to the XOR example.
When we simulate the behavior of the three-way Pattern 1, the ML value found is 0.236828.
In this case, we can only say that 0.236828 represents the minimal three-way correlation
due to Pattern 1, where variables dst and dmc are not independent but relevant to db f .

As for Pattern 2, its ML value of 0.300573 indicates that, with the same values for
independent variables and some modified values in the response, interaction is more visible.
Furthermore, this follows the trend of a larger interaction coefficient in the regression model
of Equation (15).

We see that there exists a connection between the size of ML and the size of interaction.
Let P1 and P2 be patterns on the same variable set X, obtained by discretization of data.
If P1 corresponds to the data of a regression model R1 without an interaction term, and
P2 corresponds to the data of a regression model R2 with the addition of at least one
significant interaction term, then the ML value computed for P1 is smaller than the ML
value computed for P2.

Additional experimentation and comparisons are needed to provide more solid
ground to the stated connection. For example, statistical regression models with more
complex interaction terms and statistical models other than regression should be tested for
comparability of interaction behavior with their corresponding categorical patterns.

6. Conclusions and Future Work

The concept of interaction for datasets of n categorical or discretizable variables
was formalized (Definitions 3 and 4). The presented method detects n-way categorical
interactions by finding the smallest gain in multiple correlations between the set of n
variables and all of its proper subsets containing j variables each, where n > j. Since
the method is applicable to both patterned and non-patterned datasets, the second goal
mentioned in the Introduction is also fulfilled.

In model construction or during feature selection tasks, the discovered interactions
can help improve heuristics, guide explorations, and attain better results. The discovery of
interactions may depend on the adopted discretization scheme for continuous variables
or on whether discretization is simple or supervised by response values. This deserves
more study.

From the point of view of observational statistics and linear models with a numeric
response, interaction is a way for nature to not follow a linear behavior all the time.
Interaction is actually a frequent phenomenon, backed by the fact that the strict inequality
premise for Theorem 1 is not rare in practice. Many times we can observe interaction as
an extra term in an extended linear model, but often, its size is not large compared to the
direct effect of relevant variables, and it is disregarded for model simplicity. Hence, suitable
criteria are needed to decide on the statistical significance of an interaction, once it has
been detected.
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