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Abstract: We theoretically study the non-Markovian disentanglement dynamics of a two-qubit
system coupled to nonequilibrium environments with nonstationary and non-Markovian random
telegraph noise statistical properties. The reduced density matrix of the two-qubit system can be
expressed as the Kraus representation in terms of the tensor products of the single qubit Kraus opera-
tors. We derive the relation between the entanglement and nonlocality of the two-qubit system which
are both closely associated with the decoherence function. We identify the threshold values of the
decoherence function to ensure the existences of the concurrence and nonlocal quantum correlations
for an arbitrary evolution time when the two-qubit system is initially prepared in the composite Bell
states and the Werner states, respectively. It is shown that the environmental nonequilibrium feature
can suppress the disentanglement dynamics and reduce the entanglement revivals in non-Markovian
dynamics regime. In addition, the environmental nonequilibrium feature can enhance the nonlocality
of the two-qubit system. Moreover, the entanglement sudden death and rebirth phenomena and
the transition between quantum and classical nonlocalities closely depend on the parameters of the
initial states and the environmental parameters in nonequilibrium environments.

Keywords: open quantum system; decoherence; disentanglement

1. Introduction

Coherence and entanglement are two basic quantum features of nonclassical systems,
which play vital roles in quantum mechanical community as specific resources ranging
from fundamental questions to wide applications in quantum computing, quantum metrol-
ogy and quantum information science [1–6]. It is known that any quantum system loses
quantum features during time evolution resulting from the unavoidable couplings be-
tween the system and the environments. The loss of quantum features induced by the
environments is considered as a fundamental obstacle to the construction of quantum
information processors and the realization of ultrafast quantum computation. The study of
decoherence and disentanglement dynamics of open quantum systems can help us further
expand the understanding of the environmental effects on the dynamical evolution of the
quantum systems and the real origins of the loss of quantum features and quantum-classical
transition, which has potential applications in preserving quantum features against the
environmental noise and in realizing quantum manipulation and control and quantum
measurement [7–22].

During the last few decades, the dynamics of open quantum systems is usually in-
vestigated within Markov approximation, i.e., when we neglect the memory effect of the
dynamical evolution and the higher-order environmental correlations, described by a for-
mally solvable Lindblad type master equation. With the development of the experimental
technique, it has been observed accurately that the dynamical evolution of open quan-
tum systems is closely associated with a flow of information from the environments back
into the system. For instance, the electronic energy transfer processes in photosynthesis
and the dynamical decoherence in quantum bit systems exhibit strong non-Markovian
behavior [23–28]. In recent decades, increasing attention has been attracted to theoretically
studying the dynamics of open quantum systems beyond the framework of Markovian
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approximation [29–38], and there have been well established theoretical approaches to
study the non-Markovian dynamics of open quantum systems within the framework of
classical and quantum treatments [39–63]. Meanwhile, the coherence and entanglement
revivals and entanglement sudden death and rebirth phenomena have been extensively
studied theoretically and observed experimentally in the presence of the non-Markovian
behavior in the quantum dynamics [64–70].

Recently, the nonequilibrium feature of the environments in many crucial dynamical
processes has been experimentally observed. In these processes, the environmental initial
states caused by the interaction with the quantum systems cannot become stationary in time,
which corresponds to the environments around the quantum systems being out of equilib-
rium [71–74]. Random telegraph noise (RTN) is an important classical non-Gaussian noise,
which has theoretically simulated the environmental influences on open quantum systems,
such as single molecule fluorescence [75,76], disentanglement, decoherence and frequency
modulation processes in the presence of low-frequency 1/ f α noise [77–83]. Furthermore,
the quantum dynamics that are stochastically driven by the classical fluctuating field dis-
playing random telegraph fluctuations have been investigated experimentally [84,85]. The
previous investigations usually assumed that the RTN displays stationary and Marko-
vian properties. As a matter of fact, the stationary and Markovian assumption is only
an idealization of both real internal fluctuations and external disturbances, and the real
properties of the fluctuations and disturbances induced by the environments are neither
stationary nor Markovian. Based on this fact, the stationary non-Markovian RTN and
the nonstationary non-Markovian RTN with an exponential memory kernel have been
successively put forward and discussed [86,87], and the latter has been widely used to
study the relevant issues on the dynamics of open quantum systems in nonequilibrium
environments [87–93]. Studying the environmental nonequilibrium effects on quantum
coherence due to the significant role in the dynamical evolution of the open quantum
systems has increasingly drawn much attention, and the theoretical results demonstrate
that nonequilibrium environments cause the energy levels shift of the quantum system and
delay the transition critical time of decoherence from classical to quantum [87,88,92,93].
To the best of our knowledge, the disentanglement dynamics in nonequilibrium environ-
ments has not been studied yet. Meanwhile, some other important physical questions arise
naturally and should be further addressed: Can we find the close relations between the
local decoherence and nonlocal entanglement and quantum nonlocality of open quantum
systems in nonequilibrium environments? How do the environmental nonequilibrium
feature influence the disentanglement dynamics and quantum nonlocality of open quan-
tum systems? Are there the entanglement sudden death and rebirth phenomena or the
transition between quantum and classical nonlocalities in nonequilibrium environments?

In this paper, we theoretically study the non-Markovian dynamics of a two-qubit
system interacting with nonequilibrium environments, which display nonstationary and
non-Markovian RTN statistical properties. The two-qubit system consists of two non-
coupling identical single qubits independently interacting with its local nonequilibrium
environment, of which the reduced density matrix can be expressed as the Kraus represen-
tation in terms of the tensor products of the single qubit Kraus operators. We derive the
relations between the decoherence function and the entanglement quantified by the con-
currence and the nonlocality characterized by the Bell function. We identify the threshold
values of the decoherence function to ensure the existences of the concurrence and nonlocal
quantum correlations at an arbitrary evolution time for the two-qubit system prepared
initially in the composite Bell states and the Werner states, respectively. It is demonstrated
that the environmental nonequilibrium feature can suppress both the decoherence and
disentanglement dynamics and that it can reduce the coherence and entanglement revivals
in non-Markovian dynamics regime. In addition, the environmental nonequilibrium fea-
ture can enhance the nonlocality of the two-qubit system. Moreover, the phenomena of
entanglement sudden death and rebirth and the transition between quantum and classical



Entropy 2022, 24, 1330 3 of 23

nonlocalities are closely dependent on the parameters of the initial states in nonequilib-
rium environments.

This paper is organized as follows. In Section 2, we introduce the theoretical frame-
work of non-Markovian disentanglement dynamics in nonequilibrium environments. We
employ the non-Markovianity, concurrence and Bell function to describe the non-Markovian
two-qubit disentanglement dynamics in nonequilibrium environments. In Section 3, we
discuss the numerical results of the non-Markovian two noninteracting qubit disentangle-
ment dynamics in nonequilibrium environments with nonstationary and non-Markovian
RTN statistical properties. In Section 4, we present the conclusions from the present study.

2. Theoretical Framework
2.1. Non-Markovian Disentanglement Dynamics of a Two-Qubit System

We consider a two-qubit system T consisting of two noninteracting identical single
qubits A and B independently interacting with its nonequilibrium environment exhibiting
nonstationary and non-Markovian RTN statistical properties, respectively. The single qubit
S (S = A, B) can be characterized as a two-level system with the states |1〉 and |0〉. The
environmental effects lead to the stochastic fluctuations in the Hamiltonian of the two-qubit
system as

HT(t) = HS(t)⊗ I + I ⊗ HS(t), (1)

where I denotes the identity matrix and HS(t) is the stochastic Hamiltonian of the single
qubit system S coupled to its local nonequilibrium environment E, written as

HS(t) =
h̄
2
[ω0 + ξ(t)]σz, (2)

with ω0 denoting the frequency difference of the single qubit system, σz = |1〉〈1| − |0〉〈0|
being the Pauli matrix in the single qubit basis BS = {|1〉, |0〉} and the environmental noise
ξ(t) subject to a generalized RTN stochastic process.

Due to the fact that the two single qubits of the system do not interact with each
other initially, the dynamics of the two-qubit system can be obtained from that of a singe
qubit system by means of the Kraus representation [40,94]. Thus, to derive the dynamics
of the two-qubit system, we first consider that of the single qubit system. Because the
environmental effects lead to the stochastic fluctuations in the frequency difference between
the states |1〉 and |0〉, the single qubit system undergoes pure decoherence during its
dynamical evolution. By taking an average over the environmental noise ξ(t), we can
express the reduced density matrix of the single qubit system in the Kraus representation as

ρS(t) =
2

∑
µ=1

KSµ(t)ρS(0)K†
Sµ(t), (3)

with the single qubit Kraus operators KSµ

KS1(t) =
(

1 0
0 eiω0tF(t)

)
, KS2(t) =

(
0 0
0
√

1− |F(t)|2

)
, (4)

where F(t) =
〈

exp
[
i
∫ t

0 dt′ξ(t′)
]〉

denotes the decoherence function with 〈· · · 〉 being the
average taken over the environmental noise ξ(t). The diagonal elements of the reduced
density matrix of the single qubit system are time independent and the off diagonal
elements evolve with time

ρ00(t) = ρ00(0),

ρ11(t) = 1− ρ00(t),

ρ01(t) = ρ∗10(t) = ρ01(0)eiω0tF(t).

(5)
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Because of the nonstationary statistical property of the environmental noise, the decoher-
ence function is complex. The dynamical evolution of the single qubit system is closely
associated with the decoherence rate γ(t) = −Re[(d/dt)F(t)/F(t)] and the frequency shift
s(t) = −Im[(d/dt)F(t)/F(t)] [87,88].

In the presence of the standard RTN, the amplitude of the environmental noise jumps
randomly with the switching rate λ between the values ±ν. The ratio ν/λ describes the
environmental coupling and there are two important dynamic regimes identified: the
weak coupling regime ν/λ < 1 and the strong coupling regime ν/λ > 1. The statistical
properties of the standard RTN is time-homogeneous, Markovian and stationary. Physically,
the statistical properties of the generalized RTN can be extracted from that of the standard
RTN based on classical probability theory [95]. In the following, we introduce a class of
time-homogeneous, non-Markovian and nonstationary RTN (see Appendix A).

For the time-homogeneous generalized RTN process, the environmental non-Markovian
property is described by a generalized master equation for the time evolution of the conditional
probability [86]

∂

∂t
P(ξ, t|ξ ′, t′) =

∫ t

t′
K(t− τ)λTP(ξ, τ|ξ ′, t′)dτ, (6)

where K(t − τ) is the memory kernel of the environmental noise, and the conditional
probability P(ξ, t|ξ ′, t′) and transition matrix T are respectively expressed as

P(ξ, t|ξ ′, t′) =
(

P(+ν, t|ξ ′, t′)
P(−ν, t|ξ ′, t′)

)
,T =

(
−1 1
1 −1

)
. (7)

Physically, the extraction of a subensemble non-Markovian processes with the memory
effect taken into account means that the statistical properties of the environmental noise
depend on previous history. When the environmental noise is memoryless, i.e., K(t− τ) =
δ(t − τ), the non-Markovian RTN recovers the Markovian one and its memory effect
vanishes. By means of the Laplace transformation P̃(ξ, s|ξ ′, t′) =

∫ ∞
0 P(ξ, t|ξ ′, t′)e−stdt, the

conditional probability in Equation (6) can be analytically expressed as

P(ξ, t|ξ ′, t′) =
[

I +
1−P(t− t′)

2
T
]
P(ξ, t′|ξ ′, t′), (8)

where the auxiliary probability function P(t− t′) = L −1[e−st′ P̃(s)] with P̃(s) = 1/[s +
2λK̃(s)] and L −1 denotes the inverse Laplace transform. Due to the fact that the memory
kernel in the conditional probability depends on the time difference, the environmental
noise is subject to an homogeneous stochastic process.

The environmental nonstationary property arises from the initial distribution

P(ξ0, 0) =
1
2
(1 + a)δξ0,ν +

1
2
(1− a)δξ0,−ν, (9)

where a is the nonstationary parameter and −1 ≤ a ≤ 1. Correspondingly, the nonstation-
ary one-point probability distribution satisfies

P(ξ, t) = ∑
ξ0

P(ξ, t|ξ0, 0)P(ξ0, 0) =
1
2
[1 + aP(t)]δξ,ν +

1
2
[1− aP(t)]δξ,−ν. (10)

Physically, the extraction of a subensemble nonstatioanry processes with initial nonsta-
tionary distribution means that the statistical property of the environmental noise is time
dependent initially, which corresponds to the environment being in a certain initial nonequi-
librum state [95]. For the case a = 0, the environmental noise only displays stationary
property corresponding to that the environment is in equilibrium [87,88].



Entropy 2022, 24, 1330 5 of 23

According to the non-Markovian and nonstationary properties described above, the
statistical characteristics of the environmental noise ξ(t) are described by the first and
second-order moments

〈ξ(t)〉 = aνP(t),
〈ξ(t)ξ(t′)〉 = ν2P(t− t′).

(11)

where L −1 denotes the inverse Laplace transform. According to the Bayes’ theorem, the
environmental higher odd- and even-order moments satisfy the factorization

〈ξ(t1)ξ(t2) · · · ξ(t2n−1)〉 = 〈ξ(t1)ξ(t2)〉〈ξ(t3)ξ(t4)〉 · · · 〈ξ(t2n−1)〉
= av2n−1P(t1 − t2) · · · P(t2n−1),

〈ξ(t1)ξ(t2) · · · ξ(t2n)〉 = 〈ξ(t1)ξ(t2)〉〈ξ(t3)ξ(t4)〉 · · · 〈ξ(t2n−1)ξ(t2n)〉
= v2nP(t1 − t2) · · · P(t2n−1 − t2n),

(12)

for the order of the time instants t1 > · · · > t2n (n ≥ 2). This factorization relation for
the higher-order correlation functions recovers to the case that the RTN process exhibits
only stationary property due to the vanishing of the odd moments of the environmental
noise [86,96]. It is worth mentioning that nonstationary property of the environmental noise
only influences the odd-order moments due to our extraction of the subensemble time-
homogeneous nonstatioanry processes made above. If the environmental noise ξ(t) exhibits
stationary statistical property, namely, a = 0, the odd-order moments in its statistical
characteristics will vanish [86,96].

We consider the case that the environmental memory kernel is of an exponential form
as K(t− τ) = κe−κ(t−τ) with κ denoting the memory decay rate. The smaller is the decay
rate κ, the stronger is the environmental non-Markovian property. For the case κ → +∞,
namely, the memoryless case K(t− τ) = δ(t− τ), the environmental noise only exhibits
Markovian property. Based on the exponential form of the memory kernel, each order
moment of the environmental noise obeys the closed second-order differential relation

d2

dt2 〈ξ(t) · · · ξ(tn)〉+ κ
d
dt
〈ξ(t) · · · ξ(tn)〉+ 2κλ〈ξ(t) · · · ξ(tn)〉 = 0. (13)

In terms of Equation (13) and the generalized Dyson expansion for the decoherence function

F(t) = 1 +
∞

∑
n=1

in
∫ t

0
dt1 · · ·

∫ tn−1

0
dtn〈ξ(t1) · · · ξ(tn)〉, (14)

for all the time instants t > t1 > · · · > tn > 0, we obtain a closed third-order differential
equation for the decoherence function in the single qubit system

d3

dt3 F(t) + κ
d2

dt2 F(t) + (2κλ + ν2)
d
dt

F(t) + κν2F(t) = 0, (15)

with the initial conditions F(0) = 1, (d/dt)F(0) = iaν and (d2/dt2)F(0) = −ν2. Corre-
spondingly, the decoherence function for the single qubit system can be exactly expressed
as [88]

F(t) = L −1[F (s)], F (s) = s2 + κs + 2κλ + iaν(s + κ)

s3 + κs2 + (2κλ + ν2)s + κν2 . (16)

We now construct the reduced density matrix of the two-qubit system in the standard
product basis BT = {|1〉 = |11〉, |2〉 = |10〉, |3〉 = |01〉, |4〉 = |00〉}. Based on the two-qubit
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basis and by taking an average over the environmental noise, we express the reduced
density matrix of the two-qubit system in the Kraus representation as

ρT(t) =
4

∑
µ=1

KTµ(t)ρT(0)K†
Tµ(t), (17)

where the two-qubit Kraus operators KTµ(t) = KSν(t)⊗ KSυ(t)(ν, υ = 1, 2) are the tensor
products of the single qubit Kraus operators

KT1(t) =
(

1 0
0 eiω0tF(t)

)
⊗
(

1 0
0 eiω0tF(t)

)
,

KT2(t) =
(

1 0
0 eiω0tF(t)

)
⊗
(

1 0
0
√

1− |F(t)|2

)
,

KT3(t) =
(

0 0
0
√

1− |F(t)|2

)
⊗
(

1 0
0 eiω0tF(t)

)
,

KT4(t) =
(

0 0
0
√

1− |F(t)|2

)
⊗
(

0 0
0
√

1− |F(t)|2

)
.

(18)

Due to the pure decoherence, the diagonal elements of the reduced density matrix are time-
independent and the off-diagonal elements decay with time monotonously (Markovian
behavior) or non-monotonously (non-Markovian behavior). According to the two-qubit
Kraus operators expression for the reduced density matrix in Equation (17), the diagonal
elements do not evolve with time

ρ11(t) = ρ11(0),

ρ22(t) = ρ22(0),

ρ33(t) = ρ33(0),

ρ44(t) = 1− [ρ11(0) + ρ22(0) + ρ33(0)],

(19)

and time-dependent off diagonal elements can be written as

ρ21(t) = ρ∗12(t) = ρ21(0)eiω0tF(t),

ρ31(t) = ρ∗13(t) = ρ31(0)eiω0tF(t),

ρ32(t) = ρ∗23(t) = ρ32(0)|F(t)|2,

ρ41(t) = ρ∗14(t) = ρ41(0)ei(2ω0)tF2(t),

ρ42(t) = ρ∗24(t) = ρ42(0)eiω0tF(t),

ρ43(t) = ρ∗34(t) = ρ43(0)eiω0tF(t).

(20)

By taking the optimization over all pairs of initial states, the non-Markovianity quanti-
fying the flow of information exchange between the two-qubit system and environment
can be expressed as [30,97]

NT = max
ρ1,2

T (0)

∫
dD
dt >0

d
dt
D(ρ1

T(t), ρ2
T(t))dt = −2

∫
γ(t)<0

γ(t)|F(t)|2dt, (21)

where D(ρ1
T , ρ2

T) =
1
2 tr|ρ1

T − ρ2
T | denotes the trace distance between the two-qubit states ρ1

T
and ρ2

T and the optimal pair of initial states can be chosen as the maximally entangled states
of super-decoherent Bell states |ψ±(0)〉 = (|00〉 ± |11〉)/

√
2 or sub-decoherent Bell states

|ϕ±(0)〉 = (|01〉 ± |10〉)/
√

2 [98,99]. The two-qubit dynamics display non-Markovian
behavior if the decoherence rate γ(t) takes negative values in some time intervals.
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2.2. Relations between Local Decoherence and Nonlocal Entanglement and Quantum Nonlocality

Due to the environmental effects on its evolution, the two-qubit system undergoes
dynamical disentanglement. Since the two single qubits of the system do not interact
with each other, the dynamics of the two-qubit system can be obtained from that of a
singe qubit system, as we derived above. Thus, the local decoherence described by the
decoherence function F(t) plays an important role in the dynamics of the two-qubit system
as that in a single qubit system [100,101]. Can we find the close relations between the
local decoherence and nonlocal entanglement and quantum nonlocality of the two-qubit
sytem in nonequilibrium environments? Are there the entanglement sudden death and
rebirth phenomena or the transition between quantum and classical nonlocalities of the
two-qubit system in nonequilibrium environments? To further study the effects of the
local decoherence on the nonlocal entanglement and quantum nonlocality of the two-qubit
sytem, we use the concurrence C(t) and the Clauser-Horne-Shimony-Holt (CHSH) form of
Bell function B(t) to quantify the entanglement and quantum nonlocality of the two-qubit
system (see Appendix B), respectively [94,102,103].

In the following, we derive the relations between the decoherence function and the
entanglement quantified by the concurrence and the nonlocality characterized by the
Bell function for the two-qubit system initially prepared in the composite Bell states and
Werner states with an X structure density matrix, respectively [104,105]. In contrast to
the previous investigations [82,100] that only discussed the threshold values of the initial
state parameters for the existences of the concurrence and quantum nonlocality initially,
we not only discuss the initial threshold values of the state parameters but also discuss
the threshold values of the decoherence function for the existences of the concurrence and
quantum nonlocality at an arbitrary time t.

We first focus on the initial states of the system in the composite Bell states of the
form [106]

ρ(0) =
1 + c

2
|ψ±(0)〉〈ψ±(0)|+

1− c
2
|ϕ±(0)〉〈ϕ±(0)|, (22)

where the initial state parameter c is real and satisfies −1 ≤ c ≤ 1. It has, by studying the
quantum mutual information, quantum discord and classical correlations of the dynamics,
which demonstrates that for the initial states in Equation (22) there is a sudden transition
from classical to quantum decoherence for the two-qubit system coupled to a nonequilib-
rium environment exhibiting generalized RTN property, and the nonequilibrium feature of
the environment can delay the critical time of the transition of decoherence from classical
to quantum [92]. The concurrence at time t for the two-qubit system prepared in the initial
states of Equation (22) can be reduced to

C(t) = max
{

0,
1 + |c|

2
|F(t)|2 − 1− |c|

2

}
. (23)

The initial concurrence of the two-qubit system prepared in the composite Bell states in
Equation (22) can be expressed as C(0) = |c|, since the initial value of the decoherence
function satisfies F(0) = 1. Therefore, the entanglement of the two-qubit system exists
except for the special case c = 0. For the case −1 ≤ c < 0, the concurrence at time t exists if
the threshold value of the decoherence function satisfies |F(t)| > |FCth| =

√
(1 + c)/(1− c),

whereas if it exists at time t for the case 0 < c ≤ 1, the threshold value of the deco-
herence function satisfies |F(t)| > |FCth| =

√
(1− c)/(1 + c). In both Markovian and

non-Markovian dynamics regimes, there are no entanglement sudden death and rebirth
phenomena for the case |c| = 1, whereas for the case 0 < |c| < 1, the entanglement sudden
death phenomenon occurs, and in the non-Markovian dynamics regime, the entanglement
rebirth phenomenon can occur if the secondary maximum of the decoherence function is
larger than the threshold value |FCth|.

The time dependent maximum CHSH-Bell function B(t) for the initial states of the
two-qubit system of Equation (22) can be reduced to
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B(t) = 2
√
|F(t)|4 + c2. (24)

The presence of entanglement C(t) > 0, namely, c 6= 0, is a necessary condition to achieve
nonlocality. The initial CHSH-Bell function B(0) = 2

√
1 + c2 > 2 corresponds to the fact

that the two-qubit system always initially displays the quantum nonlocality. In a long
time limit t → +∞, for the case |c| = 1, B(+∞) = 2, and thus the two-qubit system
always displays quantum nonlocality. For the case 0 < |c| < 1 the threshold value of the
decoherence function should satisfy |F(t)| > |FBth| =

4
√

1− c2 to ensure that the CHSH-Bell
function B(t) is larger than the classical threshold Bth and the nolocality of the two-qubit
system undergoes the transition from quantum to classical.

The close relation between B(t) and C(t) for the two-qubit system prepared in the
initial composite Bell states of Equation (22) can be expressed as

B(t) =

 2
1−c

√[
2C(t) + 1 + c

]2
+ c2(1− c)2, −1 ≤ c < 0,

2
1+c

√[
2C(t) + 1− c

]2
+ c2(1 + c)2, 0 < c ≤ 1.

(25)

For the case −1 ≤ c < 0, the classical threshold Cth, which corresponds to the Bell
function B(t) > Bth = 2 only exists for −1 < c < 0 and can be expressed as Cth =
(1− c)

√
1− c2/2− (1 + c)/2, whereas for c = −1, the maximum CHSH-Bell function B(t)

is always larger than the threshold Bth = 2. Similarly, for the case 0 < c ≤ 1, the threshold
Cth for the Bell function larger than the threshold Bth = 2 exists for 0 < c < 1 and can be
expressed as Cth = (1 + c)

√
1− c2/2− (1− c)/2, while the maximum CHSH-Bell function

B(t) is always larger than the threshold Bth = 2 for c = 1.
We now focus on the case that the two-qubit system is prepared for in a subclass of

Bell-diagonal states, namely, the Werner states [1,107]

ρψ(0) = r|ψ±(0)〉〈ψ±(0)|+
1− r

4
I4,

ρϕ(0) = r|ϕ±(0)〉〈ϕ±(0)|+
1− r

4
I4,

(26)

where 0 ≤ r ≤ 1 denotes the purity parameter of the initial states, and I4 is the 4× 4 identity
matrix. The concurrence for the two-qubit system prepared in the Werner states initially of
Equation (26) can be reduced to

Cψ(t) = Cϕ(t) = max
{

0, r|F(t)|2 − 1
2
(1− r)

}
. (27)

The entanglement of the two-qubit system exists if the initial value of concurrence C(0)
in the Werner states is larger than zero, correspondingly 1/3 < r ≤ 1. The concurrence
exists at time t if the threshold value of the decoherence function satisfies |F(t)| > |FCth| =√
(1− r)/(2r). The entanglement sudden death and rebirth phenomena only occur in

non-Markovian dynamics regimes for the case r = 1, whereas for the case 1/3 < r < 1, the
entanglement sudden death phenomenon occurs in both Markovian and non-Markovian
dynamics regimes. The entanglement rebirth phenomenon can occur if the secondary
maximum of the decoherence function is larger than the threshold value |FCth| in the non-
Markovian dynamics regime.

The time dependent maximum CHSH-Bell function B(t) for the initial Werner states
of Equation (26) can be reduced to

B(t) = 2r
√
|F(t)|4 + 1. (28)

In the presence of entanglement C(t) > 0, namely 1/3 < r| ≤ 1, if the initial CHSH-Bell
function B(0) = 2

√
2r > 2, namely

√
2/2 < r ≤ 1, the two-qubit system displays quantum
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nonlocality initially. For the case r = 1, B(+∞) = 2 in long time limit t → +∞, and the
two-qubit system always displays quantum nonlocality, whereas the two-qubit system
exhibits the transition from quantum to classical nolocalities for the case

√
2/2 < r < 1,

and the threshold value of the decoherence function satisfies |F(t)| > |FBth| =
4
√

1/r2 − 1,
provided that the CHSH-Bell function B(t) is larger than the classical threshold Bth. The
initial CHSH-Bell function B(0) ≤ 2 and the two-qubit system always displays classical
nonlocality for the case 1/3 < r ≤

√
2/2.

For the two-qubit system prepared initially in the Werner states of Equation (26), the
close relation between B(t) and C(t) can be expressed as

B(t) = 2

√[
C(t) + 1

2
(1− r)

]2
+ r2. (29)

The classical threshold Cth corresponding to the Bell function B(t) ≥ Bth = 2 can be
expressed as Cth =

√
1− r2 − (1− r)/2 which depends only on the purity parameter r of

the initial states of Equation (26), and it is a decreasing function of the purity parameter r;
for the presence of entanglement 1/3 < r ≤ 1, it satisfies 0 ≤ Cth < (2

√
2− 1)/3.

3. Discussion

In this section, we demonstrate the numerical results of the non-Markovian disentan-
glement dynamics of a two-qubit system consisting of two noninteracting identical single
qubits independently coupled to its local nonequilibrium environment. We mainly focus
on how the environmental nonstationary and non-Markovian properties influence the
non-Markovianity NT , the entanglement quantified by the concurrence and the nonlocality
characterized by the Bell function. The comparisons with the environmental stationary and
memoryless cases are also discussed.

Figure 1 shows the non-Markovianity NT of a two-qubit system interacting with
nonequilibrium environments as a function of the environmental memory decay rate κ
and the nonstationary parameter a. Similar to the case of a single qubit system coupled
to nonequilibrium environments, for a given value of the environmental memory decay
rate κ, the non-Markovianity NT shows symmetrical behavior for positive and negative
environmental nonstationary parameter a in both weak and strong coupling regimes. As
the environmental nonstationary parameter a deviates from zero for a given environmental
memory decay rate κ, the non-Markovianity NS decreases due to the suppression in the
dynamical decoherence induced by the environmental nonequilibrium feature. In both
weak and strong coupling regimes, for a given value of the environmental nonstationary
parameter a, the non-Markovianity NT increases with the decrease in the environmental
memory decay rate κ. The non-Markovianity NT decreases to zero as the environmental
memory decay rate κ increases in the weak coupling regime, as shown in Figure 1a, whereas
it does not decrease to zero in the strong coupling regime as displayed in Figure 1b.

Figure 2 displays the time evolution of the concurrence C(t) and the Bell function
B(t) for different values of the environmental nonstationary parameter a for the two-
qubit system prepared initially in the composite Bell states. As shown in Figure 2a, the
concurrence C(t) decays monotonically and there is an entanglement of the sudden death
phenomenon in the weak coupling regime for both the nonstationary a 6= 0 and stationary
a = 0 cases. In the strong coupling regime, as the nonstationary parameter |a| increases,
the concurrence C(t) undergoes a transition from monotonical decay to nonmonotonical
decay with nonzero entanglement revivals. When the nonstationary parameter |a| is
smaller than a certain threshold value |ath| = 0.95, the entanglement only displays sudden
death phenomenon and the rebirth phenomenon disappears. In both the weak and strong
coupling regimes, the concurrence C(t) increases as the environmental nonstationary
parameter a departs from zero. This indicates that the environmental nonequilibrium
feature can suppress the disentanglement dynamics. As displayed in Figure 2b, in the
weak coupling regime, the Bell function B(t) decays monotonically, whereas it shows
nonmonotonical decays in the strong coupling regime. In both the weak and strong
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coupling regimes, the nolocality undergoes a transition from quantum to classical and it
increases as the environmental nonstationary parameter a departs from zero. This reflects
that the environmental nonequilibrium feature can enhance the quantum nonlocality. In
addition, the environmental nonequilibrium feature does not influence the initial values of
the concurrence C(0) and Bell function B(0) in both the weak and strong coupling regimes
for the system prepared in the composite Bell states initially.

Figure 1. (Color online) Non-Markovianity NT of a two-qubit system in nonequilibrium environ-
ments as a function of the environmental memory decay rate κ and the nonstationary parameter a in
(a) the weak coupling regime with ν/λ = 0.8 and (b) the strong coupling regime with ν/λ = 2. The
bottom panel of (b) is for the memoryless case κ → +∞.

Figure 3 displays the time evolution of the concurrence C(t) and the Bell function B(t)
for different values of the environmental memory decay rate κ for the two-qubit system
prepared initially in the composite Bell states. As shown in Figure 3a, the concurrence
C(t) undergoes a transition from nonmonotonical decay to monotonical decay as the
environmental memory decay rate κ increases in both the weak and strong coupling
regimes. The entanglement only displays sudden death phenomenon, and the rebirth
phenomenon disappears when the environmental memory decay rate κ is larger than the
threshold value κth = 0.27λ and κth = 0.87λ in the weak and strong coupling regimes,
respectively. In the presence of entanglement rebirth phenomenon, the entanglement
revivals in the concurrence C(t) become obvious as the environmental memory decay
rate κ decreases in both the weak and strong coupling regimes. This indicates that the
environmental non-Markovian feature can enhance the entanglement revivals and suppress
the disentanglement dynamics. As displayed in Figure 3b, the Bell function B(t) undergoes
a transition from nonmonotonical decay to monotonical decay in the weak coupling regime,
whereas in the strong coupling regime, it decays nonmonotonically and it increases as
the environmental memory decay rate κ decreases. This reflects that the environmental
non-Markovian feature can enhance the quantum nonlocality in the strong coupling regime.
In contrast, the decay of the Bell function B(t) exhibits a transition from nonmonotonical
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decay to monotonical decay with the increase in the environmental memory decay rate κ in
the weak coupling regime.

1 2 3
0

0.3

0.6

0 1 2 3
0

0.3

0.6

0 2 4 6
1

1.7

2.4

0 1 2 3
1

1.7

2.4

(a)

(b)

Figure 2. (Color online) Time evolution of (a) the concurrence C(t) and (b) the Bell function B(t) for
different values of the environmental nonstationary parameter a for the two-qubit system prepared
initially in the composite Bell states with the initial state parameter |c| = 0.5. Left panel: the weak
coupling regime with ν/λ = 0.8. Right panel: the strong coupling regime with ν/λ = 2. The
environmental memory decay rate is given by κ/λ = 1. The threshold value corresponding to
the entanglement rebirth phenomenon in the strong coupling regime in the right panel of (a) is
|ath| = 0.95.
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Figure 3. (Color online) Time evolution of (a) the concurrence C(t) and (b) the Bell function B(t)
for different values of the environmental memory decay rate κ for the two-qubit system prepared
initially in the composite Bell states with the initial state parameter |c| = 0.5. Left panel: the weak
coupling regime with ν/λ = 0.8. Right panel: the strong coupling regime with ν/λ = 2. The
environmental nonstationary parameter is given by |a| = 0.5. The threshold values corresponding
to the entanglement rebirth phenomenon in the weak and strong coupling regimes in left and right
panel of (a) are κth = 0.27λ and κth = 0.87λ, respectively.
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Figure 4 displays the time evolution of the concurrence C(t) and the Bell function
B(t) for different values of the initial state parameter c for the two-qubit system prepared
initially in the composite Bell states. As shown in Figure 4a, the entanglement displays
sudden death phenomenon in the weak couping regime, whereas it displays a transition
from sudden death to rebirth for different initial state parameter |c| in the strong coupling
regime; as the initial state parameter |c| is smaller than the threshold value |cth| = 0.57, the
entanglement only displays the sudden death phenomenon, and the rebirth phenomenon
disappears. As the initial state parameter |c| increases, the concurrence C(t) increases
in both the weak and strong coupling regimes, and the entanglement revivals in the
concurrence C(t) become obvious in the strong coupling regime. This indicates that the
initial state parameter can enhance quantum entanglement. As shown in Figure 4b, the
nolocality undergoes a transition from quantum to classical as the initial state parameter
|c| decreases from the threshold value |cth| = 1 in both the weak and strong coupling
regimes. Due to the non-Markovian behavior in the disentanglement dynamics, the Bell
function B(t) decays nonmonotonically. In both the weak and strong coupling regimes,
the Bell function B(t) increases as the initial state parameter |c| increases. This reflects
that the initial state parameter can enhance nonlocality. Different from the fact that the
environmental nonequilibrium feature does not influence the concurrence and Bell function
initially, the initial values of the concurrence C(0) and Bell function B(0) depend closely
on the initial state parameter |c| and they increase with the increase in the initial state
parameter |c| in both the weak and strong coupling regimes. In both the weak and strong
coupling regimes, the initial Bell function B(0) is always larger than the threshold Bth = 2
for an arbitrary initial state parameter |c| corresponding to the fact that the two-qubit
system always displays quantum nonlocality initially for the two-qubit system prepared in
the composite Bell states.
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Figure 4. (Color online) Time evolution of (a) the concurrence C(t) and (b) the Bell function B(t) for
the two-qubit system prepared initially in the composite Bell states for different values of the initial
state parameter c. Left panel: the weak coupling regime with ν/λ = 0.8. Right panel: the strong
coupling regime with ν/λ = 2. The environmental nonstationary parameter is given by |a| = 0.5 and
the environmental memory decay rate is given by κ/λ = 1. The threshold value corresponding to the
entanglement rebirth phenomenon in the strong coupling regime in right panel of (a) is |cth| = 0.57.

Figure 5 shows the time evolution of the concurrence C(t) and the Bell function B(t)
for different values of the environmental nonstationary parameter a for the two-qubit
system prepared initially in the Werner states. Similar to the case that the two-qubit system
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initially prepared in the composite Bell states, as displayed in Figure 5a, the concurrence
C(t) decays monotonically, and it exhibits entanglement sudden death phenomenon for
both the nonstationary a 6= 0 and stationary a = 0 cases in the weak coupling regime,
whereas there are obvious entanglement sudden death and rebirth phenomena in the strong
coupling regime. As shown in Figure 5b, the Bell function B(t) decays monotonically in
the weak coupling regime, while it decays nonmonotonically in the strong coupling regime.
It undergoes a transition between quantum and classical nonlocalities in both the weak
and strong coupling regimes. As the environmental nonstationary parameter a derivates
from zero, the concurrence C(t) and Bell function B(t) increase, whereas the initial values
of the concurrence C(0) and Bell function B(0) do not change in both the weak and
strong coupling regimes. This indicates that the environmental nonequilibrium feature
can suppress the disentanglement dynamics and enhance the quantum nonlocality but
it does not influence the initial concurrence C(0) and Bell function B(0). In addition, the
influence of the environmental nonequilibrium feature on disentanglement dynamics and
quantum nonlocality in the weak coupling regime is more obvious than that in the strong
coupling regime.
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Figure 5. (Color online) Time evolution of (a) the concurrence C(t) and (b) the Bell function B(t) for
different values of the environmental nonstationary parameter a for the two-qubit system prepared
initially in the Werner states with the initial purity parameter r = 0.8. Left panel: the weak coupling
regime with ν/λ = 0.8. Right panel: the strong coupling regime with ν/λ = 2. The environmental
memory decay rate is given by κ/λ = 1.

Figure 6 displays the time evolution of the concurrence C(t) and the Bell function
B(t) for different values of the environmental memory decay rate κ for the two-qubit
system prepared initially in the extended Werner states. As displayed in Figure 6a, similar
to the case that the two-qubit system initially prepared in the composite Bell states, the
concurrence C(t) exhibits a transition from nonmonotonical decay to monotonical decay
in both the weak and strong coupling regimes as the environmental memory decay rate
κ increases. The entanglement only displays sudden death phenomenon and the rebirth
phenomenon disappears when the environmental memory decay rate κ is larger than the
threshold value κth = 0.66λ and κth = 1.50λ in the weak and strong coupling regimes,
respectively. In the strong coupling regime, the entanglement revivals in the concurrence
C(t) enhances as the environmental memory decay rate κ decreases. As shown in Figure 6b,
the Bell function B(t) decays nonmonotonically, and for a given time t it decreases with
the increase in the environmental memory decay rate κ in the strong coupling regime. In



Entropy 2022, 24, 1330 14 of 23

contrast, in the weak coupling regime, the Bell function B(t) exhibits a transition from
nonmonotonical decay to monotonical decay as the environmental memory decay rate κ
decreases and the Bell function B(t) decreases in some time intervals and increases in some
other time intervals as the environmental memory decay rate κ decreases.
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Figure 6. (Color online) Time evolution of (a) the concurrence C(t) and (b) the Bell function B(t)
for different values of the environmental memory decay rate κ for the two-qubit system prepared
initially in the extended Werner states with the initial purity parameter r = 0.8. Left panel: the
weak coupling regime with ν/λ = 0.8. Right panel: the strong coupling regime with ν/λ = 2. The
environmental nonstationary parameter is given by |a| = 0.5. The threshold values corresponding
to the entanglement rebirth phenomenon in the weak and strong coupling regimes in left and right
panel of (a) are κth = 0.66λ and κth = 1.50λ, respectively.

Figure 7 displays the time evolution of the concurrence C(t) and Bell function B(t)
for different values of initial purity state parameter r for the two-qubit system prepared
initially in the Werner states. As shown in Figure 7a, similar to the case that the two-
qubit system initially prepared in the composite Bell states, as the initial purity state
parameter r decreases from the threshold value rth = 1, the entanglement sudden death
phenomenon occurs in the weak coupling regime. In the strong coupling regime, the
entanglement displays sudden death and rebirth phenomena, and it only shows sudden
death phenomenon; the rebirth phenomenon disappears as the initial purity state parameter
r is smaller than the threshold value rth = 0.65. With the increase in the initial purity state
parameter r, the concurrence C(t) increases in both the weak and strong coupling regimes
and the entanglement revivals in the concurrence C(t) become obvious in the strong
coupling regime. This reflects the fact that the initial purity state parameter r can enhance
quantum entanglement. As shown in Figure 7b, the Bell function B(t) decays monotonically
and nonmonotonically in the weak and strong coupling regimes, respectively. In both the
weak and strong coupling regimes, the Bell function B(t) increases as the initial purity state
parameter r increases. This indicates that the initial state parameter can enhance nonlocality.
As the initial purity state parameter r decreases from the threshold value rth = 1, it first
undergoes a transition from quantum nonlocality to classical nonlocality and then it only
displays classical nonlocality when the initial purity state parameter r is smaller than the
threshold value rth =

√
2/2 due to the fact that the initial Bell function B(0) is not always

larger than the threshold Bth = 2 for the two-qubit system prepared initially in the Werner
states. This is quite different from the case that the two-qubit system prepared initially in
the composite Bell states.
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Figure 7. (Color online) Time evolution of (a) the concurrence C(t) and (b) the Bell function B(t) for
the two-qubit system prepared initially in the Werner states for different values of the initial purity
parameter r. Left panel: the weak coupling regime with ν/λ = 0.8. Right panel: the strong coupling
regime with ν/λ = 2. The environmental nonstationary parameter is given by |a| = 0.5 and the
environmental memory decay rate is given by κ/λ = 1. The threshold value corresponding to the
entanglement rebirth phenomenon in the strong coupling regime in right panel of (a) is rth = 0.65.

Figure 8 shows the time evolution of the concurrence C(t) and Bell function B(t) for
different values of the coupling strength ν for the two-qubit system prepared initially in
the composite Bell states and Werner states, respectively. As displayed in Figure 8a, for
the weak coupling case (small ν), the entanglement shows sudden death phenomenon; as
the coupling strength ν increases, the entanglement rebirth phenomenon occurs for the
two-qubit system initially prepared in the composite Bell states and Werner states. The
threshold values corresponding to the entanglement rebirth phenomenon in the composite
Bell states and in the Werner states are νth = 2.2λ and νth = 1.47λ, respectively. In addition,
as the coupling strength ν increases, the entanglement revivals in the concurrence C(t)
become more obvious. This indicates that the coupling strength can enhance quantum
entanglement. As shown in Figure 8b, the Bell function B(t) undergoes a transition from
quantum nonlocality to classical nonlocality for the two-qubit system initially prepared in
both the composite Bell states and Werner states. Furthermore, the Bell function B(t) decays
monotonically and nonmonotonically for small and large values of the coupling strength
ν, respectively. The Bell function B(t) decreases as the coupling strength ν increases. This
reflects that the coupling strength can suppress nonlocality.
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Figure 8. (Color online) Time evolution of (a) the concurrence C(t) and (b) the Bell function B(t)
different values of the coupling strength ν. Left panel: for the two-qubit system prepared initially
in the composite Bell states with the initial state parameter |c| = 0.5. Right panel: for the two-qubit
system prepared initially in the Werner states with the initial purity parameter r = 0.8. The environ-
mental nonstationary parameter is given by |a| = 0.5 and the environmental memory decay rate is
given by κ/λ = 1. The threshold values corresponding to the entanglement rebirth phenomenon
in the composite Bell states and in the Werner states in left and right panel of (a) are νth = 2.2λ and
νth = 1.47λ, respectively.

4. Conclusions

We have theoretically studied the disentanglement dynamics of a two-qubit system
in the presence of nonequilibrium environments with nonstationary and non-Markovian
RTN statistical properties. The reduced density matrix of the two-qubit system can be
expressed in terms of the Kraus representation by means of the tensor products of the single
qubit Kraus operators. We have derived the relations between the decoherence function
and the entanglement characterized by the concurrence and the nonlocality quantified by
the Bell function of the two-qubit system. We have identified the threshold values of the
decoherence function to ensure the existences of the concurrence and nonlocal quantum
correlations for a given evolution time when the two-qubit system is initially prepared
in the composite Bell states and the Werner states, respectively. The results demonstrate
that the environmental nonequilibrium feature can suppress the disentanglement of the
two-qubit system and reduce the entanglement revivals in the two-qubit disentanglement
dynamics. In addition, the environmental nonequilibrium feature can enhance the nonlo-
cality in the two-qubit system. Moreover, the phenomena of entanglement sudden death
and rebirth and the transition between quantum and classical nonlocalities closely depend
on the parameters of the initial states and the environmental parameters, such as the
nonstationary parameter, the memory decay rate and the coupling strength of the environ-
mental noise. Our results are helpful for further understanding the quantum dynamics in
nonequilibrium environments.
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Appendix A. Generalized RTN Process Based on Classical Probability Theory

Based on the classical probability theory [95], a stochastic process ξ(t) is completely
determined by an infinity hierarchy of the multi-point probability distribution

Pn = P(ξ1, t1; · · · ; ξn, tn) = 〈δ(ξ1 − ξ(t1)) · · · δ(ξn − ξ(tn))〉, (A1)

which represents that the stochastic process ξ(t) takes the valve ξ1 at time t1, · · · , and the
value ξn at time tn for all ordered sets of time t1 > · · · > tn (n ≥ 1). The n-point joint
probability Pn obeys the following four Kolmogorov consistency conditions:

(1) Nonnegative— i.e., Pn ≥ 0;
(2) Normalization—i.e., ∑ξ1

P1 = 1;
(3) Symmetry—i.e., Pn does not change by interchanging arbitrary pairs (ξk, tk) and

(ξl , tl);
(4) Relation between Pn and Pn−1—i.e., ∑ξn Pn = Pn−1.

In general, the initial one-point probability distribution P(ξ0, 0) is given and if we
want to obtain Pn, we should also know the conditional probability

P1|n−1 = P(ξ1, t1|ξ2, t2; · · · ; ξn, tn) = 〈δ(ξ1 − ξ(t1))〉ξ(t2)=ξ2,··· ,ξ(tn)=ξn , (A2)

which is the probability that the stochastic process ξ(t) at time t1 has the valve ξ1 under the
condition that the stochastic process ξ(t) takes the valve ξ2 at time t2, · · · , and the value ξn
at time tn. The conditions of nonnegativity and normalization are satisfied

P1|n−1 ≥ 0, ∑
ξ1

P1|1 = 1. (A3)

A stochastic process ξ(t) is considered to be stationary if all Pn depend only on the
time difference

P(ξ1, t1 + τ; · · · ; ξn, tn + τ) = P(ξ1, t1; · · · ; ξn, tn). (A4)

A necessary but not sufficient condition is that P1 is independent of time. Equivalently, if
there is at least one joint probability, Pi satisfies

P(ξ1, t1 + τ; · · · ; ξi, ti + τ) 6= P(ξ1, t1; · · · ; ξi, ti), (A5)

the stochastic process ξ(t) is nonstationary. A sufficient but not necessary condition is that
P1 is time-dependent.

A stochastic process ξ(t) is regarded to be Markovian if all P1|n−1 satisfy

P(ξ1, t1|ξ2, t2; · · · ; ξn, tn) = P(ξ1, t1|ξ2, t2). (A6)

That is the probability for the stochastic process ξ(t) at time t1 to take the valve ξ1 under
the condition that the stochastic process ξ(t) has the valve ξ2 at time t2, · · · , and the value
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ξn at time tn depends only on the last previous value ξ2 at time t2. P1|1 is also called
the conditional transition probability. It is remarkable that for a Markovian process, we
can reconstruct an arbitrary multi-point probability distribution by means of the initial
one-point distribution P(ξ0, 0) and conditional transition probability P1|1 as

P(ξ1, t1; · · · ; ξn, tn) =
n−1

∏
i

P(ξi, ti|ξi+1, ti+1)P(ξn, tn), (A7)

where the one-point probability distribution satisfies

P(ξ1, t1) = P(ξ1, t1|ξ0, 0)P(ξ0, 0). (A8)

A necessary but not sufficient condition for a Markov process is that the conditional
transition probability obeys the Chapman-Kolmogorov (CK) equation

P(ξ1, t1|ξ3, t3) = ∑
ξ2

P(ξ1, t1|ξ2, t2)P(ξ2, t2|ξ3, t3). (A9)

A stochastic process ξ(t) is non-Markovian if there is at least one conditional probability.
P1|i−1 depends not only on the last previous value ξi−1 at time ti−1 but on one or more
previous values ξ j at earlier time tj (j < i− 1). A sufficient but not necessary condition is
that the CK equation (A9) fails.

The subensemble of non-Markovian and nonstationary homogeneous stochastic pro-
cesses can be extracted from subensembles of Markovian and stationary stochastic pro-
cesses [95]. A simple assumption is that P1 is time-dependent

P(ξ, t) =
∫

P(ξ, t|ξ0, 0)P(ξ0, 0)dξ0, (A10)

with the initial nonstationary distribution P(ξ0, 0) and the conditional probability P1|1
depends on its previous history

∂

∂t
P(ξ, t|ξ ′, t′) =

∫ t

t′
K(t− τ)Mξ P(ξ, τ|ξ ′, t′)dτ, (A11)

where the initial condition is given by P(ξ, t′|ξ ′, t′) = δ(ξ − ξ ′), K(t − τ) denotes the
memory kernel composite environmental noise ξ(t) and Mξ is a differential operator
only involving derivatives with respect to ξ. Physically, the extraction of a subensemble
nonstationary and non-Markovian stochastic processes with memory effect and initial
nonstationary distribution taken into account means that the environment is in a certain
nonequilibrum state initially and the statistical properties of the environmental noise
depend on previous history. For the case a = 0, the environmental noise only displays
stationary property and the environment is in equilibrium [87,88]. When the environmental
noise is memoryless, i.e., K(t − τ) = δ(t − τ), the non-Markovian RTN recovers the
Markovian one and its memory effect vanishes.

Appendix B. Entanglement and Quantum Nonlocality of a Two-Qubit System

In this appendix, we introduce the most commonly used measures of the entanglement
and quantum nonlocality of a two-qubit system.

For a two-qubit system, all the entanglement measures are compatible, and we can
use the concurrence to quantify the entanglement defined as [94,102]

C(t) = max
{

0,
√

λ1(t)−
√

λ2(t)−
√

λ3(t)−
√

λ4(t)
}

, (A12)

where λi(t) are the eigenvalues of the matrix ζ(t) = ρ(t)(σy⊗ σy)ρ∗(t)(σy⊗ σy) arranged in
decreasing order with ρ∗(t) denoting the complex conjugation of the two-qubit reduced den-
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sity matrix ρ(t) in the two-qubit basis BT . The concurrence C(t) varies from the maximum
1 for a maximally entangled state to the minimum 0 for a completely disentangled state.

For pure quantum state, the entanglement corresponds to nonlocal correlations,
whereas it is not the general case for mixed states due to the fact that the environmental
noise gives rise to the decay of nonlocal correlations. The nonlocality can be identified
by the violation of the Bell inequalities in the presence of entanglement (C(t) > 0). The
Clauser-Horne-Shimony-Holt (CHSH) form of Bell function has been widely used to deter-
mine whether there are nonlocal correlations of the entangled system. The maximum Bell
function B(t) for an entangled two-qubit system can be, based on the Horodecki criterion,
expressed as [103]

B(t) = 2
√

max
j>k

[µj(t) + µk(t)], (A13)

where the subscripts j, k = 1, 2, 3 and µj(t) and µk(t) are functions in terms of the elements
of the two-qubit reduced density matrix. If the Bell function B(t) is larger than the classical
threshold Bth = 2, the quantum correlations of the entangled two-qubit system cannot be
reproduced by any classical local model.

It is known that the Bell states and Werner mixed states of a two-qubit system play
an essential role in quantum computation and quantum information [6]. The two-qubit
reduced density matrix expressed in Equation (17) for initial composite Bell states and
Werner states has an X structure both initially and during the dynamical evolution. The
concurrence C(t) for an initial X structure reduced density matrix of a two-qubit system
can be computed in a particular form as [104]

CX(t) = max{0, C1(t), C2(t)}, (A14)

where

C1(t) = 2
[
|ρ23(t)| −

√
ρ11(t)ρ44(t)

]
,

C2(t) = 2
[
|ρ14(t)| −

√
ρ22(t)ρ33(t)

]
.

(A15)

The time dependent maximum CHSH-Bell function B(t) for an X structure two-qubit
density matrix can be expressed analytically as [105]

BX(t) = max{B1(t),B2(t)}, (A16)

where B1(t) = 2
√

µ1(t) + µ2(t) and B2(t) = 2
√

µ1(t) + µ3(t) with

µ1(t) = 4[|ρ14(t)|+ |ρ23(t)|]2,

µ2(t) = [ρ11(t) + ρ44(t)− ρ22(t)− ρ33(t)]
2,

µ3(t) = 4[|ρ14(t)| − |ρ23(t)|]2.

(A17)
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34. Chruściński, D.; Maniscalco, S. Degree of Non-Markovianity of Quantum Evolution. Phys. Rev. Lett. 2014, 112, 120404. [CrossRef]
[PubMed]

35. Rivas, A.; Huelga, S.F.; Plenio, M.B. Quantum non-Markovianity: Characterization, quantification and detection. Rep. Prog. Phys.
2014, 77, 094001. [CrossRef] [PubMed]

36. Fanchini, F.F.; Karpat, G.; Çakmak, B.; Castelano, L.K.; Aguilar, G.H.; Farías, O.J.; Walborn, S.P.; Ribeiro, P.H.S.; de Oliveira, M.C.
Non-Markovianity through Accessible Information. Phys. Rev. Lett. 2014, 112, 210402. [CrossRef]

37. Breuer, H.; Laine, E.; Piilo, J.; Vacchini, B. Colloquium: Non-Markovian dynamics in open quantum systems. Rev. Mod. Phys. 2016,
88, 021002. [CrossRef]

38. de Vega, I.; Alonso, D. Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 2017, 89, 015001. [CrossRef]
39. Wang, B.; Xu, Z.Y.; Chen, Z.Q.; Feng, M. Non-Markovian effect on the quantum discord. Phys. Rev. A 2010, 81, 014101. [CrossRef]
40. Bellomo, B.; Lo Franco, R.; Compagno, G. Non-Markovian Effects on the Dynamics of Entanglement. Phys. Rev. Lett. 2007,

99, 160502. [CrossRef]

http://dx.doi.org/10.1126/science.1167343
http://dx.doi.org/10.1103/PhysRevLett.91.066801
http://www.ncbi.nlm.nih.gov/pubmed/12935099
http://dx.doi.org/10.1103/PhysRevB.96.235417
http://dx.doi.org/10.1103/PhysRevB.101.174302
http://dx.doi.org/10.1103/PhysRevA.101.032337
http://dx.doi.org/10.1103/PhysRevLett.100.090503
http://www.ncbi.nlm.nih.gov/pubmed/18352687
http://dx.doi.org/10.1103/PhysRevLett.125.210401
http://www.ncbi.nlm.nih.gov/pubmed/33275014
http://dx.doi.org/10.1088/1367-2630/11/11/113020
http://dx.doi.org/10.1103/PhysRevA.101.012331
http://dx.doi.org/10.1103/PhysRevA.102.062429
http://dx.doi.org/10.1103/PhysRevA.103.042402
http://dx.doi.org/10.1088/1367-2630/ac696b
http://dx.doi.org/10.1038/nature08811
http://dx.doi.org/10.1073/pnas.1005484107
http://www.ncbi.nlm.nih.gov/pubmed/20615985
http://dx.doi.org/10.1088/1367-2630/10/11/113019
http://dx.doi.org/10.1063/1.3223548
http://dx.doi.org/10.1088/1367-2630/11/3/033003
http://dx.doi.org/10.1063/1.4807084
http://www.ncbi.nlm.nih.gov/pubmed/23742477
http://dx.doi.org/10.1103/PhysRevLett.100.180402
http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://dx.doi.org/10.1103/PhysRevLett.105.050403
http://dx.doi.org/10.1103/PhysRevLett.109.170402
http://dx.doi.org/10.1142/S0217979213450537
http://dx.doi.org/10.1103/PhysRevLett.112.120404
http://www.ncbi.nlm.nih.gov/pubmed/24724632
http://dx.doi.org/10.1088/0034-4885/77/9/094001
http://www.ncbi.nlm.nih.gov/pubmed/25147025
http://dx.doi.org/10.1103/PhysRevLett.112.210402
http://dx.doi.org/10.1103/RevModPhys.88.021002
http://dx.doi.org/10.1103/RevModPhys.89.015001
http://dx.doi.org/10.1103/PhysRevA.81.014101
http://dx.doi.org/10.1103/PhysRevLett.99.160502


Entropy 2022, 24, 1330 21 of 23

41. Chenu, A.; Beau, M.; Cao, J.; del Campo, A. Quantum Simulation of Generic Many-Body Open System Dynamics Using Classical
Noise. Phys. Rev. Lett. 2017, 118, 140403. [CrossRef] [PubMed]

42. Huelga, S.F.; Rivas, A.; Plenio, M.B. Non-Markovianity-Assisted Steady State Entanglement. Phys. Rev. Lett. 2012, 108, 160402.
[CrossRef]

43. Yan, Y.A.; Shao, J. Equivalence of stochastic formulations and master equations for open systems. Phys. Rev. A 2018, 97, 042126.
[CrossRef]

44. Paladino, E.; Galperin, Y.M.; Falci, G.; Altshuler, B.L. 1/f noise: Implications for solid-state quantum information. Rev. Mod. Phys.
2014, 86, 361. [CrossRef]

45. Addis, C.; Ciccarello, F.; Cascio, M.; Palma, G.; Maniscalco, S. Dynamical decoupling efficiency versus quantum non-Markovianity.
New J. Phys. 2015, 17, 123004. [CrossRef]

46. Lombardo, F.C.; Villar, P.I. Environmentally induced effects on a bipartite two-level system: Geometric phase and entanglement
properties. Phys. Rev. A 2010, 81, 022115. [CrossRef]

47. Ma, J.; Cao, J. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. I. Full cumulant
expansions and system-bath entanglement. J. Chem. Phys. 2015, 142, 094106. [CrossRef]

48. Gu, B.; Franco, I. When can quantum decoherence be mimicked by classical noise? J. Chem. Phys. 2019, 151, 014109. [CrossRef]
[PubMed]

49. Poggi, P.M.; Lombardo, F.C.; Wisniacki, D.A. Driving-induced amplification of non-Markovianity in open quantum systems
evolution. Europhys. Lett. 2017, 118, 20005. [CrossRef]

50. Villar, P.I.; Soba, A. Geometric phase accumulated in a driven quantum system coupled to a structured environment. Phys. Rev. A
2020, 101, 052112. [CrossRef]

51. Czerwinski, A. Open quantum systems integrable by partial commutativity. Phys. Rev. A 2020, 102, 062423. [CrossRef]
52. Czerwinski, A. Dynamics of Open Quantum Systems-Markovian Semigroups and Beyond. Symmetry 2022, 14, 1752. [CrossRef]
53. Megier, N.; Smirne, A.; Campbell, S.; Vacchini, B. Correlations, Information Backflow, and Objectivity in a Class of Pure Dephasing

Models. Entropy 2022, 24, 304. [CrossRef]
54. Budini, A.A. Quantum Non-Markovian Processes Break Conditional Past-Future Independence. Phys. Rev. Lett. 2018, 121, 240401.

[CrossRef]
55. Man, Z.X.; Xia, Y.J.; Lo Franco, R. Validity of the Landauer principle and quantum memory effects via collisional models. Phys.

Rev. A 2019, 99, 042106. [CrossRef]
56. Budini, A.A. Conditional past-future correlation induced by non-Markovian dephasing reservoirs. Phys. Rev. A 2019, 99, 052125.

[CrossRef]
57. Budini, A.A. Quantum Non-Markovian Environment-to-System Backflows of Information: Nonoperational vs. Operational

Approaches. Entropy 2022, 24, 649. [CrossRef]
58. Du, P.L.; Wang, Y.; Xu, R.X.; Zhang, H.D.; Yan, Y. System-bath entanglement theorem with Gaussian environments. J. Chem. Phys.

2020, 152, 034102. [CrossRef]
59. Cai, X. Quantum Dynamics in a Fluctuating Environment. Entropy 2019, 21, 1040. [CrossRef]
60. Chiang, K.T.; Zhang, W.M. Non-Markovian decoherence dynamics of strong-coupling hybrid quantum systems: A master

equation approach. Phys. Rev. A 2021, 103, 013714. [CrossRef]
61. Zhang, Q.; Man, Z.X.; Xia, Y.J. Non-Markovianity and the Landauer principle in composite thermal environments. Phys. Rev. A

2021, 103, 032201. [CrossRef]
62. Villar, P.I.; Soba, A. Enhancement of quantum correlations and a geometric phase for a driven bipartite quantum system in a

structured environment. Phys. Rev. A 2021, 103, 032222. [CrossRef]
63. Huang, Y.W.; Zhang, W.M. Exact master equation for generalized quantum Brownian motion with momentum-dependent

system-environment couplings. Phys. Rev. Res. 2022, 4, 033151. [CrossRef]
64. Yu, T.; Eberly, J.H. Quantum Open System Theory: Bipartite Aspects. Phys. Rev. Lett. 2006, 97, 140403. [CrossRef]
65. López, C.E.; Romero, G.; Lastra, F.; Solano, E.; Retamal, J.C. Sudden Birth versus Sudden Death of Entanglement in Multipartite

Systems. Phys. Rev. Lett. 2008, 101, 080503. [CrossRef]
66. Mazzola, L.; Maniscalco, S.; Piilo, J.; Suominen, K.A. Interplay between entanglement and entropy in two-qubit systems. J. Phys.

B 2010, 43, 085505. [CrossRef]
67. Salles, A.; de Melo, F.; Almeida, M.P.; Hor-Meyll, M.; Walborn, S.P.; Souto Ribeiro, P.H.; Davidovich, L. Experimental investigation

of the dynamics of entanglement: Sudden death, complementarity, and continuous monitoring of the environment. Phys. Rev. A
2008, 78, 022322. [CrossRef]

68. Mazzola, L.; Maniscalco, S.; Piilo, J.; Suominen, K.A.; Garraway, B.M. Sudden death and sudden birth of entanglement in common
structured reservoirs. Phys. Rev. A 2009, 79, 042302. [CrossRef]
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