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Abstract: Previous authors tend to consider a certain range of values of the parameters involved in a
game, not taking into account other possible values. In this article, a quantum dynamical Cournot
duopoly game with memory and heterogeneous players (one of them is boundedly rational and
the other one, a naive player) is studied, where the quantum entanglement can be greater than one
and the speed of adjustment can be negative. In this context, we analyzed the behavior of the local
stability and the profit in those values. Considering the local stability, it is observed that the stability
region increases in the model with memory regardless of whether the quantum entanglement is
greater than one or whether the speed of adjustment is negative. However, it is also shown that the
stability is greater in the negative than in the positive zone of the speed of adjustment and, therefore,
it improves the results obtained in previous experiments. This increase of stability enables higher
values of speed of adjustment and, as a result of that, the system reaches the stability faster, resulting
in a remarkable economic advantage. Regarding the behavior of the profit with these parameters,
the principal effect shown is that the application of memory causes a certain delay in the dynamics.
Through this article, all these statements are analytically proved and widely supported with several
numerical simulations, using different values of the memory factor, the quantum entanglement, and
the speed of adjustment of the boundedly rational player.

Keywords: quantum Cournot duopoly game; quantum entanglement; memory; heterogeneous
players; local stability analysis; profit; bifurcation; chaos

1. Introduction

In the context of game theory, there is a common tendency to study a certain range of
values of the parameters in the analysis of the models, without considering other possible
ones. This paper intends to take into account some different values of the parameters
involved in a game to find new scenarios which can lead to interesting results. This
point of view can be relevant if we consider the variety of applications of game theory in
fields such as economics, psychology, biology, etc. It may occur that a special value of a
parameter in a game only has a sense in a specific science or subject of study, so that we
would analyze the model partially if we did not take it into account. Taking this view as
a starting point, we considered a wider range of values of some parameters involved in
the Cournot duopoly game to find new cases which have not been studied before. As this
analysis is focused on the economics, values with no economic meaning are excluded
from the study. This paper can be seen as a next step in the researched previously started
in [1]. Below, we briefly describe some common premises for both works, outlining the
variations considered in this study. In economics, one of the typical market structures is
the oligopoly, in which a few firms produce similar products. Cournot, in [2], presented a
theoretical model of olygopoly, where the firms involved attempted to maximize profits by
simultaneously choosing the amount of output to produce. Other models were proposed
by authors such as Bertrand in [3], who proposed a duopoly model based on setting the
prices of the players, or Stackelberg in [4] with a sequential model of the Cournot duopoly
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model. Another condition applicable to the game is the election of the player expectations,
which defines the production of each firm in future periods. Each type of player adjusts
the production for future periods to maximize the profit by using a different strategy.
This article considers two players, one is a boundedly rational player and the other one
with naive expectations in a similar way to [5,6], in the study of a nonlinear discrete-time
Cournot duopoly game. The model of a boundedly rational player depends on a parameter,
called speed of adjustment, which is usually positive; however, negative values of this
parameter are also considered in this article.

Since the application of quantum game theory usually improves the results comparing
to the classical games, it is also included in the game modelization. This technique was
used for the first time in [7] and, through the years, many authors have carried on with this
issue, highlighting the contribution of [8] where the two players of the Cournot duopoly
virtually cooperate due to the quantum entanglement between them, since the quantity
produced by each firm depends not only on the strategy of that player, but also on the
strategy of the other one. In this context, it is shown that when the entanglement increases,
the profits increase. As a consequence of that, a lot of articles related to the quantization
of games have appeared, applying entanglement to different duopoly games such as the
Cournot model in [9], the Bertrand model in [10], or the Stackelberg model in [11]. Other
authors have analyzed this subject from a different point of view. In, e.g., [12], economic
activity is described from a viewpoint of quantum games. The authors define a quantum
commodity as a good which can be interchangeable between players to trade and it is
studied how some of these goods, called quantum commodity money, can emerge as a
media of exchange not to be consumed or used in production, under certain conditions.
In order to compare the results with those described in [1,13], the model proposed in this
paper follows the Li–Du–Massar scheme proposed in [8]. The difference is that not only
values between zero and one of the quantum entanglement are considered, but also values
greater than one of this parameter are analyzed. The maximum quantum entanglement
is limited by the conditions required to verify the economic meaning of the game, as is
explained in the following sections.

Our model implements a model of memory based on an average of all the past states
with geometric decay, since the results obtained previously are better compared to the
system in absence of memory. Most of the works with memory are related with the
popular logistic map [14]. The pioneers in these studies with the logistic map were [15,16].
Before this paper, we investigated the effect of memory in systems that are discrete in all
their components (space, time, and state variable), i.e., cellular automata, in [17], as well as
in the logistic map in [18,19].

Finally, at the end of the paper, there is a study of the behavior of the profit for the
two players with and without memory and applying different values of the quantum
entanglement and the speed of adjustment of the boundedly rational player. This analysis
is focused on searching an economic sense to the model under different conditions to
understand the variations observed as a result of that.

This paper is organized as follows. In Section 2, a dynamical quantum Cournot
duopoly game model with heterogeneous players is briefly described. The equilibrium
points, as well as their local stability conditions, and the relationship between quantum
entanglement and stability region are also studied in this section, with special emphasis on
the new conditions, i.e., speed of adjustment less than zero and degree of entanglement
greater than one. In Section 3, numerical simulation is used to show the dynamics of the
system and to support the results obtained in the previous section. Section 4 analyzes the
behavior of the profit with and without memory with different values of the quantum
entanglement and the speed of adjustment of the boundedly rational player. Finally,
Section 5 presents the conclusions and meaning of this paper.
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2. The Model

Based on the article [13], we consider the classical Cournot’s duopoly in which two
firms are producing perfect substitute goods in a duopolistic market. The cost function
is the same for both firms and is taken in linear form: Ci(qi(t)) = ciqi(t). This classical
Cournot’s duopoly competition is taken in the quantum domain with the use of the Li–
Du–Massar entanglement structure based on quantum methods for continuous-variable
quantum games. We apply this model of quantization but there are other examples of
similar models, such as EWL or MW schemes [20]. Specifically, Eisert et al. described
the EWL model in [21] and applied it to the prisoners’ dilemma, showing that this game
ceases to pose a dilemma if quantum strategies are allowed for. We used the LDM model
of quantization to compare the results with those described in [1,13], since it has been
applied successfully by other authors. This entangled model has several steps. First,
the game starts from initial state |00〉. This state undergoes a unitary entanglement operation
Ĵ(γ) = e−γ(â†

1 â†
2−â1 â2), where a†

i (âi) represents the creation (annihilation) operator of the
firm’s i electromagnetic field and γ ≥ 0 is known as the squeezing parameter and can be
reasonably regarded as a measure of entanglement. Next, the two firms execute their

strategic moves via unitary operation D̂i(xi) = exi(â†
i −âi)/

√
2, i = 1, 2. Finally, these two firms’

states are measured after a disentanglement operation Ĵ(γ)†. Thus, the final state is carried out
by |ψ f 〉 = Ĵ(γ)†(D̂1(x1)⊗ D̂2(x2)

)
Ĵ(γ)|00〉. The final measurement gives the respective

quantum quantities of the two firms:

qc
1 = x1 cosh γ + x2 sinh γ,

qc
2 = x2 cosh γ + x1 sinh γ,

(1)

where x1 and x2 represent the independent quantities and qc
1 and qc

2 are the entangled
quantities used by the two firms in the quantum game. When the degree of entangle-
ment is zero, i.e., γ = 0, then the quantum game turns into the original classic form and
qc

i (t) = xi(t) = qi(t). Therefore, the market quantum price, based on the linear inverse
demand function, is

pc = a− bQc = a− beγ(x1 + x2), (2)

being Qc = qc
1 + qc

2 and a > 0 and b > 0 and a > bQc. Then, we can find that the dynamical
quantum profits of the two firms are{

uc
1(t) = qc

1(t)(pc(t)− c1) = (x1(t) cosh γ + x2(t) sinh γ)(a− beγ(x1(t) + x2(t))− c1),
uc

2(t) = qc
2(t)(pc(t)− c2) = (x2(t) cosh γ + x1(t) sinh γ)(a− beγ(x1(t) + x2(t))− c2).

(3)

We also consider this study with different expectations (heterogeneous expectations), the
first player being a boundedly rational player, and the other one a naive player. Since
the knowledge of the market is usually incomplete, the first firm with boundedly rational
expectations builds his output decision on the basis of the estimation of the marginal profit
∂uc

1(t)
∂x1(t)

. This player decides to increase or decrease the production if the marginal profit is
positive or negative, respectively. Then, this boundedly rational player can be modeled as

x1(t + 1) = x1(t) + αx1(t)
∂uc

1(t)
∂x1(t)

= x1(t) + αx1(t)
(
(a− c1) cosh γ− b

(
1 + e2γ

)
x1(t)− be2γx2(t)

)
, (4)

where α is a parameter which represents the speed of adjustment.
The independent quantity of the naive player maximizes the expected profit. To obtain

the maximum benefit we have to derive uc
2(t) with respect to x2(t) and equalize to 0 to

resolve x∗2(t); then, the naive player can be modeled as follows:

x2(t + 1) = x∗2(t) =
(a− c2) cosh γ− be2γx1(t)

b(1 + e2γ)
. (5)
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It is shown that it is really a maximum because it verifies the second-order condition, i.e.,

∂2uc
2(t)

∂x2(t)2 = −b
(

1 + e2γ
)
< 0 (6)

recalling that b is a positive constant.
Based on the article [13], we also add the memory effect studied earlier in these

articles [17–19]. We consider a weighted average memory with geometric decay µi(t),
which is defined in the article [19] as

µi(t) =
xi(t) + ∑t−1

j=1 βt−jxi(j)

1 + ∑t−1
j=1 βt−j

≡ ωi(t)
Ωi(t)

for t > 1, (7)

being,
ωi(t + 1) = xi(t + 1) + βωi(t), (8)

and,
Ωi(t + 1) = 1 + βΩi(t). (9)

where β represents the memory factor and µi(1) = xi(1) and Ω(1) = 1. The limit case
β = 1 corresponds to a memory with equally weighted records (full memory), whereas
β� 1 intensifies the contribution of the most recent states (short-term working memory).
The choice β = 0 leads to the memoryless model. Therefore, the dynamical quantum
Cournot duopoly game with heterogeneous players with memory can be described using
the following two-dimensional discrete-time dynamical system:

x1(t + 1) = µ1(t) + α′µ1(t)
(
(a− c1) cosh γ− b

(
1 + e2γ

)
µ1(t)− be2γµ2(t)

)
,

x2(t + 1) =
(a− c2) cosh γ− be2γµ1(t)

b(1 + e2γ)
,

(10)

where α′ is a parameter which represents the speed of adjustment in the game with memory
for the first player.

As xi, i = 1, 2 are the independent quantities, they must have a positive value and,
if at any step, the result of the equation is negative, we consider that this quantity xi is zero.

2.1. Equilibrium Points
Considering, for long times and β < 1, µ(t) = ω(t)(1− β), the two-dimensional

discrete-time dynamical system of Equation (10) can be written as
ω1(t + 1) = ω1(t) + α′ω1(t)(1− β)

(
(a− c1) cosh γ− b

(
1 + e2γ

)
ω1(t)(1− β)− be2γω2(t)(1− β)

)
,

ω2(t + 1) = βω2(t) +
(a− c2) cosh γ− be2γω1(t)(1− β)

b(1 + e2γ)
.

(11)

To find the equilibrium points of Equation (11), we can replace all ωi(t + 1) and ωi(t) for
ωi into Equation (11), obtaining the following nonlinear algebraic system:

ω1(1− β)
(
(a− c1) cosh γ− b

(
1 + e2γ

)
ω1(1− β)− be2γω2(1− β)

)
= 0,

(a− c2) cosh γ− be2γω1(1− β)

b(1 + e2γ)(1− β)
−ω2 = 0.

(12)

In Equation (12) there are two fixed points. As can be seen in the first equation, one
solution for player 1 is given by ω I

1 = xI
1 = 0 (where, for a long time, µi = xi), and then

substituting into the second equation, we have for player 2

ω I
2 =

(a− c2) cosh γ

b(1 + e2γ)(1− β)
, (13)
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due to ω I
2 =

µI
2

(1−β)
and based on the article [1], where for long times

µi(t) =
xi(t)

(
1 + ∑t−1

j=1 βt−j
)

1 + ∑t−1
j=1 βt−j

= xi(t), (14)

it is obtained:

µI
2 = xI

2 =
(a− c2) cosh γ

b(1 + e2γ)
. (15)

Then, the first fixed point of the system is EI =
(

0, (a−c2) cosh γ
b(1+e2γ)

)
.

The other fixed point is determined by these equations:
(a− c1) cosh γ− b

(
1 + e2γ

)
ω I I

1 (1− β)− be2γω I I
2 (1− β) = 0,

(a− c2) cosh γ− be2γω I I
1 (1− β)

b(1 + e2γ)(1− β)
−ω I I

2 = 0.
(16)

Thus, the second fixed point of the system is EI I =
(
xI I

1 , xI I
2
)
, where

ω I I
1 =

(
a− c1 + e2γ(c2 − c1)

)
cosh γ

b(1 + 2e2γ)(1− β)
, ω I I

2 =

(
a− c2 + e2γ(c1 − c2)

)
cosh γ

b(1 + 2e2γ)(1− β)
, (17)

and so ω I I = µI I

(1−β)
, then:

µI I
1 = xI I

1 =

(
a− c1 + e2γ(c2 − c1)

)
cosh γ

b(1 + 2e2γ)
, µI I

2 = xI I
2 =

(
a− c2 + e2γ(c1 − c2)

)
cosh γ

b(1 + 2e2γ)
. (18)

Since the quantum Nash equilibrium has economic meaning and the fixed point EI I is
stable when α > 0, as is shown in [1], then it must verify that{

a− c1 + e2γ(c2 − c1) > 0,
a− c2 + e2γ(c1 − c2) > 0.

(19)

If we set these values
m =

c1 − c2

a− c1
, k = a− c1, (20)

then Equation (19) can be expressed as{
1−me2γ > 0,
1 + m + me2γ > 0,

(21)

where m represents the relative marginal cost difference.

2.2. Local Stability

In this section, we analyze the local stability of the equilibrium points for all the values
of α, positive and negative, taking into account the new conditions, α′ < 0 and γ > 1,
and considering two different zones in this study: m ≤ 0 and m > 0. When α′ ≥ 0, as is
shown in [1], the fixed point EI I is stable and gives the stability condition of the system:

α′ <
2(1 + β)

(
1 + e2γ

)(
1 + 2e2γ

)
(1− β)

[
(1 + e2γ)

2
(1 + β) + e4γ(1− β)

]
[a− c1 + e2γ(c2 − c1)] cosh γ

, (22)
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with the equivalences mentioned in Equation (20), we can simplify as follows:

α′ <
2(1 + β)

(
1 + e2γ

)(
1 + 2e2γ

)
k(1− β)

[
(1 + e2γ)

2
(1 + β) + e4γ(1− β)

]
(1−me2γ) cosh γ

. (23)

To study the stability when α′ < 0, it is necessary to usethe Jacobian matrix J of
Equation (11), which can be expressed as

J(ω1, ω2) =

1 + α′(1− β)
[
(a− c1) cosh γ− (1− β)

(
2b
(
1 + e2γ

)
ω1 − be2γω2

)]
−α′be2γ(1− β)2ω1

− e2γ

1 + e2γ
(1− β) β

. (24)

We start with the analysis of the stability of the second equilibrium point EI I . The Jacobian
matrix Equation (24) at this point can be written as

J(EI I) =

1− α′b(1− β)2(1 + e2γ
)
ω I I

1 −α′be2γ(1− β)2ω I I
1

− e2γ

1 + e2γ
(1− β) β

. (25)

The characteristic polynomial can be expressed as

p(λ) = λ2 − Tr(J)λ + Det(J), (26)

where Tr(J) and Det(J) represent the trace and the determinant of the Jacobian matrix
J
(
EI I) and are given by

Tr(J) = 1 + β− α′b(1− β)2
(

1 + e2γ
)

ω I I
1 ,

Det(J) = β− α′bβ(1− β)2
(

1 + e2γ
)

ω I I
1 −

α′b(1− β)3e4γω I I
1

1 + e2γ
.

(27)

At this point, the Jury criterion can be applied to analyze the local stability of the
second equilibrium point EI I , checking these three conditions:

(a) p(1) = 1− Tr(J) + Det(J) > 0,
(b) p(−1) = 1 + Tr(J) + Det(J) > 0,
(c) Det(J) < 1.

(28)

The first condition can be written as follows, taking into account Equation (27)

1− Tr(J) + Det(J) =
α′b(1− β)3ω I I

1

[(
1 + e2γ

)2 − e4γ
]

1 + e2γ
=

α′b(1− β)3ω I I
1
(
1 + 2e2γ

)
1 + e2γ

> 0, (29)

which is never satisfied when α′ < 0. Then, it is not necessary to verify the other condi-
tions to prove that the fixed point EI I is unstable for α′ < 0. Now, considering the first
equilibrium point EI , the Jacobian matrix Equation (24) in this point can be calculated as

J(EI) =

1 + α′(1− β)

(
a− c1 + e2γ(c2 − c1)

)
cosh γ

(1 + e2γ)
0

− e2γ

1 + e2γ
(1− β) β

. (30)

There are two eigenvalues of the Jacobian matrix J(EI):

λ1 = 1 + α′(1− β)

(
a− c1 + e2γ(c2 − c1)

)
cosh γ

(1 + e2γ)
= 1 + α′(1− β)

k
(
1−me2γ

)
coshγ

(1 + e2γ)
, (31)
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λ2 = β (32)

The equilibrium point EI will be stable if the modulus of both eigenvalues are less than 1.
Since β < 1 is one of the assumptions mentioned previously in the model, it is clear that
|λ2| < 1. Considering the eigenvalue λ1, the condition |λ1| < 1 is satisfied for α′ < 0 when
it verifies

− 1 < 1 + α′(1− β)

(
a− c1 + e2γ(c2 − c1)

)
cosh γ

(1 + e2γ)
< 1, (33)

− 2 < α′(1− β)

(
a− c1 + e2γ(c2 − c1)

)
cosh γ

(1 + e2γ)
< 0. (34)

This compound inequality can be divided into two parts and it results in

α′(1− β)

(
a− c1 + e2γ(c2 − c1)

)
cosh γ

(1 + e2γ)
< 0, (35)

α′(1− β)

(
a− c1 + e2γ(c2 − c1)

)
cosh γ

(1 + e2γ)
> −2. (36)

When α′ < 0, according to the condition β < 1, Equation (35) is always verified if(
a− c1 + e2γ(c2 − c1)

)
> 0, (37)

or forthe same, 1−me2γ > 0 . Additionally, if we isolate α′ in Equation (36), then we have

α′ >
−2
(
1 + e2γ

)
(1− β)(a− c1 + e2γ(c2 − c1)) cosh γ

. (38)

Using the equivalences mentioned in Equation (20), we can simplify Equation (38) as
follows:

α′ >
−2
(
1 + e2γ

)
k(1− β)(1−me2γ) cosh γ

. (39)

Therefore, the first equilibrium point EI is stable when Equation (38) is verified, in con-
trast to the case α′ > 0, described previously in [1], where this fixed point is unstable. It is
also proved that, having α′ < 0, the stability region is bigger when β increases.

Since in the non-memory model with α < 0 the stability condition is α >
−2(1+e2γ)

k(1−me2γ) cosh γ
,

we can express α′ as a function of α, as follows:

α′ ≥ α

1− β
. (40)

Thus, having α < 0 and α′ < 0, it is proved that the stability region in the game with mem-
ory is bigger than in the non-memory game in every value of the quantum entanglement γ,
assuming the same conditions. As a conclusion, it can be stated that the system is stable for
the values of α′ which verify the following expression:

−2
(
1 + e2γ

)
k(1− β)(1−me2γ) cosh γ

< α′ <
2(1 + β)

(
1 + e2γ

)(
1 + 2e2γ

)
k(1− β)

[
(1 + e2γ)

2
(1 + β) + e4γ(1− β)

]
(1−me2γ)coshγ

(41)

This expression can be simplified as follows:

− αi < α′ < δ(γ, β)αi, (42)
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where αi and δ(γ, β) can be expressed as

αi =
2
(
1 + e2γ

)
k(1− β)(1−me2γ) cosh γ

, (43)

δ(γ, β) =
(1 + β)

(
1 + 2e2γ

)
(1 + e2γ)

2
(1 + β) + e4γ(1− β)

. (44)

It is shown that the stability is greater in the negative than in the positive zone because it
always verifies that δ(γ, β) < 1, independently of the value of γ and β considered.

It is important to obtain the values of m and γ where this study is valid (economic
meaning). In α′ > 0, as we mentioned in Equation (21), due to the economic meaning of the
Nash equilibrium, the expressions 1−me2γ and 1 + m + me2γ must be positive. On one
side, 1−me2γ > 0 is always verified when m ≤ 0 and γ ≥ 0 but, in contrast, when m > 0,
this expression can be positive, negative, or zero depending on the value of γ. At this point,
we calculate the value of γ where 1−me2γ = 0 to establish the limit between the negative
and positive values of this parameter. This particular value of γ, called γ0, can be expressed
as follows:

γ0 =
1
2

ln
(

1
m

)
when m > 0. (45)

From γ0, we can deduce the positive and negative region of 1−me2γ when m > 0:{
1−me2γ > 0 0 ≤ γ < γ0,
1−me2γ ≤ 0 γ ≥ γ0.

(46)

On the other side, 1 + m + me2γ > 0 is always verified when m > 0, but, on the
contrary, it does not happen when m ≤ 0. Then, we obtain the value of γ, called γ1, where
1 + m + me2γ = 0, as we obtain in the previous case:

γ1 =
1
2

ln
(
−1−m

m

)
when m ≤ 0. (47)

From γ1, we can deduce the positive and negative region of 1+ m + me2γ when m ≤ 0:{
1 + m + me2γ > 0 0 ≤ γ < γ1,
1 + m + me2γ ≤ 0 γ ≥ γ1.

(48)

Therefore, in α′ > 0, the study of the stability of this section is only valid for these values:{
m > 0 0 ≤ γ < γ0,
m ≤ 0 0 ≤ γ < γ1.

(49)

In α′ < 0, to ensure that the Nash equilibrium point E1 has economic meaning,
the value of Equation (15) must be positive. As b > 0 and 1 + e2γ > 0, it verifies that
the denominator is always positive. Considering the numerator of the equation, since
cosh γ > 0 when γ ≥ 0, then it must be a− c2 > 0 or forthe same a > c2, which is always
true. As is shown in Equation (37), the condition 1−me2γ > 0 is necessary for the stability
of EI . This condition is always verified when m ≤ 0 and γ ≥ 0, but, in contrast, when
m > 0 this expression can be positive, negative, or zero depending on the value of γ. At this
point, as we calculated previously, the value of γ where 1−me2γ = 0 establishes the limit
between the negative and positive values of this expression. This particular value of γ,
called γ0, is expressed in Equation (45). Therefore, in α′ < 0, the study of the stability of
this section is only valid for these values:{

m > 0 0 ≤ γ < γ0,
m ≤ 0 in all γ.

(50)
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3. Numerical Simulation

On this basis, we use numerical simulation to study the effect of memory in the
system and graphically support the results analytically obtained throughout this paper. We
consider the previous simulations carried out in [1] as a starting point and, as is described
within, two different zones are included in this study: m > 0 and m ≤ 0. Under these
premises, memory is applied to the quantum game to observe the variation of the stability
and dynamical behavior of the system, with special attention given to the values α′ < 0
and γ > 1.

At first, the region m > 0 is analyzed, considering the value m = 0.1 (we set a =
10, b = 0.5, c1 = 3, andc2 = 2.3) without memory in Figure 1 and with several values of the
memory factor, β (0, 0.2, 0.5, and 0.8) in Figure 2. These figures show that the stability is
greater in negative values of α′ than in positive ones for every specific value of γ and β,
and the stability region increases with β, both in negative and positive values of α′.

Figure 1. Stability region for m = 0.1 (a = 10, b = 0.5, c1 = 3, c2 = 2.3) in the absence of memory.
The area with no economic sense is shaded in blue, that is, when γ > γ0 = 1.1513.

Figure 2. Stability region for m = 0.1 (a = 10, b = 0.5, c1 = 3, c2 = 2.3) and different values of β (0,
0.2, 0.5, and 0.8). The vertical line γ = 0.7 is represented because this value and γ = 0 are the values
used in the bifurcation diagrams. The area with no economic sense is shaded in blue, that is, when
γ > γ0 = 1.1513.
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Due to its mathematical importance, the region without economic meaning is also
represented by a blue shaded area, i.e., γ ≥ γ0, where γ0 = 1.15 in this example, according
to Equation (45). Apart from being the edge between both regions, there is an asymptote
in γ0, which can be deduced from the inequality Equation (41) because the denominators
cancel out since it verifies 1−me2γ = 0 in this point. It is relevant that the equilibrium of
the fixed points is inverted when γ > γ0 due to the sign change of the expression 1−me2γ,
as is shown in Equation (46).

In these figures, it is also shown that for negative values of α′, if γ increases, the stability
zone is greater because the modulus of α′ increases up to this asymptote in γ0, and it has
the same behavior than the case of positive values of α′. This verifies up to a point because
there is an exception when the value of the relative marginal cost difference m is between 0
and 0.1. As can be seen in Figure 3 with the example m = 0.014, there is a range of values
of γ where α′ decreases when γ increases, which means that the stability zone is smaller
in these values. Likewise, Figure 4 shows that from m = 0.0 to m = 0.1 there is a range of
values of γ where α′ decreases when γ increases.

Figure 3. Stability region as a function of γ for m = 0.014 (a = 10, b = 0.5, c1 = 3, c2 = 2.9) and
without memory, β = 0.

Figure 4. Stability region as a function of γ for m between 0.009 < m < 0.1 and without memory,
β = 0.
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The bifurcation diagrams of output of the first player are also represented for the
values γ = 0 and γ = 0.7 in the region m > 0, considering m = 0.1 (we set a = 10, b = 0.5,
c1 = 3, andc2 = 2.3) in Figures 5 and 6. In these figures we show the increase of stability for
α′ < 0 when the value of β is greater, as well as for α′ > 0.

(a) (b)

(c) (d)

Figure 5. Bifurcation diagrams of output of the first player as a function of α with γ = 0 and
β = 0, 0.2, 0.5, 0.8 in the zone m = 0.1 (a = 10, b = 0.5, c1 = 3, c2 = 2.3). (a) β = 0; (b) β = 0.2;
(c) β = 0.5; (d) β = 0.8.
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(a) (b)

(c) (d)

Figure 6. Bifurcation diagrams of output of the first player as a function of α with γ = 0.7 and
β = 0, 0.2, 0.5, 0.8 in the zone m = 0.1 (a = 10, b = 0.5, c1 = 3, c2 = 2.3). (a) β = 0; (b) β = 0.2;
(c) β = 0.5; (d) β = 0.8.

Secondly, the local stability in the region m ≤ 0 for m = −0.1 (we set a = 10, b =
0.5, c1 = 3, c2 = 3.7) without memory is represented in Figure 7 and with several values of
the memory factor, β (0, 0.2, 0.5, and 0.8) in Figure 8. As we previously mentioned, it can be
seen that the stability is always greater in the negative zone for every γ and β considered,
and the stability region increases with β, both in negative and positive values of α′.
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Figure 7. Stability region for m = −0.1 (a = 10, b = 0.5, c1 = 3, c2 = 3.7) in the absence of memory.
The area with no economic sense is shaded in blue, that is, when γ > γ1 = 1.0986 and α′ > 0.

Figure 8. Stability region for m = −0.1 (a = 10, b = 0.5, c1 = 3, c2 = 3.7) and different values of β (0,
0.2, 0.5, and 0.8). The vertical line γ = 0.7 is represented because this value and γ = 0 are the values
used in the bifurcation diagrams. The area with no economic sense is shaded in blue, that is, when
γ > γ1 = 1.0986 and α′ > 0.

Similarly to the previous region of study, the zone without economic meaning, γ ≥ γ1
where γ1 = 1.09 considering Equation (47), is also represented in the figures because it is
interesting from a mathematical point of view. In fact, a minimum in the negative zone of
α′ can be observed, which corresponds to a stability maximum in this zone. To calculate
the value of γ for this maximum, we can substitute the expression cosh γ = eγ+e−γ

2 into
Equation (39), and simplifying, we obtain

α′ > f (γ) =
−4eγ

k(1− β)(1−me2γ)
. (51)

Then, the stability maximum is given by the derivative of the right term of the inequal-
ity equals zero:
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∂ f (γ)
∂γ

=
−4eγ

(
1 + me2γ

)
k(1− β)(1−me2γ)

2 = 0. (52)

Since the term eγ is always positive, the value of the maximum, γmax, can be obtained
from the expression

(
1 + me2γ

)
= 0, which results in

γmax =
1
2

ln
(
−1
m

)
m ≤ 0. (53)

It is shown that it is really a minimum because it verifies the second-order condition, i.e.,

∂2 f (γ)
∂γ2 =

4eγ
(
1 + me2γ

(
6 + me2γ

))
k(1− β)(−1 + me2γ)

3 , (54)

replacing γ for this γmax of Equation (53), m = −0.1 and k = 7, it can be verified that the
result is positive:

∂2 f (γ)
∂γ2 =

2eγ

k(1− β)
=

0.897254
1− β

> 0 β ≤ 1. (55)

We can observe the coincidence of the expressions of γ0 where m > 0 and γmax where
m ≤ 0, given by Equations (45) and (53), respectively. Therefore, we can write the following
equation:

γ0 = γmax =
1
2

ln
(

1
|m|

)
(56)

Regarding the variation of the stability with γ, the behavior is different when α′ is negative
and γ < γmax, the stability zone is greater as γ increases in contrast to the case of α′ positive,
where the stability zone decreases as γ increases. In this sense, considering the stability
zone, the results obtained for m ≤ 0 when α′ is negative are better than in the same case
when α′ is positive.

As happens in the previous region considered, the bifurcation diagrams of output of
the first player for the values γ = 0 and γ = 0.7 in the region m ≤ 0, with m = −0.1 (we set
a = 10, b = 0.5, c1 = 3, c2 = 2.3), are also represented in Figures 9 and 10. In these figures,
the increase of stability is shown for α′ < 0 when the value of β is greater, as well as for
α′ > 0.

(a) (b)

Figure 9. Cont.
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(c) (d)

Figure 9. Bifurcation diagrams of output of the first player as a function of α with γ = 0 and
β = 0, 0.2, 0.5, 0.8 in the zone m = −0.1 (a = 10, b = 0.5, c1 = 3, c2 = 3.7). (a) β = 0; (b) β = 0.2;
(c) β = 0.5; (d) β = 0.8.

(a) (b)

Figure 10. Cont.
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(c) (d)

Figure 10. Bifurcation diagrams of output of the first player as a function of α with γ = 0.7 and
β = 0, 0.2, 0.5, 0.8 in the zone m = −0.1 (a = 10, b = 0.5, c1 = 3, c2 = 3.7). (a) β = 0; (b) β = 0.2;
(c) β = 0.5; (d) β = 0.8.

4. Profit

From the point of view of the quantum profit, we study the behavior of the benefit
with and without memory with different values of the quantum entanglement (γ). We
start from the quantum profit Equation (3), considering that there is not memory in t = 0,
then the quantum profit of the two firms can be obtained, replacing the initial value of both
firms in Equation (3). After that, xi in t = 1 is found from Equation (10), with µi(0) = xi(0)
being the initial value of the i-firm. With these values of xi(1), we can resolve the quantum
profit of both firms in t = 1, again with Equation (3). Repeating the process, we can find xi
of both firms in t = 2 with Equation (10), being µi(1) = xi(1). With these values of xi(2),
we can resolve the quantum profit in t = 2 with Equation (3). For t = 3, we can resolve the
values xi(3) with Equation (10), calculating µi(2) from Equations (7)–(9). With these values,
µi(2), the value of xi in t = 3 can be resolved and so on to the next interaction of time.

4.1. Without Speed of Adjustment of the Boundedly Rational Player (α′)

When there is not speed of adjustment of the boundedly rational player (α′), the values
of the quantum profits of both players are the same with or without memory. First of all, we
represent the behavior of the quantum profit without memory of the two firms as a function
of the quantum entanglement (γ) in the two cases, with m < 0 and m > 0. With m < 0
(c2 > c1, the cost of player 2 is greater than the cost of player 1), the quantum profit of the
two firms with different (γ) can be seen in Figure 11, where the quantum profit in player 1
is lower than in player 2 when γ = 0 (classic game). As the value of the degree of quantum
entanglement (γ) increases, the quantum profits of both players move closer to the value
of γ equal to 1.15, where both quantum profits are equal to 10.92. Due to the economic
meaning of the game, this point is never reached because the value of γ has to be less than
1.09 according to Equation (47).

With m > 0 (c1 > c2, the cost of player 1 is greater than the cost of player 2), the quan-
tum profit of the two firms with different (γ) is shown in Figure 12, where the quantum
profit in player 1 is lower than in player 2 when γ = 0 (classic game). If the value of the
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degree of quantum entanglement (γ) increases, the quantum profits of both players move
closer but the profit of player 2 is always greater than the quantum profit of player 1. As in
the previous case, when γ > 1.15, the values have no economic meaning according to
Equation (45).

Figure 11. Quantum profits of the two firms (u1 in blue and u2 in red) as a function of γ (degree
of quantum entanglement) with β = 0 (without memory) and α′=0 (speed of adjustment is zero,
therefore x1(t + 1) = x1(t)) in the zone m = −0.1 (a = 10, b = 0.5, c1 = 3, c2 = 3.7) with initial value
of x1(0) = x2(0) = 0.001. The point where u1 = u2 = 10.92 is when γ = 1.15, but according to
Equation (47), γ ≤ 1.09 to have economic meaning.

Figure 12. Quantum profits of the two firms (u1 in blue and u2 in red) as a function of γ (degree
of quantum entanglement) with β = 0 (without memory) and α′=0 (speed of adjustment is zero,
therefore x1(t + 1) = x1(t)) in the zone m = 0.1 (a = 10, b = 0.5, c1 = 3, c2 = 2.3) with initial value of
x1(0) = x2(0) = 0.001. When γ ≤ 1.15 the game has economic meaning according to Equation (45).
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4.2. With Positive Values of Speed of Adjustment of the Boundedly Rational Player (α′)

We study the behavior of the quantum profit with positive values of the speed of
adjustment of the boundedly rational player (α′). We start with α′ = 0.2 and without
memory in two cases, with m < 0 and with m > 0, representing them in Figure 13.

(a) m < 0 (c2 > c1) (b) m > 0 (c2 < c1)

Figure 13. Quantum profits of the two firms (u1 in blue and u2 in red) as a function of γ (degree of
quantum entanglement) with β = 0 (without memory) and α′ = 0.2 (speed of adjustment): (a) in
the zone m = −0.1 (a = 10, b = 0.5, c1 = 3, c2 = 3.7) and (b) in the zone m = 0.1 (a = 10, b = 0.5,
c1 = 3, c2 = 2.3), with initial value of x1(0) = x2(0) = 0.001.

As is shown, if we remove the first 50 iterations, the quantum profit tends to be stable
except when the value of γ is high, as can be seen in Figure 14.

(a) m < 0 (c2 > c1) (b) m > 0 (c2 < c1)

Figure 14. Quantum profits of the two firms (u1 in blue and u2 in red) as a function of γ (degree of
quantum entanglement) with β = 0 (without memory), α′ = 0.2 (speed of adjustment), and without
the first 50 iterations: (a) in the zone m = −0.1 (a = 10, b = 0.5, c1 = 3, c2 = 3.7) and (b) in the zone
m = 0.1 (a = 10, b = 0.5, c1 = 3, c2 = 2.3), with initial value of x1(0) = x2(0) = 0.001.
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In the system with memory (β = 0.2), the chaotic effect observed in high values of γ is
delayed, as can be seen in Figure 15.

(a) m < 0 (c2 > c1) (b) m > 0 (c2 < c1)

Figure 15. Quantum profits of the two firms (u1 in blue and u2 in red) as a function of γ (degree of
quantum entanglement) with β = 0.2 (with memory), α′ = 0.2 (speed of adjustment), and without
the first 50 iterations: (a) in the zone m = −0.1 (a = 10, b = 0.5, c1 = 3, c2 = 3.7) and (b) m = 0.1
(a = 10, b = 0.5, c1 = 3, c2 = 2.3), with initial value of x1(0) = x2(0) = 0.001.

When α′ increases, xi and, therefore, the quantum profit are outside the stability zone.
Then, the profits can have different values in t and in t + 1. The profits can vary between
two or more values if the system is in the chaotic zone, as can be seen in Figure 16.

(a) m < 0 (c2 > c1) (b) m > 0 (c2 < c1)

Figure 16. Quantum profits of the two firms (u1 in blue and u2 in red) as a function of γ (degree of
quantum entanglement) with β = 0 (without memory), α′ = 0.4 (speed of adjustment), and without
the first 50 iterations: (a) in the zone m = −0.1 (a = 10, b = 0.5, c1 = 3, c2 = 3.7) and (b) m = 0.1
(a = 10, b = 0.5, c1 = 3, c2 = 2.3), with initial value of x1(0) = x2(0) = 0.001.
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Considering the same value of α′ = 0.4 and applying a greater value of memory
(β = 0.5), we can see that the quantum profits do not vary between two or more values
because the system is in the stability zone, as is represented in Figure 17.

(a) m < 0 (c2 > c1) (b) m > 0 (c2 < c1)

Figure 17. Quantum profits of the two firms (u1 in blue and u2 in red) as a function of γ (degree of
quantum entanglement) with β = 0.5 (with memory), α′ = 0.4 (speed of adjustment), and without
the first 100 iterations: (a) in the zone m = −0.1 (a = 10, b = 0.5, c1 = 3, c2 = 3.7) and (b) m = 0.1
(a = 10, b = 0.5, c1 = 3, c2 = 2.3), with initial value of x1(0) = x2(0) = 0.001.

4.3. With Negative Values of Speed of Adjustment of the Boundedly Rational Player (α′)

The next step is analyzing the behavior of the quantum profit with negative values of
the speed of adjustment of the boundedly rational player (α′). Initially it is considered that
α′ = −0.2 and there is absence of memory in both cases, with m < 0 and with m > 0, as is
shown in Figure 18.

As can be seen, the behavior is the same as if there is not speed of adjustment of the
boundedly rational player, as in Figures 11 and 12. That means that the effect of memory is
the increase of the stability zone, delaying the presence of chaos.

Taking into account the Equation (50), in α′ < 0, when m < 0 all values of γ are valid
and therefore, there is a point in γ = 1.15 where the quantum profits of both players have
the same value and are equal to 10.91. However, when you increase γ, player 2 has more
profit than the player 1. In m > 0 only the values of γ <= 1.15 are valid regarding to the
Equation (45).

At this point, we increase the value of the speed of adjustment of the boundedly
rational player to α′ = −0.8 without applying memory. Then, the behavior is similar to the
case with α′ = −0.2 except in values of γ near 0, because the system is in the chaotic zone
as can be seen in Figure 19. This is because it is outside of the stability zone, as is shown in
Figures 2 and 8.

If we add memory to the system, the stability zone increases and the profits do not
vary chaotically, as happens in the example with α = −0.8 and β = 0.8, which can be seen
in Figure 20.
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(a) m < 0 (c2 > c1) (b) m > 0 (c2 < c1)

Figure 18. Quantum profits of the two firms (u1 in blue and u2 in red) as a function of γ (degree of
quantum entanglement) with β = 0 (without memory) and α′ = −0.2 (speed of adjustment): (a) in
the zone m = −0.1 (a = 10, b = 0.5, c1 = 3, c2 = 3.7) and (b) in the zone m = 0.1 (a = 10, b = 0.5,
c1 = 3, c2 = 2.3), with initial value of x1(0) = x2(0) = 0.001. Regarding Equation (50), in α′ < 0,
when m < 0 all values of γ are valid, but when m > 0, only the values of γ ≤ 1.15 are valid according
to Equation (45).

(a) m < 0 (c2 > c1) (b) m > 0 (c2 < c1)

Figure 19. Quantum profits of the two firms (u1 in blue and u2 in red) as a function of γ (degree of
quantum entanglement) with β = 0 (without memory) and α′ = −0.8 (speed of adjustment): (a) in
the zone m = −0.1 (a = 10, b = 0.5, c1 = 3, c2 = 3.7) and (b) in the zone m = 0.1 (a = 10, b = 0.5,
c1 = 3, c2 = 2.3), with initial value of x1(0) = x2(0) = 0.001. Regarding Equation (50), in α′ < 0,
when m < 0 all values of γ are valid, but when m > 0, only the values of γ ≤ 1.15 are valid according
to Equation (45).
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(a) m < 0 (c2 > c1) (b) m > 0 (c2 < c1)

Figure 20. Quantum profits of the two firms (u1 in blue and u2 in red) as a function of γ (degree of
quantum entanglement) with β = 0.8 and α′ = −0.8 (speed of adjustment): (a) in the zone m = −0.1
(a = 10, b = 0.5, c1 = 3, c2 = 3.7) and (b) in the zone m = 0.1 (a = 10, b = 0.5, c1 = 3, c2 = 2.3),
with initial value of x1(0) = x2(0) = 0.001. Regarding Equation (50), in α′ < 0, when m < 0, all
values of γ are valid, but when m > 0, only the values of γ ≤ 1.15 are valid according to Equation (45).

5. Conclusions

In this paper, we analyzed the effect of memory in a dynamical Cournot duopoly
game with heterogeneous players (one of them is boundedly rational and the other one,
a naive player), applying a quantum scheme when the quantum entanglement (γ) has
values greater than one and the speed of adjustment (α′) is negative. We consider these
special and unusual values of the parameters to study the behavior of local stability and
profit in this case, in contrast to the conventional values. In all this analysis, we only took
into consideration the cases with economic meaning, obtaining the values of the parameters
where the study is valid. Additionally, to analytically verify the statements, we repre-
sented them graphically and we performed some numerical simulations to visualizethe
results obtained.

Considering a negative speed of adjustment, it is proved that the stability zone in
the game with memory is greater than in the classic game and it also increases when the
memory factor is greater, as happens with a positive speed of adjustment. It verifies that
the stability is greater in the negative than in the positive zone of the speed of adjustment,
improving, in this sense, the results previously obtained.

Regarding the variation of the stability with γ, when the relative marginal cost m
is positive and α′ is negative, the stability zone increases if γ increases. This is the same
behavior previously observed when α′ is positive, except in the interval of m between 0 and
0.1, where the stability decreases as γ increases. Considering the case where m ≤ 0 and α′

is negative, the stability zone is greater as γ increases. This is the opposite behavior to the
case of positive values of α′, where the stability decreases as γ increases. This increase of
stability when α′ < 0 enables the model to reach Nash equilibrium faster as the speed of
adjustment increases, reaching the equilibrium payoff in fewer steps, compared to the case
of α′ > 0.

In the analysis of the profit, when α′ = 0, it is shown that the memory has no influence
on the results and it is observed that the profit of both players tends to move closer, but there
is not a point of coincidence of both profits in the zone of economic meaning. In the cases
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with α′ > 0 and α′ < 0, the memory influences the results in the sense of causing a delay in
the dynamics.

In summary, it can be considered that the results obtained with speed of adjustment
less than zero and degree of entanglement greater than one in some of the analyzed cases
improved the previous ones, which shows progress in this area. As we mentioned, we
focused on the economic field, but we hope this study can also be useful in other fields.
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