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Abstract: The huge amount of power fingerprint data often has the problem of unbalanced categories
and is difficult to upload by the limited data transmission rate for IoT communications. An optimized
LightGBM power fingerprint extraction and identification method based on entropy features is pro-
posed. First, the voltage and current signals were extracted on the basis of the time-domain features
and V-I trajectory features, and a 56-dimensional original feature set containing six entropy features
was constructed. Then, the Boruta algorithm with a light gradient boosting machine (LightGBM) as
the base learner was used for feature selection of the original feature set, and a 23-dimensional optimal
feature subset containing five entropy features was determined. Finally, the Optuna algorithm was
used to optimize the hyperparameters of the LightGBM classifier. The classification performance
of the power fingerprint identification model on imbalanced datasets was further improved by
improving the loss function of the LightGBM model. The experimental results prove that the method
can effectively reduce the computational complexity of feature extraction and reduce the amount of
power fingerprint data transmission. It meets the recognition accuracy and efficiency requirements of
a massive power fingerprint identification system.
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1. Introduction

Traditional non-intrusive load disaggregation (NILD) requires the measurement of
relevant electrical quantities from the power inlet and the processing and analysis of signals
such as voltages and currents [1]. The different electrical devices operate with different
electrical quantities, presenting a unique power fingerprint of each electrical device. The
identification of customers’ appliances through the power fingerprint features has become
a research hotspot in the field of load monitoring because of its operability, low implemen-
tation cost, and high customer acceptance [2]. However, as the power fingerprint data in
the distribution network becomes increasingly larger, the transmission of massive power
fingerprint data puts huge pressure on the bandwidth of the communication network.

IoT communication technology provides a new approach to building a reliable power
fingerprint monitoring system. A large amount of power fingerprint data can be obtained
through low-cost edge-side collection devices [3]. The authors of [4] investigated a load-
monitoring approach based on collaborative computing between edge devices and edge
data centers. Reference [5] proposed an edge-computing architecture for load identification
in home scenarios that can significantly reduce the amount of data transmission over the
network. Due to the data transmission rate limitation of NB-IoT, LoRa, and other IoT
communication technologies, it is difficult to upload the raw signal directly to the upper
layer system for power fingerprint identification. Therefore, the original signal should be
feature extracted at the edge side, and then the valid power fingerprint feature data should
be uploaded to reduce the amount of system data transmission.

In NILD, the power fingerprint process often contains two key aspects, feature extrac-
tion and load identification. Earlier, the steady state characteristics of active power P and
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reactive power Q were often used for identification [6]. References [7,8] added features
such as current waveform, harmonics, transient power waveform, and switching transient
waveform for load identification based on the use of active and reactive power. In [9], the
voltage and current signals were converted into two-dimensional images in combination
with the V-I trajectory for load identification. In [10,11], the short-time Fourier transform
(STFT) and wavelet transforms (WT) were used to transform the data in the time-frequency
domain to extract the frequency domain features. The frequency domain features were
then combined with other time domain features for load identification. Reference [12]
proposed a systematic feature selection method to remove irrelevant features. An optimal
subset of features for NILD was constructed and identified using a random forest algorithm.
Most of the existing research on power fingerprint identification considers the extraction
of load features such as the time domain and frequency domain, but there has not been
any extraction and application of entropy features. The entropy feature is used to describe
the uncertainty degree and complexity of the system. A higher entropy value indicates
the higher complexity and disorder of the system [13]. Approximate entropy and sample
entropy are both methods to measure the complexity of time series. Sample entropy is
an improvement of the approximate entropy algorithm and a more widely used method
to calculate the entropy characteristic value at present. The smaller the sample entropy
of time series, the smaller its complexity and the higher its self-similarity [14]. Extracting
time-frequency features from raw signals with high sampling rates can lead to high stress
on data storage devices and data communication devices. Therefore, entropy features and
other time-domain features are extracted from the original signal and combined with V-I
trajectory features for load identification, thus reducing the computational complexity of
feature extraction and the amount of data transmission.

Unoptimized raw features can reduce recognition efficiency and accuracy. Feature
selection can be used to reduce feature dimensionality and improve recognition efficiency.
The traditional recursive elimination method (RFE) [15] usually relies on a subset of features
in the feature selection process, thus generating errors and losing some relevant features
in the feature selection process. The Boruta algorithm [16] is a fully encapsulated feature
selection method based on random forest (RF) that tries to capture all important features
in the dataset associated with the outcome variable. However, using the random forest
as the base learner is less efficient in finding the best features, so there is still room for
improvement in training efficiency.

Machine learning is often applied to the study of power fingerprint identification.
Shallow learning machine learning methods such as decision trees (DTs), support vector
machines (SVMs), K-nearest neighbors (KNNs), and random forests [17–19] can be applied
to power fingerprint identification with certain results. However, the accuracy of such ma-
chine learning classification methods can still be further improved. In [20], a convolutional
neural network (CNN) in deep learning was used to identify power devices in different
states after feature extraction. In [21], the recurrent neural network (RNN) was trained
using time series data to successfully predict the power consumption of each power device.
Deep-learning-based classifiers require high hardware configurations and long training
times. It is difficult to meet the economic and real-time requirements. LightGBM is an
integrated learning framework for boosting decision trees as weak classifiers [22]. Com-
pared with CNN, gradient boosting decision tree (GBDT) [23], extreme gradient boosting
(XGBoost) [24], and other algorithms, LightGBM has better accuracy and higher recognition
efficiency [25]. On the one hand, compared with other machine learning models, LightGBM
speeds up the training speed of GBDT models without reducing the accuracy, has stable
recognition effects, and reduces the training time. On the other hand, compared with
common deep learning models such as CNN, LightGBM has relatively simple structural
parameters and requires fewer optimization parameters. Due to the category imbalance
problem of massive power fingerprint data, the classification performance of LightGBM
for minority sample categories will be degraded if the weights of minority sample cate-
gories are not considered. Commonly used balancing data methods are broadly classified
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into data-based and model-based methods [26]. Data-based methods such as that of the
reference [27] use SMOTE to extend the NILD dataset by a small number of samples so
that the number of samples is equal for all classes. Conversely, model-based methods
involve reweighting the loss function or directly modifying the loss function [28]. In ad-
dition, the classification performance and efficiency of LightGBM are closely related to
the hyperparameter values of the model. Reference [29] used a simple brute force method
Grid Search to optimize the parameters, but the cost of the brute force search is high. Ref-
erence [30] used a random search and Bayesian parameter optimization method to avoid
many redundant operations performed by Grid Search, but there was randomness and
volatility in its optimization search process. The default hyperparameter settings as well
as the above-mentioned methods are difficult in terms of achieving the best classification
performance.

In this paper, a new method of power fingerprint extraction and identification method
based on entropy features is proposed. First, time domain features and V-I trajectory
features were extracted from the voltage and current signals of electrical equipment to
construct a 56-dimensional original feature set containing six entropy features. Then, the
Boruta algorithm with LightGBM as the base learner was used for feature selection of
candidate features to determine the 23-dimensional optimal feature subset containing five
entropy features. After that, the optimal feature subset was calculated at the edge side
and uploaded to the upper system for analysis. Finally, the loss function of LightGBM
was improved and the weights for a few sample categories were increased in the training.
A classifier based on the Optuna optimized parameter algorithm of LightGBM was con-
structed in the upper system for the power fingerprint. The COOLL public dataset [31] was
used for experiments to verify the effectiveness and advancement of the method.

2. The Power Fingerprint Identification Architecture

Edge-side power fingerprinting devices are usually installed on the residential load
side to collect data. Considering that all the data must be uploaded to the upper layer
system, it will generate a large communication pressure and cost. Thus, for the raw signal to
extract the relevant features through edge-side devices instead of uploading the raw signal
directly, this can effectively reduce the communication pressure and cost of the system.

The use of NB-IoT, LoRa, and other IoT communication methods for communication
needs to consider the impact of a limited data transmission rate. For example, the coverage
range of IoT communication methods NB-IoT and LoRa is 10 km, and the maximum data
transmission rate is 100 kbit/s [32]. To meet the narrow-width IoT data transmission rate
constraint, Figure 1 illustrates the application of the narrow-width IoT communication
method to the power fingerprint identification architecture in this paper.
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To ensure the effective application of IoT technology, the system needs to be designed
to consider the data transmission rate limitation of this communication method. First, edge
acquisition and feature calculation devices are installed at the edge side. The voltage and
current signals of residential domestic loads are acquired, and the optimal subset of features
that have been determined are calculated. Then, the optimal set of features are uploaded to
the upper system using narrow-width IoT communication. Finally, the power fingerprint
identification is performed in the upper system. This paper focuses on the edge feature
extraction and power fingerprint identification algorithm that satisfies the narrow-width
IoT communication method of the above architecture. The system architecture is presented
only as background for the analysis in this paper.

3. Feature Extraction Based on Time-Domain Analysis and V-I Trajectory

Figure 2 is the basic process of the proposed power fingerprint identification method.
The voltage and current data are collected for edge feature extraction to determine the
optimal feature subset. The optimal feature subset is extracted instead of the original signal
upload, which can meet the bandwidth constraint of the low-cost, low-communication,
narrow-width IoT communication method. Therefore, the signal features can be extracted
by the edge-side device instead of the original signal for the upper system analysis. In the
upper system, a classifier is constructed to perform power fingerprinting on the optimal
feature subset.

Entropy 2022, 24, 1558 4 of 23 
 

 

To ensure the effective application of IoT technology, the system needs to be de-
signed to consider the data transmission rate limitation of this communication method. 
First, edge acquisition and feature calculation devices are installed at the edge side. The 
voltage and current signals of residential domestic loads are acquired, and the optimal 
subset of features that have been determined are calculated. Then, the optimal set of fea-
tures are uploaded to the upper system using narrow-width IoT communication. Finally, 
the power fingerprint identification is performed in the upper system. This paper focuses 
on the edge feature extraction and power fingerprint identification algorithm that satisfies 
the narrow-width IoT communication method of the above architecture. The system ar-
chitecture is presented only as background for the analysis in this paper. 

3. Feature Extraction Based on Time-Domain Analysis and V-I Trajectory 
Figure 2 is the basic process of the proposed power fingerprint identification method. 

The voltage and current data are collected for edge feature extraction to determine the 
optimal feature subset. The optimal feature subset is extracted instead of the original sig-
nal upload, which can meet the bandwidth constraint of the low-cost, low-communica-
tion, narrow-width IoT communication method. Therefore, the signal features can be ex-
tracted by the edge-side device instead of the original signal for the upper system analysis. 
In the upper system, a classifier is constructed to perform power fingerprinting on the 
optimal feature subset. 

 
Figure 2. The power fingerprint identification process. 

Edge computing devices have limited computing power and are limited by the IoT 
transmission bandwidth. Without losing identification accuracy, higher demands are 
placed on the amount of feature extraction computation and the amount of data uploaded 
through the IoT by edge-side devices. Therefore, the design of related algorithms needs 
to fully consider the edge-side computational pressure to reduce the complexity of feature 
extraction methods and reduce the hardware cost of edge-side devices. First, the new 
method extracts 24 features on the basis of time-domain features for high-frequency cur-
rent signals [12]; in addition to the traditional time-domain features, six entropy features 
are included to better characterize the complexity and self-similarity of current signals in 

Figure 2. The power fingerprint identification process.

Edge computing devices have limited computing power and are limited by the IoT
transmission bandwidth. Without losing identification accuracy, higher demands are
placed on the amount of feature extraction computation and the amount of data uploaded
through the IoT by edge-side devices. Therefore, the design of related algorithms needs to
fully consider the edge-side computational pressure to reduce the complexity of feature
extraction methods and reduce the hardware cost of edge-side devices. First, the new
method extracts 24 features on the basis of time-domain features for high-frequency current
signals [12]; in addition to the traditional time-domain features, six entropy features are
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included to better characterize the complexity and self-similarity of current signals in a
steady state. Then, 32 V-I trajectory features are extracted by combining voltage and current
trajectories in a steady state and transient state [33,34]. Finally, the above 56-dimensional
features are used to construct the original feature set. In the experiments, the sampling rate
of the original signal is 100 kHz. The duration of the original signal is 6 s. The number
of cycles in the experimental sample is 1. This paper extracts the relevant features on the
basis of the voltage and current signals in steady state and transient state within one cycle,
respectively.

Tables 1 and 2 list the calculation formulas and feature numbers of current features
and entropy features, where x(n) = 1, 2, · · · , N is the amplitude corresponding to the nth
sampling point, N is the total number of sampling points, pn is the probability density
of the nth sampling point, and α is the parameter for entropy calculation. Construct the
time series x(n) as an m-dimensional vector, xm(n) = {x(n), x(n + 1), · · · , x(n + m− 1)},
n = 1, 2, · · ·N −m + 1. Define dm

nj to be the distance between vectors xm(n) and xm(j) as
dm

nj = max(|x(n + k)− x(j− k)|), k = 0, 1, · · ·m. Define Cm
n (r) as the probability that the

distance between any vector xm(n) and xm(j) is less than r, Cm
n (r) =

N−m+1
∑

j=1
θ(dm

nj−r)

N−m+1 , where θ

is the Heaviside function [35]. Φm(r) = (N −m + 1)−1N−m+1
∑

n=1
ln Cm

n (r),

Ψm(r) = (N −m + 1)−1N−m+1
∑

n=1
Cm

n (r), Bm(r) = (N −m)−1N−m
∑

n=1
Cm

n (r), where m is the

embedding dimension, and r is the similarity tolerance. Tables 3 and 4 list the feature
categories and numbers of 32 V-I trajectory features, respectively; the calculation formulas
are shown Tables A1 and A2 in Appendix A.

Table 1. The calculation formulas and feature numbers of current features.

Features Formula Feature
Number Features Formula Feature

Number

Maximum value F1 = max(x(n)) F1 Peak F10 = max|x(n)| F10
Minimum value F2 = min(x(n)) F2 Peak to peak value F11 = F1 − F2 F11

Mean value F3 = 1
N

N
∑

n=1
x(n) F3 Absolute mean F12 = 1

N

N
∑

n=1
|x(n)| F12

Variance F4 = 1
N−1

N
∑

n=1
(x(n)− F3)

2 F4 Square root amplitude F13 =

(
1
N

√
N
∑

n=1
|x(n)|

)2
F13

Standard deviation F5 =

√
1
N

N
∑

n=1
(x(n)− F3)2 F5 Waveform index F14 = max|x(n)|

F6
F14

Root mean square F6 =

√
1
N

N
∑

n=1
(x(n))2 F6 Peak index F15 = Nmax|x(n)|

N
∑

n=1
|x(n)|

F15

Cliffness
F7 =

N
∑

n=1
(x(n)−F3)

3

(N−1)F5
3

F7 Pulse index F16 = max|x(n)|
F13

F16

Skewness F8 = NF6
N
∑

n=1
|x(n)|

F8 Clearance index F17 = max|x(n)|
F6

F17

Sum of maximum
and minimum values F9 = F1 + F2 F9 Energy F18 =

N
∑

n=1

∣∣∣ (x(n))2
∣∣∣ F18

Table 2. The calculation formulas and feature numbers of entropy features.

Features Formula Feature
Number Features Formula Feature

Number

Shannon entropy F19 = −
N
∑

n=1
pn log pn

F19 Fuzzy entropy F22 = ln Ψm(r)− ln Ψm+1(r) F22

Renyi entropy F20 = 1
1−α log

N
∑

n=1
pn

α F20 Permutation entropy F23 = −
m!
∑

n=1
pn logpn

F23

Approximate entropy F21 = Φm(r)−Φm+1(r) F21 Sample entropy F24 = − ln Bm+1(r)
Bm(r)

F24
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Table 3. The feature categories and numbers of V-I trajectory features in different states.

Features

Feature
Number

Feature
Number

Transient Steady State

Current span F25 F37

Area F26 F38

Direction F27 F39

Asymmetry F28 F40

The curvature of the mean line F29 F41

Self-intersection F30 F42

The peak of the middle segment F31 F43

The shape of the middle segment F32 F44

Area of left and right segments F33 F45

Variation of instantaneous admittance F34 F46

The angle between the maximum
point and the minimum point F35 F47

The distance between the maximum
point and the minimum point F36 F48

Table 4. The feature categories and numbers of V-I trajectory features.

Features Feature
Number

The difference between the current span of the steady state and
transient trajectory F49

The difference between the area of the steady state and transient
trajectory F50

The difference between the asymmetry of the steady state and
transient trajectory F51

The difference between self-intersection of the steady state and
transient trajectory F52

The difference between the peak of the middle segment of the steady
state and transient trajectory F53

The difference between the area of the left and right segments of the
steady state and transient trajectory F54

The difference between the angle between the maximum point and
the minimum point of the steady state and transient trajectory F55

The difference between the distance between the maximum and
minimum points of the steady state and transient trajectory F56

The experiments were performed on a microcomputer configured with an AMD
R7-5700 CPU and DDR4 3200 MHz 16 GB memory. The experimental subjects were all
conducted under the COOLL public dataset with a raw signal duration of 6 s and a sampling
frequency of 100 kHz. Figure 3 is the current signals of 12 electrical devices in the COOLL
dataset in transient and steady states given in one cycle. It can be seen in Figure 3 that the
current signals of different electrical devices in the steady state and transient operation
were different. By analyzing the time domain waveforms of the current signals, the current
signal characteristics of different electrical devices can be extracted.
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Figure 3. Voltage and current signal diagram. (a–l) show the voltage and current waveforms of
12 types of electrical equipment in the COOLL dataset in different states.

Figure 4 shows the V-I trajectory images of 12 types of electrical equipment in transient
and steady states. As can be seen from Figure 4, the V-I trajectory images had significant
differences for different types of electrical loads. The V-I trajectory feature of different
electrical devices can be extracted by analyzing the shape information of the V-I trajectories.
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in the COOLL dataset in different states.

4. Feature Selection Based on the Modified Boruta Algorithm
4.1. Boruta Algorithm

The Boruta algorithm is a feature selection algorithm based on a random forest base
learner. It considers the fluctuations in the average accuracy loss of the tree in the random
forest and uses it to measure the importance of the features [36]. The main idea of the
Boruta algorithm is by evaluating the importance of each feature variable and then keeping
the set of features marked as important.

The Boruta algorithm calculates the binomial distribution of feature hits by multiple
iterations of feature selections, as shown in Figure 5. The red region is the rejection
region, where features classified into this region are considered to be interference noise
and are therefore removed directly. The yellow region is the hesitation region, where
features classified to this region are somewhat predictable and need to be retained at their
discretion. The blue region is the acceptance region, where features classified in this region
are retained [36].



Entropy 2022, 24, 1558 9 of 23Entropy 2022, 24, 1558 9 of 23 
 

 

  
Figure 5. Binomial distribution of n-experiments. 

4.2. Modified Boruta Algorithm 
To improve the optimization efficiency of the Boruta algorithm, LightGBM was used 

as the base learner to replace the random forest base learner on the basis of the Boruta 
algorithm. The specific algorithm steps are as follows: 

Input: The original feature matrix ( ), , , jR r r r= …1 2 ; the base learner ( )M θ  is 
LightGBM. 
Step 1: For each original feature R , randomly disrupt the order. Duplicate the original 

features to obtain the shadow feature matrix S , and the new feature matrix 
[ ],N R S=  is formed by splicing with the original feature R . 

Step 2: The new feature matrix N  is used as input and the base learner ( )M θ  is trained. 
Calculate the importance score scoreZ . 

score
fEZ
f

=  (1)

where fE  is the evaluated importance of the feature, and f  is the importance of the 
feature. 
Step 3: Find the maximum value of the importance score in the shadow features and mark 

it as _maxS . Mark the features with importance scores higher than _maxS  in the 
original features as important. 

Step 4: Marking features with importance scores lower than _maxS  in the original fea-
ture as unimportant and permanently deleting them. 

Step 5: Remove all shadow features and repeat the above process until all important fea-
tures are filtered out. 

Output: The optimal feature subset maxS . 

5. Construction of Power Fingerprint Identification Classifier 
LightGBM is a new implementation of GBDT with faster training speed, shorter 

training time, and higher accuracy, which is widely used in classification tasks [22]. Its 
implementation is as follows: 

The goal of each iteration round is to find the weak learner ( )tf x  such that the loss 
function of this round is minimized, i.e., 

( ) ( )1, ( ) , ( ) ( )t t tL y F x L y F x f x−= +  (2)

where 1( )tF x−  represents the learner obtained in the previous iteration, and ( )L  rep-
resents the loss function. 

Figure 5. Binomial distribution of n-experiments.

4.2. Modified Boruta Algorithm

To improve the optimization efficiency of the Boruta algorithm, LightGBM was used
as the base learner to replace the random forest base learner on the basis of the Boruta
algorithm. The specific algorithm steps are as follows:

Input: The original feature matrix R = (r1, r2, . . . , rj
)
; the base learner M(θ) is Light-

GBM.

Step 1: For each original feature R, randomly disrupt the order. Duplicate the original
features to obtain the shadow feature matrix S, and the new feature matrix N =
[R, S] is formed by splicing with the original feature R.

Step 2: The new feature matrix N is used as input and the base learner M(θ) is trained.
Calculate the importance score Zscore .

Zscore =
E f

f
(1)

where E f is the evaluated importance of the feature, and f is the importance of the
feature.

Step 3: Find the maximum value of the importance score in the shadow features and mark
it as S _max. Mark the features with importance scores higher than S _max in the
original features as important.

Step 4: Marking features with importance scores lower than S _max in the original feature
as unimportant and permanently deleting them.

Step 5: Remove all shadow features and repeat the above process until all important features
are filtered out.

Output: The optimal feature subset Smax.

5. Construction of Power Fingerprint Identification Classifier

LightGBM is a new implementation of GBDT with faster training speed, shorter
training time, and higher accuracy, which is widely used in classification tasks [22]. Its
implementation is as follows:

The goal of each iteration round is to find the weak learner ft(x) such that the loss
function of this round is minimized, i.e.,

L(y, Ft(x)) = L(y, Ft−1(x) + ft(x)) (2)

where Ft−1(x) represents the learner obtained in the previous iteration, and L() represents
the loss function.
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The negative gradient according to Formula (2) was used to obtain an approximation
of the loss function for this round, i.e.,

lt = −
∂L(yi, Ft−1(xi))

∂Ft−1(xi)
(3)

The objective function is usually quadratic in variance, and ft(x) can be approximated as

ft(x) = argmin
f∈F

∑(lt − ft(x))2 (4)

The strong learner that obtains this iteration is

Ft(x) = Ft−1(x) + ft(x) (5)

5.1. Improved LightGBM Model

The power fingerprint data in the real environment is characterized by class imbalance.
The traditional classifier does not consider the class imbalance problem, which results in
the classifier’s insufficient ability to recognize the minority sample class. To solve the above
problem, the L2 regular term is first introduced to adjust the loss function of LightGBM,
and then a higher weight is assigned to a few sample categories. When LightGBM samples
data using the one-sided gradient sampling algorithm, it is easier to select data from the
minority sample category to enhance the recognition performance of the LightGBM model
on the imbalanced dataset. The specific improvements are as follows:

The improved loss function for the tth tree is

L = − 1
N
(

N

∑
i=1

αiL(yi, Ft−1(xi)) +
λ

2
‖ a ‖2

2) (6)

αi =

{
1, yi = 0
c, yi = 1

(7)

where αi is the coefficient of category weights; L(yi, Ft−1(xi)) is the original loss function; λ
is the regularization coefficient; and yi = 0 and yi = 1 represent normal sample labels and
minority sample labels, respectively. The value of c is related to the sample proportion.

5.2. Optuna Optimization Algorithm

Machine learning models that want to improve their results require proper hyperpa-
rameter tuning. Hyperparameter optimization affects the output of a machine learning
model. Hyperparameter optimization is a key process in machine learning for optimizing
hyperparameters. Optuna is a framework for automated hyperparametric optimization that
obtains the optimal solution by iteratively invoking and evaluating the objective function
for different parameter values [37]. The specific features are as follows:

• Define-by-run framework: Optuna describes hyperparametric optimization as the pro-
cess of maximizing or minimizing an objective function given a set of hyperparameters
and returning its (validated) score [37]. The function does not depend on externally
defined static variables and dynamically constructs the search space of the neural
network structure (number of layers and number of hidden units).

• Efficient sampling: Optuna has both relational and independent sampling [38] and
can identify trial results. These results provide information for concurrent relation-
ships. The framework can identify potential co-occurrence relationships after a certain
number of independent samples and use the inferred co-occurrence relationships for a
user-selected relational sampling algorithm.

• Efficient pruning: Optuna periodically monitors intermediate target values and ter-
minates trials that do not meet predefined conditions. It also uses the asynchronous
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successive halving algorithm [37], and therefore we can perform parallel computations
here without much influence on each other.

5.3. Construction of the Optuna–LightGBM Classification Model

LightGBM has difficulty in determining some of the hyperparameter values due to
the problem of there being many hyperparameters [30]. Therefore, the Optuna algorithm
was used to optimize the hyperparameters of LightGBM. Following this, the model was
trained using the adjusted parameters. The number of Optuna iterations was set to 50. The
specific steps to construct the OPT–LightGBM optimization model are as follows:

1. Initialization, and then determining the direction of optimization, the type of parame-
ters, the range of values, and the maximum number of iterations.

2. Enter the loop: selecting a set of individuals uniformly within the function defining
the range of parameter values, automatically terminating hopeless individuals using a
pruner according to the pruning conditions, and determining the value of the objective
function for the overall number of uncomputed individuals.

3. Repeating the above steps for the loop and jumping out of the loop when the maxi-
mum number of iterations is reached.

4. Obtaining the best parameter values and the best values of the objective function and
output the final model OPT–LightGBM.

The specific process for the construction of the Optuna–LightGBM is shown in Figure 6.
First, the optimal feature subset was input, the optimization parameters were set and
initialized, and the search space was defined for adoption. Then, the parameters of the
improved LightGBM were optimized and trained using Optuna after entering the loop.
Finally, the best parameter values and classification accuracy were obtained when the
maximum number of iterations was satisfied. The final model OPT–LightGBM was output.
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5.4. Evaluation Metrics

To evaluate the classification performance of the OPT–LightGBM model more compre-
hensively, the evaluation metrics selected in this paper included Recall (Rre), Precision (Pre),
and F1-score (Fscore) [30].

Rre =
Tp

Tp + FN
(8)

Pre =
Tp

Tp + Fp
(9)

Fscore =
2PreRre

Pre + Rre
(10)

where Tp is the number of appliances of a certain type correctly predicted, Fp is the number
of appliances of other types predicted to be of a certain type, and FN is the number of
appliances of a certain type incorrectly predicted to be of other types.

6. Result and Discussion
6.1. Dataset Selection

To verify the effectiveness of the proposed method in this paper, the COOLL public
dataset [31] was selected to carry out the power fingerprint identification experiments. The
sampling frequency was 100 kHz, and the signal duration was 6 s. Table 5 is the COOLL
dataset data that included 12 types of electrical appliances, and each appliance type is
represented by examples of different labels, brands, and models, with a total of 840 sets of
waveform data. In the experiment, 70% of the data were randomly selected as the training
set and 30% of the data were used as the test set.

Table 5. The COOLL dataset.

Appliance Labels Appliances Number of
Appliances

Number of
Signals

A Drill 6 120

B Fan 2 40

C Grinder 2 40

D Hair dryer 4 80

E Hedge trimmer 3 60

F Lamp 4 80

G Paint stripper 1 20

H Planer 1 20

I Router 1 20

J Sander 3 60

K Saw 8 160

L Vacuum 7 140

6.2. Construction of Optimal Feature Subsets Based on the Modified Boruta Algorithm

To further reduce the computational effort of edge-side feature extraction and to meet
the demand of limited data transmission rate, the modified Boruta algorithm was used to
perform feature selection on the original feature set. The number of iterations was 100, and
the base model selected by the modified algorithm was LightGBM. Figure 7 shows that
the Boruta algorithm based on LightGBM marked 23 features as important, 32 features as
unimportant, and 1 feature (F46 feature) without giving a judgment after 100 iterations.
The F46 feature that has not been judged for the time being belongs to the hesitant region,
and it is necessary to decide whether to retain it. To reduce the computation demand of the



Entropy 2022, 24, 1558 13 of 23

edge side and the overall system construction and application cost as much as possible, the
F46 feature was deleted in this paper. The Boruta algorithm formed the optimal feature
subset from the features marked as important. The optimal feature subset after feature
selection contains five entropy features, which were sample entropy, fuzzy entropy, Renyi
entropy, approximate entropy, and permutation entropy, in that order.
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To verify the validity of the importance measure of feature classification ability, the
four features (F24, F41, F7, and F14) with the highest, higher, lower, and lowest importance
values in the optimal feature subset were selected for comparison, where F24 denotes the
sample entropy, F41 denotes the curvature of the mean line at steady state, F7 denotes the
cliffness, and F14 denotes the waveform index. Figure 8 shows the feature distributions
of the four features, where 10 groups of samples are taken for each type of appliance to
demonstrate. It can be seen that when the sample entropy and the curvature of the mean
line at steady-state features were used to describe the characteristics of different appliances,
the degree of differentiation was high and the classification effect was good.

To verify the superiority of the modified Boruta algorithm, the method in this paper
was compared with featureless selection, the correlation coefficient method, the recur-
sive elimination method, the genetic algorithm (GA), and the embedded feature selection
method (LightGBM) using LightGBM as the base classifier to carry out comparison experi-
ments. The experimental results are shown in Table 6.
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Table 6. Comparison of different feature selection algorithms.

Model
Optimal
Feature

Dimension
Accuracy (%) Recall (%) Precision (%) F1-Score (%)

No feature selection 56 97.62 98.24 97.62 97.77

Correlation
coefficient 30 96.83 96.83 97.72 97.03

REF 25 97.22 97.22 97.87 97.36

GA 28 96.43 96.43 97.57 96.70

Embedded
(LightGBM) 23 98.81 98.90 98.90 98.82

Modified Boruta 23 99.60 99.77 99.64 99.70

As can be seen from Table 6, the modified Boruta algorithm outperformed other
feature selection algorithms in all metrics. Compared with featureless selection, they were
1.98%, 1.53%, 2.02%, and 1.93% higher in terms of accuracy, Recall, Precision, and F1-
score, respectively. The experimental results verified that the method in this paper can
effectively remove redundant features and reduce the model complexity without reducing
the classification accuracy.

6.3. Amount of Data Transmission

To analyze the differences in the finite data transmission rate requirements of different
methods, the amount of data required to upload the optimal feature subset, the original
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feature set, and the original signal were compared in this paper. The sampling rate was
100 kHz, and the single analysis data length was one cycle of voltage and current signal
data. The amount of data required to upload a set of the optimal feature subset, the original
feature set, and the original signal is shown in Table 7.

Table 7. Comparison of the amount of data of different transmission types.

Transmission Data Type Amount of Data Transmission for a Set of
Feature Sets (Byte)

Original signal 2,744,650
Original feature set 1591

Optimal feature subset 1118

As can be seen from Table 7, when only the optimal feature subset was uploaded,
the amount of data transmission was about 1118 bytes. The new method reduced the
amount of data transmission requirement by 99.9% compared to uploading the original
signal. The new method also reduced the amount of data transmission requirement by
29.7% compared to uploading the original feature set. Therefore, it can be seen that the
new method effectively reduced the amount of data transmission required for power
fingerprint data analysis. At the same time, the new method reduced the feature set
dimension to 23 dimensions, and feature selection effectively reduced the amount of edge
computation. It satisfies the basic data transmission requirements of the narrow-width IoT
communication method.

6.4. Comparison of Different Hyperparameter Optimization Algorithms

After constructing the optimal feature subsets, the optimal parameters of the Light-
GBM model were obtained on the basis of the hyperparameter optimization method of
the Optuna algorithm. The number of iterations was 50. Six important hyperparameters
were selected for adjustment: max_depth, min_child_weight, subsample, num_leaves,
learing_rate, and n_estimators. max_depth denotes the maximum depth of the tree;
min_child_weight denotes the minimum leaf weight; subsample denotes the sampling rate
of training samples, which can prevent the model from overfitting; n_estimators denotes
the number of weak learners; num_leaves denotes the maximum number of leaves of the
tree, which is one of the most important parameters to control the complexity of the model;
and learing_rate denotes the learning rate. The other hyperparameters were kept as default
values, and the results of the classifier hyperparameter search are shown in Table 8.

Table 8. The result of hyperparameter optimization.

Model Optimized Hyperparameters Default Hyperparameters

LightGBM

‘max_depth’: 7, ‘subsample’: 0.8,
‘num_leaves’: 22, ‘learning_rate’:

0.018,
‘min_child_wight’: 1.12,

‘n_estimators’: 146

‘lambda_l1’: 0.5, ‘lambda_l2’: 0.5,
‘bagging_fraction’: 1,
‘feature_fraction’: 1,

‘num_threads’: 2

Optuna also provides a web dashboard for visualizing and analyzing the study, as
shown in Figure 9. As can be seen in Figure 9a, the recognition accuracy exceeded 95%
when the number of iterations reached about six and increased slowly in subsequent
training. As can be seen in Figure 9b, min_child_weight and max_depth were the most
important hyperparameters that affect the model performance.
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To verify the superiority of the Optuna optimization algorithm in determining hyper-
parameters, it was compared with default hyperparameters, random search algorithm, grid
search algorithm, and the Bayesian optimization algorithm. The experimental results of
different hyperparameter optimization methods are given in Figure 10.
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From Figure 10, it can be seen that the hyperparameter optimization method based
on the Optuna algorithm outperformed the other five hyperparameter optimization al-
gorithms in all indexes. The new method effectively determined the optimal values of
important hyperparameters in LightGBM and improved the accuracy of power fingerprint
identification.

6.5. Comparison of the Impact of Entropy Features on Classification Performance

To verify the effectiveness of the entropy features proposed by the new method, a
set of the 50-dimensional original feature set without entropy features and a set of the
56-dimensional original feature set with entropy features were set in this paper. After
feature selection for these two sets of original feature sets, the optimal feature subset of
25 dimensions and the optimal feature subset of 23 dimensions were determined. These two
sets of original feature sets and optimal feature subsets were input to the OPT–LightGBM
classifier for identification. The experimental results are shown in Table 9.
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Table 9. Comparison of experimental results between different feature sets.

Model
Original
Feature

Dimension

With or
Without
Entropy
Features

Entropy
Feature
Type of
Original

Feature Set

Classification
Accuracy (%)

Optimal
Feature

Dimension

Entropy
Feature

Number of
Optimal

Feature Set

Classification
Accuracy (%)

OPT–
LightGBM

50 With 0 96.88 25 0 97.81

56 Without 6 97.62 23 5 99.60

As can be seen from Table 9, the new method uses more types of entropy features in
the original feature set, wherein the optimal feature subset contains five entropy features.
Compared with the original feature set and the optimal feature subset without entropy
features, it improved the accuracy by 0.74% and 1.79%, respectively. The entropy feature
can reflect the complexity and self-similarity of current signals of different electrical equip-
ment in stable operation, which can better improve the identification accuracy of power
fingerprints.

The correlation between entropy features is well reflected in the heat map shown
in Figure 11. The scale on the right side of the heat map shows the shades of color
corresponding to the different correlation coefficients, making it easy to see the correlation
between features through the visual form. As can be seen from the graph, the correlation
between the five entropy features takes a value between −0.2–0.69 compared to the other
features, indicating that the correlation between the features is low, and therefore these five
entropy features were retained when feature selection was carried out.

Entropy 2022, 24, 1558 17 of 23 
 

 

Table 9. Comparison of experimental results between different feature sets. 

Model Original Feature 
Dimension 

With or 
without 
Entropy 
Features 

Entropy 
Feature 
Type of 
Original 

Feature Set 

Classification 
Accuracy (%) 

Optimal Feature 
Dimension 

Entropy Fea-
ture Number 
of Optimal 
Feature Set 

Classification 
Accuracy (%) 

OPT–
LightGBM 

50 With 0 96.88 25 0 97.81 
56 Without 6 97.62 23 5 99.60 

As can be seen from Table 9, the new method uses more types of entropy features in 
the original feature set, wherein the optimal feature subset contains five entropy features. 
Compared with the original feature set and the optimal feature subset without entropy 
features, it improved the accuracy by 0.74% and 1.79%, respectively. The entropy feature 
can reflect the complexity and self-similarity of current signals of different electrical 
equipment in stable operation, which can better improve the identification accuracy of 
power fingerprints. 

The correlation between entropy features is well reflected in the heat map shown in 
Figure 11. The scale on the right side of the heat map shows the shades of color corre-
sponding to the different correlation coefficients, making it easy to see the correlation be-
tween features through the visual form. As can be seen from the graph, the correlation 
between the five entropy features takes a value between −0.2–0.69 compared to the other 
features, indicating that the correlation between the features is low, and therefore these 
five entropy features were retained when feature selection was carried out. 

 
Figure 11. The correlation between entropy features in the heat map. 

  

Figure 11. The correlation between entropy features in the heat map.



Entropy 2022, 24, 1558 18 of 23

6.6. Comparison of the Performance of Each Classifier under an Imbalanced Dataset

As shown in Table 5, the COOLL dataset has the problem of class imbalance. To further
verify the classification performance of the OPT–LightGBM model proposed in this paper
on the imbalanced dataset, the method was compared with SVM, KNN, DT, RF, GBDT,
XGBoost, and no-optimization LightGBM. The 23-dimensional optimal feature subset in the
experiments was determined from the original 56-dimensional feature set after the same
feature selection. Table 10 shows the experimental results of the classification performance
of different classifiers.

Table 10. Comparison of experimental results of the classification performance of different classifiers.

Model
Feature
Subset

Dimension
Accuracy (%) Recall (%) Precision (%) F1-Score (%)

SVM 23 94.44 96.97 96.14 96.47

KNN 23 95.63 95.95 95.88 95.82

DT 23 97.22 97.07 97.27 97.01

RF 23 98.01 97.68 98.81 98.19

GBDT 23 98.02 98.94 99.07 98.99

XGBoost 23 98.41 98.46 98.26 98.27

LightGBM 23 98.81 98.90 98.90 98.82

OPT–LightGBM 23 99.60 99.77 99.64 99.70

As can be seen from Table 10, the classifiers such as SVM, KNN, and DT had lower
metrics, while the OPT–LightGBM model, which considers the class imbalance problem,
had a significant improvement in various classification performance metrics compared to
RF, GBDT, XGBoost, and LightGBM. To further compare the differences between Light-
GBM and the proposed method, a confusion matrix of the experimental results is given
in Figure 12.
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As can be seen from Figure 12, LightGBM was confusing in the recognition process
of the appliances Drills, Saw, and Hedge Trimmers. Compared with LightGBM, OPT–
LightGBM was able to identify both appliances normally, and the overall recognition
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accuracy of electric fingerprint was 99.60%. The experimental results show that OPT–
LightGBM had better classification accuracy than other classifiers on imbalanced datasets
and effectively improved the generalization ability of the model.

6.7. Analysis and Discussion

To reduce the pressure of feature computation and network bandwidth of the power
fingerprint identification system, an optimization method of LightGBM power fingerprint
extraction and identification based on entropy features was studied.

From Tables 6 and 7, it can be seen that compared to other feature selection algo-
rithms, the modified Boruta algorithm reduced the original 56-dimensional feature set to a
23-dimensional optimal feature subset. The modified Boruta algorithm achieved 99.60%
identification accuracy after feature selection, while the embedded feature selection method
achieved 98.81% identification accuracy. Compared with this, the method in this paper
improved the accuracy by 0.79%. In addition, it can be seen from Table 9 and Figure 11 that
the correlation between the five entropy features retained after feature selection was low,
which was good for improving the power fingerprint identification.

As can be seen in Figure 9a, Optuna was able to find the best hyperparameter configu-
ration in a limited number of runs (only 50 iterations). LightGBM with Optuna optimization
showed better power fingerprint identification compared to other optimization algorithms,
as shown in Figure 10. As can be seen from Table 10, LightGBM was still able to maintain a
high identification accuracy of 99.60% in the face of imbalanced power fingerprint data.
Although the identification accuracies of GBDT, XGBoost, and LightGBM, which performed
relatively well in the table, were 98.02%, 98.41%, and 98.81%, respectively, the method in
this paper improved the accuracies by 1.58%, 1.19%, and 0.79%, respectively.

Among the 11 types of electrical devices in the COOLL dataset, different electrical
devices will exhibit the same waveform between stable operations, resulting in similar elec-
trical fingerprints, such as Drill, Saw, and Hedge Trimmer, as shown in Figure 3. However,
this paper took into account the transient characteristics generated by electrical devices
in transient states such as F26, F29, and F30, thus improving the differentiation between
similar electrical devices. From Figure 12a,b, it can be seen that Drill, Saw, and Hedge
Trimmer were 100% correctly classified in the identification results of OPT–LightGBM,
which reduced the misclassification rate of similar appliances. The experimental results
show that OPT–LightGBM can identify similar electrical devices well.

7. Conclusions

In this paper, we propose an optimized LightGBM power fingerprint extraction and
identification method based on entropy features. The main advantages of the new method
are as follows:

• A modified Boruta algorithm was used to feature select the original feature set con-
taining six entropy features and to construct the optimal feature subset, which further
improved the optimization-seeking efficiency of feature selection and reduced the
impact of redundant features on the classification performance of the classifier. The ex-
perimental results showed that the five entropy features retained after feature selection
significantly improved power fingerprint identification.

• The optimal feature subset replaced the original signal and the original feature set
and was uploaded to the upper system, effectively reducing the amount of data
transmission and feature computation required for edge devices and reducing the
overall communication and hardware cost of the system.

• A lightweight power fingerprint identification model for class-imbalanced samples
was constructed. The LightGBM loss function was improved, and its parameters
were optimized using the Optuna optimization algorithm. The experimental results
show that the method improved the accuracy of power fingerprint identification on
imbalanced datasets and effectively verified the model’s generalization ability.
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The experimental results show that the method reduced the pressure on the feature
computation and network bandwidth of the power fingerprint identification system while
still maintaining more than 98% of the power fingerprint recognition accuracy. The new
method can effectively promote the applicability of power fingerprint recognition tech-
nology in the actual field. In addition, with the ever-changing types of actual electrical
equipment in the home, there is a higher demand for the ability to identify complex equip-
ment applications for model recognition. The identification effect of the method in this
paper on the simultaneous operation of multi-state loads requires further improvement,
and the generality of the identification model requires further study.
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NILD Non-intrusive load disaggregation
STFT Short-time Fourier transform
WT Wavelet transform
RFE Recursive elimination
RF Random forest
DT Decision tree
SVM Support vector machine
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Appendix A

The trajectory was divided into two parts named A and B according to the maximum
and minimum points of voltage, respectively. vmax is the first point of the trajectory, and
let the first point is the maximum point. NT refers to the number of data points.

A =
{(

Vq, Iq
)∣∣q ∈ 1, 2, . . . , vmin

}
(A1)

B =
{(

Vq, Iq
)∣∣q ∈ vmin + 1, · · · , NT

}
(A2)
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Table A1. The calculation formulas and feature numbers of V-I trajectory features in Table 3.

Formula Formula

F25 = max(I(s))−min(I(s)) F37 = max(I(z))−min(I(z))
F26 = ∑

i

1
2 |Vj(s)−Vi(s)|

(∣∣∣Ii′ (s)− Ii(s)
∣∣∣+∣∣∣Ij′ (s)− Ij(s)

∣∣∣) F38 = ∑
i

1
2 |Vj(z)−Vi(z)|

(∣∣∣Ii′ (z)− Ii(z)
∣∣∣+∣∣∣Ij′ (z)− Ij(z)

∣∣∣)
F27 = ∑

s

1
2 (V(s + 1)−V(s))(I(s + 1)− I(s)) F39 = ∑

z

1
2 (V(z + 1)−V(z))(I(z + 1)− I(z))

F28 = Hausdor f f distance{[V(s), I(s)], (−1)[V(s), I(s)]} F40 = Hausdor f f distance{[V(z), I(z)], (−1)[V(z), I(z)]}
F29 =

{
(X, Y)

∣∣∣X = 1
2 Vi(s) + Vi′ (s)

)
, Y = 1

2 Ii(s) + Ii′ (s))} F41 =
{
(X, Y)

∣∣∣X = 1
2 Vi(z) + Vi′ (z)

)
, Y = 1

2 Ii(z) + Ii′ (z))}

F30 = ((i
→
j )× (i

→
i′ ))·((i

→
j )× (i

→
j′ )) F42 = ((i

→
j )× (i

→
i′ ))·((i

→
j )× (i

→
j′ ))

F31 = max(max
r

(Ir(s)− fA[Vr(s)]), max
t

(It(s)− fB[Vt(s)])),

r ∈ (ma, . . . , ma + na − 1), t ∈ (mb, . . . , mb + nb − 1)

F43 = max(max
r

(Ir(z)− fA[Vr(z)]), max
t

(It(z)− fB[Vt(z)])),

r ∈ (ma, . . . , ma + na − 1), t ∈ (mb, . . . , mb + nb − 1)
F32 = std(Ir(s)) + std(It(s)) F44 = std(Ir(z)) + std(It(z))

F33 = F26−left + F26−right F45 = F38−left + F38−right

F34 = std( I(s)
V(s) ) F46 = std( I(z)

V(z) )

F35 =
√
|max(V(s))−min(V(s))|2+|max(I(s))−min(I(s))|2 F47 =

√
|max(V(z))−min(V(z))|2+|max(I(z))−min(I(z))|2

F36 = arctan( max(I(s))−min(I(s))
max(V(s))−min(V(s)) ) F48 = arctan( max(I(z))−min(I(z))

max(V(z))−min(V(z)) )

I(s) and I(z) are the steady-state and transient current waveforms of the load, re-
spectively, whereas i′ and j′ denote the points on part B for which the voltage is closest
to the two consecutive points i and j, respectively. The average voltage and current on
points i and i′ are taken as X and Y, respectively, which refer to the coordinate of point
i. F30 and F42 judge whether there is an intersection between i, i′, j, and j′ to determine
the number of self-intersections in the steady state and transient state. f [x] represents a
straight-line expression determined by two points; ma and mb are the first point position
of the middle segment in parts A and B, respectively; and na and nb refer to the number
of data points in the middle segment of parts A and B, respectively. The left and right
subscripts represent the left and right segments of the trajectory, respectively. std represents
the standard deviation function.

Table A2. The calculation formulas and feature numbers of V-I trajectory features in Table 4.

Formula Formula

F49 = F25 − F37 F53 = F31 − F43
F50 = F26 − F38 F54 = F33 − F45
F51 = F30 − F42 F55 = F35 − F47
F52 = F29 − F41 F56 = F36 − F48
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