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Symplectic Foliation Structures of Non-Equilibrium
Thermodynamics as Dissipation Model: Application to
Metriplectic Nonlinear Lindblad Quantum Master Equation
Frédéric Barbaresco

THALES Land & Air Systems, 19/21 Avenue Morane Saulnier, 78140 Vélizy-Villacoublay, France;
frederic.barbaresco@thalesgroup.com

Abstract: The idea of a canonical ensemble from Gibbs has been extended by Jean-Marie Souriau for
a symplectic manifold where a Lie group has a Hamiltonian action. A novel symplectic thermody-
namics and information geometry known as “Lie group thermodynamics” then explains foliation
structures of thermodynamics. We then infer a geometric structure for heat equation from this
archetypal model, and we have discovered a pure geometric structure of entropy, which characterizes
entropy in coadjoint representation as an invariant Casimir function. The coadjoint orbits form the
level sets on the entropy. By using the KKS 2-form in the affine case via Souriau’s cocycle, the method
also enables the Fisher metric from information geometry for Lie groups. The fact that transverse
dynamics to these symplectic leaves is dissipative, whilst dynamics along these symplectic leaves
characterize non-dissipative phenomenon, can be used to interpret this Lie group thermodynamics
within the context of an open system out of thermodynamics equilibrium. In the following section, we
will discuss the dissipative symplectic model of heat and information through the Poisson transverse
structure to the symplectic leaf of coadjoint orbits, which is based on the metriplectic bracket, which
guarantees conservation of energy and non-decrease of entropy. Baptiste Coquinot recently developed
a new foundation theory for dissipative brackets by taking a broad perspective from non-equilibrium
thermodynamics. He did this by first considering more natural variables for building the bracket
used in metriplectic flow and then by presenting a methodical approach to the development of the
theory. By deriving a generic dissipative bracket from fundamental thermodynamic first principles,
Baptiste Coquinot demonstrates that brackets for the dissipative part are entirely natural, just as
Poisson brackets for the non-dissipative part are canonical for Hamiltonian dynamics. We shall
investigate how the theory of dissipative brackets introduced by Paul Dirac for limited Hamiltonian
systems relates to transverse structure. We shall investigate an alternative method to the metriplectic
method based on Michel Saint Germain’s PhD research on the transverse Poisson structure. We will
examine an alternative method to the metriplectic method based on the transverse Poisson structure,
which Michel Saint-Germain studied for his PhD and was motivated by the key works of Fokko
du Cloux. In continuation of Saint-Germain’s works, Hervé Sabourin highlights the, for transverse
Poisson structures, polynomial nature to nilpotent adjoint orbits and demonstrated that the Casimir
functions of the transverse Poisson structure that result from restriction to the Lie–Poisson structure
transverse slice are Casimir functions independent of the transverse Poisson structure. He also
demonstrated that, on the transverse slice, two polynomial Poisson structures to the symplectic leaf
appear that have Casimir functions. The dissipative equation introduced by Lindblad, from the
Hamiltonian Liouville equation operating on the quantum density matrix, will be applied to illustrate
these previous models. For the Lindblad operator, the dissipative component has been described as
the relative entropy gradient and the maximum entropy principle by Öttinger. It has been observed
then that the Lindblad equation is a linear approximation of the metriplectic equation.

Keywords: Lie group thermodynamics; symplectic geometry; symplectic foliation; Poisson cohomology;
Casimir function; transverse Poisson structure; entropy; heat equation; Koszul–Fisher metric; maximum
entropy; symplectic geometry; exponential density family; transverse Poisson structure; Slodowy
slices; Grothendieck–Brieskorn–Slodowy theorem; metriplectic model; Onsager–Casimir relations;
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affinity; thermodynamics fluxes and response coefficients; Clausius–Duhem inequality; Dirac dissipative
brackets; Lindblad equation

1. Symplectic Statistical Mechanics Introduced by Jean-Marie Souriau

By considering Lie group coadjoint orbits as a homogeneous symplectic manifold,
Jean-Marie Souriau [1–12] extended the traditional idea of a canonical ensemble given
by Gibbs to the case of a symplectic manifold, defining a generalized Gibbs states pa-
rameterized by an element of the Lie algebra. A generalized information geometry by
Souriau includes inequalities of convexity along with a number of other conventional
thermodynamic features, such as temperature being a component of the Lie algebra and
heat being a component of the dual space of the Lie algebra. In the case of non-commutative
groups, specific characteristics emerge: specific cohomological relations appear in the Lie
group algebra. A novel symplectic theory of information geometry and theory of heat
is then given by the Souriau model deduced from the foliation. We introduce this new
foliation theory of heat and information geometry using symplectic geometry and Poisson
deduced from “Lie group thermodynamics”. For basic references to Souriau’s model, we
invite you to read the author [13–26], C.M. Marle [27–36], G. de Saxcé [37–39] and more
recent studies [40–43]; for symplectic geometry, J.L. Kosul [44] and P. Cartier [45]; and for
an extension to quantum thermodynamics, [46–51]. In the fourth chapter on “Statistical
Mechanics” of his book Structure of Dynamical Systems published in 1969, Souriau first
introduced symplectic statistical mechanics. We will infer a geometric heat equation from
this archetypal model, and we have discovered a pure geometric entropy definition, which
manifests entropy as a Casimir function [52]. By using the KKS 2-form, introduced by
Kirillov, Kostant and Souriau, in the affine situation via a symplectic cocycle, the method
also enables generalizing the Fisher metric for Lie groups. The coadjoint orbits and the
Souriau moment map are crucial components of this concept. Ontologically, this model
offers the same geometric structures for the theory of probability, model of statistical me-
chanics and information geometry. Entropy gains a geometric foundation as a function
indexed by the dual space of the Lie algebra through the moment map and in terms of
foliations. For a Lie group G operating on a manifold having a symplectic form by symplec-
tomorphisms, Souriau established the extended Gibbs rules. By extending the Fisher and
Koszul metrics [53] from the theory of information geometry with the definite positiveness
of the Souriau tensor, we will be able to explain the second principle of thermodynamics.
Souriau entropy is invariant when a group is acting on a homogeneous symplectic manifold
and when a coadjoint operator acting on heat has affine equivariance. These equations
are ubiquitous and may be of significant relevance in mathematics, according to Souriau.
Koszul–Poisson cohomology characterizes entropy as a Casimir function. The entropy
level sets are formed by the coadjoint orbits as symplectic leaves that emerge from the
dual space of the Lie algebra by KKS 2-form. The dynamics transverse to these symplectic
leaves is dissipative, and dynamics remaining on symplectic leaves is non-dissipative and
help us to understand this Lie group thermodynamics within the context of open system
out-of-equilibrium thermodynamics.

For the symplectic leaves, the transverse Poisson structure, which is endowed with its
Poisson structure, will be taken into consideration in the second half of our discussion on
the dissipative symplectic theory of heat and information. There are three different types of
dissipation: thermal diffusion with energy conservation and entropy production through
heat transfer; viscosity, which takes energy from the system (e.g., Navier–Stokes equation);
and transport equations with collision operators. Hamiltonian dynamics describes systems
that maintain energy throughout the phase. Dissipative effects, which are irreversible
changes from a thermodynamic perspective, cannot be accounted for in classical Hamilto-
nian systems (dissipative dynamics that do not preserve energy). The metriplectic bracket
was first introduced in 1983 by A. N. Kaufman [54] and P. J. Morrison [55–57], providing
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both conservation of energy and entropy production, and it reduces to the traditional Pois-
son bracket formalism in the limit of no dissipation. Parallel axiomatization of this model
has been performed by Grmela [58,59] and Öttinger (with a method called GENERIC).
Entropy in these models is assumed to be a Casimir function, as in the Souriau model.
These types of systems that follow both the first principle and the Clausius second principle
of thermodynamics are included in metriplectic dynamics.

Baptiste Coquinot [60,61] recently developed a new foundation theory for dissipa-
tive brackets by taking a broad perspective from non-equilibrium thermodynamics. He
accomplished this by first considering variables for building the bracket of the metriplec-
tic flow and by developing a methodical approach for dissipative brackets. Based on
non-equilibrium thermodynamic equations developed by Onsager and Casimir [62–66]
for systems near thermal equilibrium for irreversible processes, Baptiste Coquinot devel-
oped metriplectic dissipative brackets. The Onsager–Casimir reciprocity relations describe
time-reversal invariance at the microscopic scale for the macroscopic quantity relaxation
close to thermodynamic equilibrium in the linear regime and link time reversibility at
the microscopic scale with a symmetry property of corresponding evolution equations
at the macroscopic scale. With the macroscopic evolution equation described by varia-
tional principle as a flow of gradient or equation of maximum entropy production, the
Onsager–Casimir relations assume that, for the thermal fluctuations of macroscopic quanti-
ties, correlation functions decay with respect to the equations of macroscopic relaxation.
Baptiste Coquinot’s concept was to elaborate with naturally thermodynamic variables that
are preserved in place of the typical Hamiltonian variables. By a formal equivalence demon-
stration between the thermodynamics of out-of-equilibrium equilibrium and metriplectic
dynamical systems, Baptiste Coquinot demonstrates that the pseudometric of the dissipa-
tive bracket is exactly equivalent to the second principle of thermodynamics and relations
elaborated by Onsager and Casimir. By deriving a generic bracket for dissipation from the
fundamental first principle of thermodynamics, Coquinot’s development demonstrates that
brackets for dissipation are canonical for out-of-equilibrium equilibrium, just as Poisson
brackets are canonical in the case of dynamics described by Hamilton. This general Co-
quinot dissipative bracket includes non-equilibrium thermodynamic theories, such as the
one initially proposed for the metriplectic model. According to Baptiste Coquinot, entropy,
a Casimir invariant, plays a similar role to the Hamiltonian in analytical mechanics. The
pseudometric’s non-negativity assures that entropy continues to increase in accordance
with the second principle of thermodynamics. According to Baptiste Coquinot, the natural
variables that make up the phase space basis are different from one another from both a
Hamiltonian and a thermodynamic standpoint, but one can modify the variables by using
the identity of thermodynamics to obtain a bracket in any phase space variables. The first
principle of thermodynamics is well formulated in the Coquinot bracket for dissipation,
with all the characteristics (bilinearity, symmetry and degeneracy). Baptiste Coquinot was
the first to notice these properties for a metriplectic dynamical system.

We shall use first Dirac’s dissipative bracket theory [67–71] for constrained Hamil-
tonian systems to refer to transverse structure. For Lagrangian systems with degenerate
Lagrangians, Paul Dirac introduced the generalized Hamiltonian dynamics in 1950. In this
case, we can endow the system phase space with two Poisson brackets: the Poisson bracket
deduced from its symplectic structure, and the Dirac bracket. Cristel Chandre has more
recently examined these Hamiltonian systems with constraints within the context of the
theory developed by Paul Dirac, demonstrating that the identity introduced by Jacobi arises
from requiring that the constraints be invariants of Casimir, in any case of invertibility of
the Poisson bracket matrix between constraints. Cristel Chandre notes that this guarantees
the Jacobi identity.

After Paul Dirac, Michel Saint-Germain [72,73] studied the transverse Poisson struc-
ture in his PhD work, which was inspired by Fokko du Cloux’s seminal works on the
associative algebra structure [74–83]. This approach differs from the metriplectic approach.
In continuation of the works of Saint-Germain, in 2005, Hervé Sabourin investigated the
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polynomial nature, transverse to nilpotent adjoint orbits, of the Poisson structures in the
case of a complex semisimple Lie group with the introduction of a few nilpotent orbit fami-
lies with transverse structures that are quadratic. P. A. Damianou previously proposed as
early as 1989 that a polynomial property should characterize these previous transverse Pois-
son structures. H. Sabourin provided complements with polynomial transverse structures
in 2005, making use of Lie algebras’ machinery for semisimple Lie groups. Independent
Casimir functions associated with the transverse Poisson structure are constrained to the
transverse slice of the Lie–Poisson structure [84]. It is based on a Slodowy–Brieskorn theo-
rem that was extended by Sabourin from an Alexandre Grothendieck conjecture [85–89].
Hervé Sabourin [90–93] has demonstrated that the transverse Poisson and the determi-
nantal structures, which are built using these previous Casimirs, are on the symplectic
leaf transverse slice that have Casimir functions, two polynomial Poisson structures. Both
structures have the same quasi-degree (up to a constant multiple). On the basis of a
Slodowy theorem, he also demonstrated that the transverse Poisson is fundamentally given
by a 3 × 3 matrix, with skew-symmetric property, that is closely connected to the polyno-
mial that characterizes the singularity. He also focused on the subregular and minimum
orbit cases.

To conclude, we shall explore the equation introduced by Lindblad, the Hamiltonian
Liouville equation with an additional dissipative part, operating on the quantum density
matrix, to illustrate earlier models. To demonstrate that the equation developed by Lind-
blad can be written as a damped Hamiltonian system and the GENERIC (General Equation
for Non-Equilibrium Reversible and Irreversible Coupling) model, which was developed
by Grmela and Öttinger, we will remind the reader of the study performed by Markus
Mittnenzweig [94–99]. The Lindblad dissipative part operator has been represented as the
relative entropy gradient, indicating that the maximum entropy principle can lead to equi-
libria. Classically dissipative quantum systems are described by the linear quantum master
equation in Lindblad form, which is the most common. However, H.C. Öttinger [100,101]
has pointed out that this equation’s essential flaw—invoking an inaccurate “quantum
regression hypothesis”—has been known for around 30 years. This issue has been solved
for a heat bath connected to a quantum system by the inclusion of a nonlinear master
equation linked to a “modified quantum regression hypothesis” by H. Grabert [40,102].
The projection operator method has been used to obtain this modified master equation.
The nonlinear master equation, obtained in this way, is not restricted to temperatures with
high values where minor quantum effects inevitably occur. The quantum master equation
can really be used down to arbitrary temperatures of low values if the connection due to
friction to the heat bath weakens enough, as has been demonstrated. After formulating
the nonlinear master equation that is thermodynamically consistent, one can search for
unique circumstances where one can derive precise or approximate linear master equations.
H. Grabert has conducted the same kind of studies and came to the conclusion that the
well-known Lindblad form is not a good master equation.

2. List of Notations

We will use the following notation in the paper:

• Lie and dual Lie algebras:

Lie algebra: g = TeG
Dual space of Lie algebra g∗

• Coadjoint operator:

Ad∗g =
(

Adg−1

)∗
with

〈
Ad∗gF, Y

〉
=
〈

F, Adg−1Y
〉

, ∀g ∈ G, Y ∈ g, F ∈ g∗

• Moment map:
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J(x) : M→ g∗ such that JX(x) = 〈J(x), X〉, X ∈ g

• Souriau 1-cocycle:

θ(g)

• Souriau 2-cocycle:

Θ̃(X, Y) = J[X,Y] − {JX , JY}

where
g× g→ <
X, Y 7→ Θ̃(X, Y) = 〈Θ(X), Y〉 with Θ(X) = Teθ(X(e))

• Affine coadjoint operator:

Ad#
g(.) = Ad∗g(.) + θ(g)

• Poisson Bracket given by KKS 2-form

{F, G}(X) =

〈
X,
[

∂F
∂X

,
∂G
∂X

]〉
• Affine Poisson bracket:

{F, G}Θ̃(X) =

〈
X,
[

∂F
∂X

,
∂G
∂X

]〉
+

〈
Θ
(

∂F
∂X

)
,

∂G
∂X

〉
3. Information Geometry Foundation of Souriau “Lie Group Thermodynamics”

For geometric statistical mechanics, we will discuss how to introduce statistical tools
for Lie groups, and more specifically how to define the extension of Gauss density as the
maximum entropy density of Gibbs.

Amari has demonstrated that the information matrix of Fisher is the Riemannian
metric for an exponential family as follows:

gij = −
[

∂2Φ
∂θi∂θj

]
ij

with Φ(θ) = − log
∫
R

e−〈θ,y〉dy (1)

The Legendre transform provides a dual potential as Shannon entropy:

S(η) = 〈θ, η〉 −Φ(θ) with ηi =
∂Φ(θ)

∂θi
and θi =

∂S(η)
∂ηi

(2)

where Φ(θ) = − log
∫
R

e−〈θ,y〉dy = − log ψ(θ) is the classical function for cumulant generation.

Through an affinely invariant Hessian metric on a sharp convex cone, J.L. Koszul and
E. Vinberg have introduced a generalization, though the concept of characteristic function:

ΦΩ(θ) = − log
∫

Ω∗
e−〈θ,y〉dy = − logψΩ(θ) with θ ∈ Ω sharp convex cone

ψΩ(θ) =
∫

Ω∗
e−〈θ,y〉dy with Koszul−Vinberg Characteristic function

(3)
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The name “characteristic function” has been named by Ernest Vinberg [103,104]:

Let Ω be a cone in U and Ω∗ its dual, for any λ > 0, Hλ(x) = {y ∈ U/〈x, y〉 = λ}
and let d(λ)y denote the Lebesgue measure on Hλ(x) :
ψΩ(x) =

∫
Ω∗

e−〈x,y〉dy = (m−1)!
λm−1

∫
Ω∗∩Hλ(x) d(λ)y

(4)

There exists a bijection x ∈ Ω 7→ x∗ ∈ Ω∗ , satisfying the relation (gx) ∗ = tg−1x∗ for
all g ∈ G(Ω) = {g ∈ GL(U)/gΩ = Ω} the linear automorphism group of Ω, and x∗ is:

x∗ =
∫

Ω∗∩Hλ(x)
yd(λ)y/

∫
Ω∗∩Hλ(x)

d(λ)y (5)

We can observe that x∗ is the center of gravity of Ω∗ ∩ Hλ(x). We have the property
that ψΩ(gx) = |det(g)|−1ψΩ(x) for all x ∈ Ω, g ∈ G(Ω) and then that ψΩ(x)dx is an

invariant measure on Ω. Writing ∂a =
m
∑

i=1
ai ∂

∂xi , one can write:

∂aΦΩ(x) = ∂a(− log ψΩ(x)) = ψΩ(x)−1
∫

Ω∗

〈a, y〉e−〈x,y〉dy = 〈a, x∗〉 , a ∈ U, x ∈ Ω (6)

Then, the tangent space to the hypersurface {y ∈ U/ψΩ(y) = ψΩ(x)} at x ∈ Ω is
given by {y ∈ U/〈x∗, y〉 = m}. For x ∈ Ω, a, b ∈ U, the bilinear form ∂a∂b log ψΩ(x) is
symmetric and positive definite, so that it defines an invariant Riemannian metric on Ω.

Jean-Marie Souriau extended these relationships in geometric statistical mechanics
to ensure the covariance of Gibbs density with regard to the action of the Lie group. The
Souriau model preserves earlier structures:

I(β) = −∂2Φ
∂β2 with Φ(β) = − log

∫
M

e−〈U(ξ),β〉dλω and U : M→ g∗ (7)

We can observe that the Legendre transform is preserved:

S(Q) = 〈Q, β〉 −Φ(β) with Q =
∂Φ(β)

∂β
∈ g∗ and β =

∂S(Q)

∂Q
∈ g (8)

It should be noted that the definition of entropy is “Legrendre transform of minus
the logarithm of Laplace transform” (also known as the Cramer transform) and that the
logarithm of Laplace transform is connected to the cumulant-generating function.

β is a “geometric” (Planck) temperature, element of Lie algebra g of the group, and Q
is a “geometric” heat, element of the dual space of the Lie algebra g∗ of the group in the
Souriau Lie group thermodynamics model. The Riemannian metric proposed by Souriau
has been identified by us as a generalization of the Fisher metric:

I(β) =
[
gβ

]
with gβ([β, Z1], [β, Z2]) = Θ̃β(Z1, [β, Z2]) (9)

with Θ̃β(Z1, Z2) = Θ̃(Z1, Z2) +
〈

Q, adZ1(Z2)
〉

where adZ1(Z2) = [Z1, Z2] (10)

Souriau proved that all coadjoint orbits of a Lie group given by OF =
{

Ad∗gF, g ∈ G
}

subset of g∗, F ∈ g∗, carry, by a closed G-invariant 2-form, a natural homogeneous symplec-

tic structure. If we define K = Ad∗g =
(

Adg−1

)∗
and K∗(X) = −(adX)

∗ with:〈
Ad∗gF, Y

〉
=
〈

F, Adg−1Y
〉

, ∀g ∈ G, Y ∈ g, F ∈ g∗ (11)
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where if X ∈ g,Adg(X) = gXg−1 ∈ g, the G-invariant 2-form is given by the following expression:

σΩ(adX F, adY F) = BF(X, Y) = 〈F, [X, Y]〉, X, Y ∈ g (12)

When a Lie group acts transitively by a Hamiltonian action on a symplectic manifold,
the symplectic manifold is a covering space of a coadjoint orbit, according to Souriau’s
fundamental theorem. We can see that the Fisher metric, in the non-equivariant situation,
is an extension of this 2-form for the Souriau model:

gβ([β, Z1], [β, Z2]) = Θ̃(Z1, [β, Z2]) + 〈Q, [Z1, [β, Z2]] 〉 (13)

The non-equivariance induced an additional term by a symplectic cocycle, which
corresponds to Θ̃(Z1, [β, Z2]). To define this extended Fisher metric, the tensor Θ̃ used is
defined by the moment map J(x), application from M (homogeneous symplectic manifold)
to the dual space of the Lie algebra g∗, given by:

Θ̃(X, Y) = J[X,Y] − {JX , JY} (14)

with J(x) : M→ g∗ such that JX(x) = 〈J(x), X〉, X ∈ g

As the tangent space of the cocycle θ(g) ∈ g∗, Θ̃ could be derived (the non-equivariance
of the coadjoint operator Ad∗g generates this cocycle that modifies the action of the group
on the dual space of the Lie algebra, so that the moment map could recover an equivariant
relative to this new affine action):

Q
(

Adg(β)
)
= Ad∗g(Q) + θ(g) (15)

The cocycle θ(g) ∈ g∗ is a measure characterizing the lack of equivariance of the
moment map.

Θ̃(X, Y) : g× g→ < with Θ(X) = Teθ(X(e))
X, Y 7→ 〈Θ(X), Y〉 (16)

Souriau has then defined a Gibbs density that is covariant under the action of the group:

pGibbs(ξ) = eΦ(β)−〈U(ξ),β〉 =
e−〈U(ξ),β〉∫

M
e−〈U(ξ),β〉dλω

with Φ(β) = − log
∫
M

e−〈U(ξ),β〉dλω (17)

Q =
∂Φ(β)

∂β
=

∫
M

U(ξ)e−〈U(ξ),β〉dλω∫
M

e−〈U(ξ),β〉dλω
=
∫
M

U(ξ)p(ξ)dλω (18)

We can express the Gibbs density with respect to Q by inverting the relation:
Q = ∂Φ(β)

∂β = Θ(β). Then,

pGibbs,Q(ξ) = eΦ(β)−〈U(ξ),Θ−1(Q)〉with β = Θ−1(Q) (19)

Souriau entropy S(Q) is found to be constant on the affine coadjoint orbit of the group
(where the “geometric heat” Q is an element of the dual space of the Lie algebra g∗ of
the group) by observing that S

(
Ad#

g(Q)
)
= S(Q) if we note the affine coadjoint operator

Ad#
g(Q) = Ad∗g(Q) + θ(g) where θ(g) is called the Souriau cocycle, and is associated with

the default of equivariance of the moment map. We will next introduce this invariant
Casimir function in coadjoint representation as the entropy within the context of Souriau
Lie group thermodynamics. A function on M is a Casimir function when M is a Poisson
manifold if and only if this function is constant on every symplectic leaf. Entropy is
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traditionally defined by Shannon with an axiomatic approach. Entropy will be defined in
this essay as the Casimir equation’s solution for affine equivariance by:(

ad∗∂S
∂Q

Q
)

j
+ Θ

(
∂S
∂Q

)
j
= Ck

ijad∗
( ∂S

∂Q )
i Qk + Θj = 0 (20)

where Θ(X) = Teθ(X(e)) with Θ̃(X, Y) = 〈Θ(X), Y〉 = J[X,Y] − {JX , JY} in the non-null
cohomology case (non-equivariance of coadjoint operator on the moment map), with θ(g)
the Souriau symplectic cocycle. The Koszul–Fisher metric will be connected to the KKS
2-form, which links a homogeneous symplectic manifold structure to coadjoint orbits.
In the context of thermodynamics, the fact that motion transverse to these surfaces is
dissipative while motion remaining on them is non-dissipative could be used to explain
how the information manifold foliates into level sets of entropy.

dQ
dt = ad∗∂H

∂Q
Q + Θ

(
∂H
∂Q

)
with stable equilibrium given when H = S⇒ dQ

dt = ad∗∂S
∂Q

Q+

Θ
(

∂S
∂Q

)
= 0 (algorithm described preserves coadjoint orbits and Casimirs of the Lie–

Poisson equation by construction). This equation could be written as the Euler–Poincaré
equation [105].

We will also observe that dS = Θ̃β

(
∂H
∂Q , β

)
dt, where Θ̃β

(
∂H
∂Q , β

)
= Θ̃

(
∂H
∂Q , β

)
+〈

Q,
[

∂H
∂Q , β

] 〉
, showing that the second law of thermodynamics could be deduced from

the Souriau tensor positive definiteness related to Fisher–Koszul information metric. We
can also extend the affine Lie–Poisson equation dQ

dt = ad∗∂H
∂Q

Q + Θ
(

∂H
∂Q

)
for stochastic

dynamicsby a Stratonovich-kind differential equation given by:

dQ +

[
ad∗∂H

∂Q
Q + Θ

(
∂H
∂Q

)]
dt +

N

∑
i=1

[
ad∗∂Hi

∂Q

Q + Θ
(

∂Hi
∂Q

)]
◦ dWi(t) = 0 (21)

4. Fisher Metric Symplectic Structure and Souriau–Casimir Entropy

We will give a definition of entropy purely geometrically based on this model as
an extended invariant Casimir function defined on coadjoint orbits, where the cocycle
characterizes the lack of equivariance for the moment mapping. The coadjoint orbits, which
are also the entropy level sets, can be explained in terms of thermodynamics by the fact that
dissipative phenomena are given by transverse dynamics to the symplectic leaves while
non-dissipative ones are characterized by dynamics on the symplectic leaves. Additionally,
by extending the Fisher–Koszul metric extension from information geometry by the Souriau
tensor, the second thermodynamics law will be explained. We will also develop a new
geometric heat equation using this Fisher–Koszul–Souriau tensor.

4.1. Symplectic Structures of Fisher–Souriau Metric

Based on the seminal work of François Gallissot [106] developed by Souriau, in the
“Lie group thermodynamics” model, β is a “geometric” temperature of Planck, an element
of Lie algebra g of the group, and Q is a heat defined geometrically as an element of the
dual space of the Lie algebra g∗ of the group. A Riemannian metric has been proposed by
Souriau that we have identified as a generalization of the Fisher metric:

I(β) =
[
gβ

]
with gβ([β, Z1], [β, Z2]) = Θ̃β(Z1, [β, Z2]) (22)

with Θ̃β(Z1, Z2) = Θ̃(Z1, Z2) +
〈

Q, adZ1(Z2)
〉

where adZ1(Z2) = [Z1, Z2] (23)

where a Lie group acts transitively on a symplectic manifold by a Hamiltonian action, and
the symplectic manifold is a covering space of a coadjoint orbit. We can see that in the
non-equivariant case, the Fisher metric for the Souriau model is an extension of this 2-form
gβ([β, Z1], [β, Z2]) = Θ̃(Z1, [β, Z2]) + 〈Q, [Z1, [β, Z2]]〉.
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Due to the non-equivariance of the coadjoint operator induced by the symplectic
cocycle, the term Θ̃(Z1, [β, Z2]) appears. To define the extended Fisher–Souriau metric, the
tensor Θ̃ could be deduced from the moment map J(x), application from the homogeneous
symplectic manifold Mto the dual space of the Lie algebra g∗, given by:

Θ̃(X, Y) = J[X,Y] − {JX , JY} (24)

with J(x) : M→ g∗ such that JX(x) = 〈J(x), X〉, X ∈ g (25)

As tangent space of the cocycle θ(g) ∈ g∗, this tensor Θ̃ could be introduced due to the
non-equivariance of the coadjoint operator Ad∗g and the cocycle; we modify the action of
the group on the dual space of the Lie algebra by adding a cocycle to introduce an “affine”
equivariance of the momentum map as described in Figure 1:

Q
(

Adg(β)
)
= Ad∗g(Q) + θ(g) (26)
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I use notation Ad∗g =
(

Adg−1

)∗
with

〈
Ad∗gF, Y

〉
=
〈

F, Adg−1Y
〉

, ∀g ∈ G, Y ∈ g, F ∈
g∗ as used by Koszul and Souriau. θ(g) ∈ g∗ is called non-equivariance 1-cocycle, and it is
a measure of the lack of equivariance of the moment map.

Θ̃(X, Y) : g× g→ <
X, Y 7→ Θ̃(X, Y) = 〈Θ(X), Y〉 with Θ(X) = Teθ(X(e))

(27)

It can be then deduced that the tensor could be also written by (with cocycle relation):

Θ̃(X, Y) = J[X,Y] − {JX , JY} = −〈dθ(X), Y〉 , X, Y ∈ g (28)

Θ̃([X, Y], Z) + Θ̃([Y, Z], X) + Θ̃([Z, X], Y) = 0 , X, Y, Z ∈ g (29)

The bedrock of Souriau’s “Lie group thermodynamics” is given by the affine equiv-
ariance of the moment map J, characterized by an affine action of G on g∗, where we
can recognize the classical coadjoint action as the linear part, for which the moment J is
equivariant. When an element of the group g acts on the element β ∈ g of the Lie algebra,
given by adjoint operator Adg and with respect to the action of the group Adg(β), the
entropy S(Q) and the Fisher metric I(β) are invariant:

β ∈ g→ Adg(β)⇒
{

S
[
Q
(

Adg(β)
)]

= S(Q)
I
[
Adg(β)

]
= I(β)

(30)
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A 2-form in the Lie algebra has been introduced by Souriau, to deduce a Riemannian
metric tensor in the values of the adjoint orbit of β, [β, Z] with Z an element of the Lie
algebra. This metric is given for (β, Q):

gβ([β, Z1], [β, Z2]) = 〈Θ(Z1), [β, Z2]〉+ 〈Q, [Z1, [β, Z2]]〉 (31)

where Θ is a cocycle of the Lie algebra, defined by Θ = Teθ, with θ being a cocycle of
the Lie group defined by θ(M) = Q(AdM(β))− Ad∗MQ. The Riemannian metric given by
Souriau based on his cocycle is a generalization of the Fisher–Koszul metric because we can

define this metric as a Hessian of the partition function logarithm gβ = − ∂2Φ
∂β2 =

∂2 log ψΩ
∂β2

as in classical information geometry. The equality of the two metrics could be proved by
identifying the expression given by cocycle Θ and parameterized by Q (element of the dual
space of the Lie algebra) and β (element of Lie algebra) with the Hessian of characteristic
function Φ(β) = − log ψΩ(β) with respect to the variable β:

gβ([β, Z1], [β, Z2]) = 〈Θ(Z1), [β, Z2]〉+ 〈Q, [Z1, [β, Z2]]〉 =
∂2 log ψΩ

∂β2 (32)

If one assumes that U(gξ) = Ad∗gU(ξ) + θµ(g), g ∈ G, ξ ∈ M which means that
the energy U : M→ g∗ satisfies the same equivariance condition as the moment map
µ : M→ g∗ , then one has for g ∈ G and β ∈ Ω

ΨΩ
(

Adgβ
)
=
∫
M

e−〈U(ξ),Adg β〉dλ(ξ) =
∫
M

e
−〈Ad∗

g−1 U(ξ),β〉
dλ(ξ)

=
∫
M

e−〈U(g−1ξ)−θµ(g−1),β〉dλ(ξ) = e〈θµ(g−1),β〉∫
M

e−〈U(g−1ξ),β〉dλ(ξ)

= e〈θµ(g−1),β〉ΨΩ(β)
Φ
(

Adgβ
)
= − log ΨΩ

(
Adgβ

)
= Φ(β)−

〈
θµ(g−1), β

〉
(33)

To consider the invariance of entropy, we have to use the property that

Q
(

Adgβ
)
= Ad∗gQ(β) + θµ(g) = g.Q(β) , β ∈ Ω, g ∈ G (34)

For β ∈ Ω, let gβ be the Hessian form on TβΩ ≡ g with the potential Φ(β) =
− log ψΩ(β). For X, Y ∈ g, we define:

gβ(X, Y) = −∂2Φ
∂β2 (X, Y) =

(
∂2

∂s∂t

)
s=t=0

log ψΩ(β + sX + tY) (35)

The Cauchy–Schwarz inequality proves the positive definitiveness of this tensor.
We observe that gβ(X, X) = 0 if and only if 〈U(ξ), X〉 is independent of ξ ∈ M, which

means that the set {U(ξ); ξ ∈ M} is contained in an affine hyperplane in g∗ perpendicular to
the vector X ∈ g. We have seen that gβ = − ∂2Φ

∂β2 , which is a generalization of the classical
Fisher metric from information geometry, and will give the relation the Riemannian
metric introduced by Souriau.

gβ(X, Y) =
〈
−∂Q

∂β
(X), Y

〉
for X, Y ∈ g (36)

we have for any β ∈ Ω, g ∈ G and Y ∈ g:〈
Q
(

Adgβ
)
, Y
〉
=
〈

Q(β), Adg−1Y
〉
+
〈
θµ(g), Y

〉
(37)
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Let us differentiate the above expression with respect to g. Namely, we substitute
g = exp(tZ1), t ∈ R and differentiate at t = 0. Then the left-hand side of (22) becomes(

d
dt

)
t=0

〈
Q
(

β + t[Z1, β] + o
(

t2
))

, Y
〉
=

〈
∂Q
∂β

([Z1, β]), Y
〉

(38)

and the right-hand side of (22) is calculated as:(
d
dt

)
t=0

〈
Q(β), Y− t[Z1, Y] + o

(
t2)〉+ 〈θµ

(
I + tZ1 + o

(
t2)), Y

〉
= −〈Q(β), [Z1, Y]〉+

〈
dθµ(Z1), Y

〉 (39)

Therefore, 〈
∂Q
∂β

([Z1, β]), Y
〉

=
〈
dθµ(Z1), Y

〉
− 〈Q(β), [Z1, Y]〉 (40)

Substituting Y = −[β, Z2] to the above expression:

gβ([β, Z1], [β, Z2]) =
〈
− ∂Q

∂β ([Z1, β]), [β, Z2]
〉

gβ([β, Z1], [β, Z2]) = −
〈
dθµ(Z1), [β, Z2]

〉
+ 〈Q(β), [Z1, [β, Z2]]〉

(41)

We define then symplectic 2-cocycle and the tensor:

Θ(Z1) = −dθµ(Z1)

Θ̃(Z1, Z2) = 〈Θ(Z1), Z2〉 =
{

JZ1 , JZ2

}
− J[Z1,Z2]

(42)

Considering Θ̃β(Z1, Z2) = 〈Q(β), [Z1, Z2]〉+ Θ̃(Z1, Z2) as KKS 2-form when we have
the property of non-null cohomology, we can then define the Fisher–Souriau metric:

gβ([β, Z1], [β, Z2]) = Θ̃β(Z1, [β, Z2]) (43)

A dual metric of the Fisher–Souriau metric is also given by entropy S(Q) Hessian with
respect to the dual variable given by Q due to the fact that the entropy is defined by the

Legendre transform of the characteristic function, ∂2S(Q)
∂Q2 .

It is an extension of the concept of “heat capacity.” Souriau called it a “geometric capacity”:

I(β) = −∂2Φ(β)

∂β2 = −∂Q
∂β

(44)

In Figure 2, we present Souriau’s illustration of his model. We can see that Pierre
Duhem established the foundations of thermodynamics based on capacity and its expansion
in a brand-new theory known as “energetique” in the previous century.

For the Galilean group in classical mechanics, for an isolated mechanical system, we
cannot define any equilibrium Gibbs state, due to the non-existence of the open subset of
the Lie algebra associated with this Gibbs state. We have then to consider the 1-parameter
subgroup of the Galilean group produced by an element β of Lie algebra to be thought of
as the following set of matrices:

exp(τβ) =

A(τ)
→
b (τ)

→
d (τ)

0 1 τε
0 0 1

 with


A(τ) = exp

(
τ j(
→
ω)
)

and
→
b (τ) =

(
∞
∑

i=1

τi

i!

(
j(
→
ω)
)i−1

)
→
α

→
d (τ) =

(
∞
∑

i=1

τi

i!

(
j(
→
ω)
)i−1

)→
δ + ε

(
∞
∑

i=2

τi

i!

(
j(
→
ω)
)i−2

)
→
α
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where β =

j
(→

ω
) →

α
→
δ

0 1 ε
0 0 0

 ∈ g.

We can recover the classical thermodynamics by considering the reciprocal formula as follows:

Q =
∂Φ
∂β

, β =
∂S
∂Q

, S(Q) =

〈
∂Φ
∂β

, β

〉
−Φ and Φ(β) =

〈
Q,

∂S
∂Q

〉
− S

The classical Boltzmann–Clausius entropy for classical thermodynamics is recovered
if the Lie group is restricted to only time translation:{

β = ∂S
∂Q

β = 1
T
⇒ dS =

dQ
T
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For instance, we may easily obtain the covariant Gibbs density for the centrifuge
dynamical system using the Souriau model (equilibrium of angular moment map will be
established by viscosity). According to Roger Balian, “Angular momentum is transferred
to the gas when molecules hit with rotating wall, changing the Maxwell distribution at
every location. The walls serve as a reservoir for angular momentum. Their motion is
defined by an angular velocity, and at equilibrium, the angular velocities of the fluid and
the walls are equalized, exactly as the temperature is equalized through energy exchanges.”
According to Roger Balian, in order to characterize the equilibrium of a centrifuge, we need
two hyperparameters of Lagrange, one for the classical thermodynamic equilibrium with
Planck temperature and the other for the angular momentum equilibrium. Souriau made
the observation that these two hyperparameters could coexist in the same tensor, which
is a component of the Lie algebra of the Lie group acting on the system, and he defined
what he termed a “geometric temperature” with a new ontology and a strictly geometric
definition derived from symmetries.

We can see that by applying Poincaré–Cartan integral invariant [107] to the Massieu
characteristic function, it is possible to derive generalized variational principles from the
Souriau Lie group thermodynamics model, as illustrated in Figure 3. For the Souriau model,
an extension of the Poincaré-Cartan integral invariant is provided by ω = 〈Q, (β.dt)〉 −
S.dt = (〈Q, β〉 − S).dt = Φ(β).dt with g(t) ∈ G and β(t) = g(t)−1 .

g(t) ∈ g. The variational

model for an arbitrary path is δβ =
.
η + [β, η] and δ

t1∫
t0

Φ(β(t)).dt = 0.
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4.2. Souriau–Casimir Entropy and Lie Algebra Cohomology

Souriau’s equation 〈Q, [β, Z]〉+ Θ̃(β, Z) = 0, introduced in 1974, can be proved by
considering the curve t 7→ Adexp (tZ)β with Z ∈ g and t ∈ R . The curve Adexp (tZ)β passes,
for t = 0, through the point β, since Adexp (0) is the map for the identity of the Lie algebra g.
This curve is in the adjoint orbit of β. So, by taking its derivative with respect to t, for t = 0,
a tangent vector in β is deduced at the adjoint orbit of this point. When Z takes arbitrary
values in g, the vectors generate all the vector space tangent in β to the orbit of this point:

dΦ
(

Adexp (tZ)β
)

dt

∣∣∣∣∣∣
t=0

=

〈
dΦ
dβ

,

 d
(

Adexp (tZ)β
)

dt

∣∣∣∣∣∣
t=0

〉 = 〈Q, adZβ〉 = 〈Q, [Z, β]〉 (45)

As we have seen before, Φ
(

Adgβ
)
= Φ(β)−

〈
θ
(

g−1), β
〉
. If we set g = exp(tZ), we

obtain Φ
(

Adexp (tZ)β
)
= Φ(β)− 〈θ(exp(−tZ)), β〉, and by derivation with respect to t at

t = 0, we finally recover the equation given by Souriau:

dΦ
(

Adexp (tZ)β
)

dt

∣∣∣∣∣∣
t=0

= 〈Q, [Z, β]〉 = −〈dθ(−Z), β〉 with Θ̃(X, Y) = −〈dθ(X), Y〉 (46)

Souriau has developed this equation in greater depth. Souriau has just observed
the identity S

[
Q
(

Adg(β)
)]

= S
[

Ad∗g(Q) + θ(g)
]
= S(Q). We propose from this property

to characterize this invariance more explicitly by characterizing entropy as an invariant
Casimir function in coadjoint representation. From the last Souriau equation, if we use
the identities β = ∂S

∂Q , adβZ = [β, Z] and Θ̃(β, Z) = 〈Θ(β), Z〉, then we can deduce that〈
ad∗∂S

∂Q
Q + Θ

(
∂S
∂Q

)
, Z
〉

= 0 , ∀Z. So, entropy S(Q) should verify ad∗∂S
∂Q

Q + Θ
(

∂S
∂Q

)
= 0,

which characterizes an invariant Casimir function in the case of non-null cohomology
that we propose to write with Poisson brackets, where

{S, H}Θ̃(Q) =

〈
Q,
[

∂S
∂Q

,
∂H
∂Q

]〉
+ Θ̃

(
∂S
∂Q

,
∂H
∂Q

)
= 0 , ∀H : g∗ → R , Q ∈ g∗, (47)

In fact, the following differentiation describes infinitesimal variation: d
dt S
(

Q
(

Adexp (tx)β
))

|t=0 = d
dt S
(

Ad∗exp (tx)Q + θ(exp(tx))
)∣∣∣

t=0
= −

〈
ad∗∂S

∂Q
Q + Θ

(
∂S
∂Q

)
, x
〉

. When non-null co-
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homology occurs, we recover the equation ad∗∂S
∂Q

Q+Θ
(

∂S
∂Q

)
= 0 characterizing an invariant

Casimir function, recovering the classical Casimir condition {S, H}Θ̃(Q) = 0. The Lie–
Poisson equations with cocycle solutions provide the Hamiltonian motion on these affine
coadjoint orbits.

Because entropy is traditionally introduced axiomatically, it appears as disruptive in
information theory to identify entropy as a Casimir function constant on the coadjoint orbits.
We are then able to build the entropy by an equation characterizing the Casimir function.

Because it adds a new differential equation structure in the situation of non-null
cohomology, this new equation is significant. The variational principle modified for Lie–
Poisson structure is equivalent to the prior Lie–Poisson equation:

δ

τ∫
0

(〈
Q(t),

∂H
∂Q

(t)
〉
− H(Q(t))

)
dt = 0 where


∂H
∂Q = g−1 .

g ∈ g, g ∈ G
∂2 H
∂Q2 δQ = δ

(
∂H
∂Q

)
, η = g−1δg〈

Q, δ
(

∂H
∂Q

)〉
=
〈

Q,
.
η +

[
∂H
∂Q , η

]〉
+ Θ̃

(
∂H
∂Q , η

) (48)

Geometric Definition of Heat Equation
From this Lie–Poisson equation, we can introduce a geometric heat Fourier equation:

∂Q
∂t

= ad∗∂H
∂Q

Q + Θ
(

∂H
∂Q

)
and

∂F(Q)

∂t
= {F(Q), H}Θ̃ (49)

that we can rewrite:
∂Q
∂t

=
∂Q
∂β

∂β

∂t
= ad∗∂H

∂Q
Q + Θ

(
∂H
∂Q

)
(50)

where ∂Q
∂β geometric heat capacity is given by gβ(X, Y) =

〈
− ∂Q

∂β (X), Y
〉

for X, Y ∈ g

with gβ(X, Y) = Θ̃β(X, Y) = 〈Q(β), [X, Y]〉+ Θ̃(X, Y) related to Souriau-Fisher tensor.
The PDE for (calorific) energy density known as the heat equation uses the geometric

heat capacity to describe the characteristics of a material. The method of numerically
integrating Lie–Poisson systems while maintaining coadjoint orbits has been considered.

In the homogeneous Euclidean situation, we have the following classical equation:

∂ρE
∂t

= div
(

λ

C
∇ρE

)
with

∂ρE
∂t

= C
∂T
∂t

(51)

The relationship with the second law of thermodynamics will be inferred from the
Souriau–Fisher tensor positivity:

S(Q) = 〈Q, β〉 −Φ(β) with dQ
dt = ad∗∂H

∂Q
Q + Θ

(
∂H
∂Q

)
⇒ dS

dt = Θ̃β

(
∂H
∂Q , β

)
≥ 0, ∀H (link to positivity of Fisher metric)

if H = S ⇒
∂S
∂Q =β

dS
dt = Θ̃β(β, β) = 0 because β ∈ KerΘ̃β

(52)

Entropy production is then linked with Souriau–Fisher structure, dS = Θ̃β

(
∂H
∂Q , β

)
dt

with Θ̃β

(
∂H
∂Q , β

)
= Θ̃

(
∂H
∂Q , β

)
+
〈

Q,
[

∂H
∂Q , β

]〉
Souriau–Fisher tensor.

The two equations characterizing entropy as an invariant Casimir function are related by:

∀H, {S, H}Θ̃(Q) =

〈
ad∗∂S

∂Q
Q + Θ

(
∂S
∂Q

)
,

∂H
∂Q

〉
= 0⇒ ad∗∂S

∂Q
Q + Θ

(
∂S
∂Q

)
= 0 (53)
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This equation appears in the Souriau paper published in 1974, observing that geometric
temperature β is a kernel of Θ̃β, which is written as follows:

β ∈ KerΘ̃β ⇒ 〈Q, [β, Z]〉+ Θ̃(β, Z) = 0 (54)

and can be developed to recover the Casimir equation:

⇒
〈

Q, adβZ
〉
+ Θ̃(β, Z) = 0⇒

〈
ad∗βQ, Z

〉
+ Θ̃(β, Z) = 0

β = ∂S
∂Q ⇒

〈
ad∗∂S

∂Q
Q, Z

〉
+ Θ̃

(
∂S
∂Q , Z

)
=

〈
ad∗∂S

∂Q
Q + Θ

(
∂S
∂Q

)
, Z
〉

= 0, ∀Z

⇒ ad∗∂S
∂Q

Q + Θ
(

∂S
∂Q

)
= 0

(55)

4.3. Link between Souriau–Casimir Entropy and Koszul–Poisson Cohomology

J.L. Koszul and A. Lichnerowicz and [108–110] introduced Poisson cohomology.
Koszul cited a seminal paper by E. Cartan that stated, “Elie Cartan does not explicitly
mention Λ(g’) [the complex of alternate forms on a Lie algebra], because he treats groups
as symmetrical spaces and is interested in differential forms that are invariant to both the
translations to the left and the translations to the right, which corresponds to the elements
of Λ(g’) invariant by the prolongation of the coadjoint representation. Nevertheless, it can
be claimed that a crucial aspect of the cohomological theory of Lie algebras was in place by
1929.” We can also make reference to F. Berezin [111].

When defining the Poisson structure, A. Lichnerowics pointed out that it can be written
using the Schouten–Nijenhuis bracket [112–116] and that it is an extension of symplectic
structures that use contravariant tensor fields rather than differential forms. Let us consider
adPQ = [P, Q], where adP is a graded linear endomorphism of degree p-1 of A(M). From
the graded Jacobi identity, we can write:

adP[Q, R] = [adPQ, R] + (−1)(p−1) (q−1)
[
Q, adpR

]
ad[P,Q] = adP ◦ adQ − (−1)(p−1) (q−1) adQ ◦ adP

(56)

The first equation means that the graded endomorphisms adPQ = [P, Q], of degree
p-1, are a derivation of the graded Lie algebra A(M) with the Schouten–Nijenhuis bracket
as composition law. The second equation of means that the endomorphism ad[P,Q] is the
graded commutator of endomorphisms adP and adQ. Y. Vorob’ev and M.V. Karasev have
suggested cohomology classification in terms of closed forms and de Rham cohomology of
coadjoint orbits Ω (called Euler orbits by authors), symplectic leaves of a Poisson manifold
N. Let Zk(Ω) and Hk(Ω) be the space of closed k-forms on Ω and their de Rham cohomol-
ogy classes. Considering the base of the fibration of N by these orbits as N/Ω, they have
introduced the map Zk[Ω] = C∞

(
N/Ω→ Zk(Ω)

)
and Hk[Ω] = C∞

(
N/Ω→ Hk(Ω)

)
.

Depending on coordinates on N/Ω, the elements of Zk[Ω] are closed forms on Ω. Then
H0[Ω] = Casim(N) is identified with the Casimir functions set on N of constant functions
on all coadjoint orbits. Entropy is then given by zero-dimensional de Rham cohomology.
For arbitrary v ∈ V(N), with the set V(N) of all vector fields on N, the tensor Dv defines a
closed 2-form α(Dv) = Z2[Ω], and if v ∈ V(N) annihilates H0[Ω] = Casim(N), then this
form is exact. The center of Poisson algebra induced from the symplectic structure is the
zero-dimensional de Rham cohomology group, the Casimir functions.

5. Metriplectic Model for Dissipative Heat Equation

A Hamiltonian model of dynamics is used to identify systems that maintain energy
throughout the phase. Dissipative effects, which are irreversible changes from a ther-
modynamic perspective, cannot be accounted for in classical Hamiltonian systems. The
metriplectic bracket was first introduced in 1983 by A. N. Kaufman and P. J. Morrison. This
bracket formalism provides both energy conservation and a non-decrease in entropy, and it
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reduces to the traditional Poisson bracket formalism in the limit of no dissipation. Parallel
axiomatization of this model was performed by Grmela and Öttinger (called GENERIC
method: General Equation for Non-Equilibrium Reversible and Irreversible Coupling).

There are three different types of dissipation: thermal diffusion with energy conserva-
tion and entropy production through heat transfer; viscosity, which takes energy from the
system (e.g., Navier–Stokes equation); and transport equations with collision operators.
These types of systems that adhere to both the first and second laws of thermodynamics are
included in metriplectic dynamics. A new bracket in the metriplectic formalism provides
the evolution equation {{., .}}:

d f
dt

= {{ f , F}} = { f , F}+ ( f , F) (57)

Hamiltonian components are introduced by requiring:

F = H + S (58)

The second bracket has two constraints:

( f , F) = (F, f ) and ( f , f ) ≥ 0 (59)

with the entropy S selected from the set of Casimir invariants of the noncanonical Poisson
bracket, playing the role of a Lyapunov functional. A metriplectic vector field induced by F
is given by the dynamics:

dzi
dt

= Jij
∂F
∂zj

+ Mij
∂F
∂zj

(60)

compliant with two first principles of thermodynamics:

• First principle: energy conservation:

dH
dt = {H, F}+ (H, F) = {H, H}+ {H, S}+ (H, H) + (H, S) = 0

because


{H, H} = 0 by symmetry
{ f , S} = 0, ∀ f
(H, f ) = 0, ∀ f

(61)

• Second principle: entropy production:

dS
dt = {S, F}+ (S, F) = 0 + (S, H) + (S, S) = (S, S) ≥ 0

because


{S, f } = 0, ∀ f
( f , H) = 0, ∀ f
M positive semi− definite ⇒ (S, S) ≥ 0

(62)

By using entropy as the Casimir invariant function, thermal equilibrium is recovered.
Finally, two compatible brackets—a Poisson bracket and a symmetric bracket—determine

the geometry in metriplectic systems:

d f
dt

= {{ f , F}} = { f , H}+ ( f , S) (63)

The energy H is a Casimir invariant of the dissipative bracket, and the entropy S is a
Casimir invariant of the Poisson bracket:

{S, H} = 0∀H
(H, S) = 0∀S

(64)
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5.1. Canonical/Noncanonical Hamiltonian Structures and Poisson Bracket {., .}
The first part of a metriplectic vector field relative to the non-dissipative part is given

by the Poisson bracket. Considering the Hamiltonian function H(q, p) depending on the
canonical coordinates q and momenta p, with z = (q, p), Hamiltonian equations:

dqi
dt

=
∂H
∂pi

and
dqi
dt

= −∂H
∂qi

, i = 1, . . . , N (65)

can be rewritten in tensorial form with canonical Poisson matrix and bracket:

dzi
dt = Jij

∂H
∂zj

= {zi, H}, i, j = 1, . . . , 2N

J =
(

0N IN
−IN 0N

)
and { f , g} = ∂ f

∂zj
Jij

∂g
∂zj

(66)

The Poisson structure (tensor) needs not be nondegenerate. The only case where it is
nondegenerate is the symplectic case, which we are considering here.

We note the symplectic 2-form ω = ∑ dpi ∧ dqi such that ωik Jkj = δij.

By change of coordinates ẑ = ẑ(z), the Poisson matrix J transforms as a contravariant
2-tensor:

Ĵij(ẑ) = Juv
∂ẑi
∂zu

∂ẑj

∂zv
and

dẑi
dt

= Ĵij
∂Ĥ
∂ẑj

with Ĥ(ẑ) = H(z) (67)

If Ĵij = Jij, the transformation is called a canonical transformation or symplectomor-
phism, and Hamilton’s equations are preserved:

dq̂i
dt

=
∂Ĥ
∂ p̂i

and
dp̂i
dt

= −∂Ĥ
∂q̂i

, i = 1, . . . , N with ẑ = (q̂, p̂) (68)

The noncanonical generalization of the Hamiltonian form is given by:

dzi
dt = JNC

ij
∂H
∂zj

= {zi, H}, i = 1, . . . , M

{ f , g} = ∂ f
∂zi

JNC
ij

∂g
∂zj

, i, j = 1, . . . , M
(69)

For a Poisson bracket, we should have the following properties:

Antisymmetry : { f , g} = −{g, f } ⇔ Jij = −J ji

Jacobi Identity : { f , {g, h}}+ {h, { f , g}}+ {g, {h, f }} = 0
(70)

If det
(

JNC) 6= 0, then from the Darboux theorem there exists a coordinate change that
at least locally brings JNC into the canonical form J:

JNC
uv

∂ẑi
∂zu

∂ẑj

∂zv
= Jij (71)

If det
(

JNC) = 0, there exist Casimir invariants C which are constants of motion for
any Hamiltonian:

{ f , C} = 0, ∀ f ⇔ Jij
∂C
∂zj

= 0, ∀i (72)

The level sets of the Casimir invariants are the foliation of the phase space. An orbit
initiated on the level sets of the initial Casimir invariants remains on these symplectic leaves.
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If det
(

JNC) = 0, from the Lie–Darboux theorem, there is no coordinate transforma-
tion to canonical form; however, there is a transformation to the following degenerate
canonical form:

Jdegenerate =

 0N IN 0
−IN 0N 0

0 0 0M−2N

 (73)

For finite-dimensional Lie–Poisson Hamiltonian systems, the Poisson matrix J is linear
in the dynamical variable and has the form Jij = ck

ij.zk, where the numbers ck
ij are the

structure constants of some Lie algebra.

5.2. Metric Flow Structures and Symmetric Bracket (., .)

A flow in metric space makes up the second component of a metriplectic vector field
in relation to the dissipative component. The coordinate form of the metric flow on a
finite-dimensional phase space manifold is as follows:

dzi
dt = Mij

∂S
∂zj

= (zi, S), i = 1, . . . , M

( f , g) = ∂ f
∂zj

Mij(z)
∂g
∂zj

, i, j = 1, . . . , M with ( f , g) = (g, f )
(74)

where S is an entropy function. We should have the following properties for the metric:

M positive semi− definite ⇒ dS
dt = (S, S) ≥ 0

Energy Conservation H (Hamiltonian)⇒ (H, f ) = 0, ∀ f
(75)

The symmetry requirement generalizes the Onsager symmetry of linear irreversible
thermodynamics to nonlinear issues; however, in the traditional metriplectic model, the
possibility of Casimir symmetry is not taken into account.

The double bracket, Cartan–Killing bracket and Casimir dissipation bracket are three
dissipation brackets (., .) that have been presented in the literature for the metriplectic
system in the Lie–Poisson framework. The Lie–Poisson bracket for two functions f and h in
Lie–Poisson systems is provided by:

{ f , h}(z) =
〈

z,
[

∂ f
∂z

,
∂h
∂z

]〉
=

〈
z,−ad ∂H

∂z

∂ f
∂z

〉
=

〈
ad∗∂h

∂z
z,

∂ f
∂z

〉
(76)

Hamiltonian dynamics is given by:

d f
dt

= { f , h}(z) =
〈

ad∗∂h
∂z

z,
∂ f
∂z

〉
⇒ dz

dt
= ad∗∂h

∂z
z (77)

In coordinate realization, with a coordinate chart (zi), the Poisson bivector is repre-
sented by a set of coefficient functions determining the Poisson bracket:

{ f , h} = Jij
∂ f
∂zi

∂h
∂zj
⇒ dzi

dt
= Jij

∂h
∂zj

(78)

For Lie–Poisson structure defined on the dual of a finite-dimensional Lie algebra, we
can introduce structure constants with an N-dimensional Lie algebra admitting a basis
{e1, . . . , eN}:

[
ei, ej

]
= ck

ijek (with summation convention over the repeated indices). The
Lie–Poisson dynamics is given by:

Jij = ck
ijzk ⇒

dzj

dt
= ck

ijzk
∂h
∂zi

(79)
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5.2.1. Dissipation Bracket as Double Bracket

The double bracket is given by:

( f , h) = ∑
j

Jij Jl j
∂ f
∂zi

∂h
∂zl

= ∑
j

ck
ijc

r
ljzkzr

∂ f
∂zi

∂ f
∂zl

(80)

with the metriplectic dynamics:

dzj

dt
= ck

ijzk
∂h
∂zi

+ ∑
i

ck
jic

r
lizrzn

∂h
∂zl

(81)

5.2.2. Dissipation bracket as Cartan–Killing Bracket

Given a basis {e1, . . . , eN} in an N-dimensional Lie algebra g, for any element X of g,
we can decompose it by the structure constants of g, antisymmetric in their lower indices
ck

ij = −ck
ji:

X =
N

∑
i=1

xiei with
[
ei, ej

]
= ck

ijek (82)

and the linear operator:

adXZ = [X, Z] = ∑ xizjck
ijek and adXadYZ = [X, [Y, Z]] = ck

ilc
l
jmxiyjzmek (83)

Taking the trace of the linear operator defines the Killing form, a symmetric bilinear
form on vectors of the Lie algebra:

K(X, Y) = tr(adXadY) = ∑
i,j

ci
kjc

j
lixkyl = gkl xkyl with gij = ∑

k,l
ck

ilc
l
jk = tr

(
adei adej

)
K(adZX, Y) + K(X, adZY) = 0

(84)

and the Jacobi identity is deduced from the following relation on the structure constants:

∑
k

cr
ikck

jl + cr
jkck

li + cr
lkck

ij = 0 also deduced from [adX , adY]Z = ad[X,Y]Z (85)

The tensor gij can be used to lower the third label of ck
ij by defining:

cijk = cl
ijgkl = cl

ijc
m
krcr

lm is completely antisymmetric due to
K(X, adYZ) = K(Y, adZX) = K(Z, adXY) = cijkxiyjzk = cjkiyjzkxi = ckijzkxiyj

(86)

Given a semisimple Lie algebra g, with an invertible Killing form, we define:

Cq = ∑
i,j

gijeiej with gijgjk = δij (87)

Cq, the quadratic Casimir operator, has a vanishing bracket with any ei and hence with
any element of g:[

Cq, ek
]
= ∑

i,j
gij[eiej, ek

]
= ∑

i,j
gij(ei

[
ej, ek

]
+ [ei, ek]ej

)
[
Cq, ek

]
= ∑

i,j,k
gijck

jl(eiek + ekei) = ∑
i,j,k,r

gijgkrcjlr(eiek + ekei) = 0
(88)

The term ∑
j,r

gijgkrcjlr is antisymmetric in i and k, while the term in parentheses is

symmetric, and then the sum vanishes. For a simple Lie algebra, in its universal enveloping
algebra, a quadratic expression in e that commutes with all the e’s is proportional to the
Casimir operator. The quadratic Casimir operator is then unique up to a factor.
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If we come back to the Cartan–Killing metric gij = ∑
k,l

ck
ilc

l
jk = tr

(
adei adej

)
that defines

a symmetric and bilinear covariant tensor, a symmetric bracket for functions in terms of
the metric is then given by:

( f , h) = ck
ilc

l
jk

∂ f
∂zi

∂ f
∂zl

(89)

with the metriplectic dynamics:

dzj

dt
= ck

ijzk
∂h
∂zi

+ ci
jrcr

li
∂h
∂zl

(90)

5.2.3. Dissipation bracket as Casimir Dissipation Bracket

Given a Casimir function S(z), for z ∈ g∗, a positive symmetric bilinear form γz and a
real number θ > 0, the Lie–Poisson dynamical equation is modified to produce the Casimir
dissipative Lie–Poisson equation:

d f (z)
dt

= { f , h} − θγz

([
∂ f
∂z

,
∂h
∂z

]
,
[

∂S
∂z

,
∂h
∂z

])
(91)

inducing the following dynamical equation:

dz
dt = ad∗∂h

∂z
z + θad∗∂h

∂z

[
∂S
∂z , ∂h

∂z

]b
= ad∗∂h

∂z

(
z + θ

[
∂S
∂z , ∂h

∂z

]b
)

with b : g→ g∗ such that ξ ∈ g, ξb ∈ g∗ then
〈

ξb, η
〉
= γz(ξ, η)∀η ∈ g

(92)

We can identify this model in the framework of metriplectic one by the following identification:

− θγz

([
∂ f
∂z

,
∂h
∂z

]
,
[

∂g
∂z

,
∂h
∂z

])
= θ

〈
∂ f
∂z

, ad∗∂h
∂z

([
∂g
∂z

,
∂h
∂z

]bz
)〉

=

〈
∂ f
∂z

, κz

(
∂g
∂z

)〉
= ( f , g)∀g ∈ C∞(g∗) (93)

5.2.4. Hamilton Dissipation Bracket

Assuming a symmetric semi-positive definite bilinear operator ψ defined on a Lie
algebra g, we fix a Casimir function S(z) of the Lie–Poisson bracket and introduce the
following symmetric bracket on the dual space g∗, for two functionals f and h, given by:

( f , h) = −ψ

([
∂ f
∂z

,
∂S
∂z

]
,
[

∂h
∂z

,
∂S
∂z

])
(94)

The associated equation of motion is as follows:

dz
dt = ad∗∂h

∂z
z− ad∗∂S

∂z

[
∂S
∂z , ∂h

∂z

]b

with b : g→ g∗ such that ξ ∈ g, ξb ∈ g∗ then
〈

ξb, η
〉
= ψ(ξ, η)∀η ∈ g

(95)

5.2.5. The Metric Structure of the Symmetric Dissipative Metriplectic Bracket

For the Fokker–Planck equation in Hamiltonian systems, Naoki Sato [117,118] ob-
served that gij = Jik Jjk appears in the form inside the dissipative bracket generating the
diffusion operator. Then, he deduced that the Poisson operator is linked with the metriplec-
tic dissipative bracket. In the case of dimension two, the covariant version of the tensor is
given by a Euclidean metric tensor in the phase space coordinates (p, q):

g = dp⊗ dp + dq⊗ dq (96)
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to be compared with the canonical form of the symplectic 2-form associated with Hamilto-
nian mechanics:

ω = dp ∧ dq = dp⊗ dp− dq⊗ dq (97)

Sato observed that “the canonical form of the symmetric dissipative part of the
metriplectic bracket is identified in terms of a ‘canonical metric tensor’ corresponding to
an Euclidean metric tensor on the symplectic leaves foliated by the Casimir invariants”.

A single generating function Φ = 〈β, Q〉 − S is useful to deploy the dynamics by the
metriplectic bracket flow:

dF
dt

= {{F, Φ}} = β−1{F, Φ}+ (F, Φ) (98)

6. Non-Equilibrium Thermodynamic Theory of Dissipative Brackets

Based on non-equilibrium thermodynamics, Baptiste Coquinot has provided new
foundations for the dissipative brackets. Poisson brackets and Onsager–Casimir equations
both have a connection to Hamiltonian dynamics. For the first time, Coquinot explicitly
deduced a generic dissipative bracket from fundamental thermodynamic first principles.
The non-equilibrium thermodynamics theories originally presented by Morrison, Grmela
and Öttinger and Materassi are covered under this generic bracket. Entropy, a Casimir
invariant, serves as the analog to the Hamiltonian in analytical mechanics in the Baptiste
Coquinot model, where the non-negativity of the pseudometric ensures the entropy growth
associated with the second law of thermodynamics.

Baptiste Coquinot has used fundamental equations of non-equilibrium thermodynam-
ics describing systems close to thermal equilibrium and irreversible processes. Coquinot
has considered σ, the entropy density and ζα densities associated with conserved extensive
properties with the thermodynamic identity:

dσ = ∑
α

Xαdζα with Xα =
∂σ

∂ζα
(99)

All the densities are characterized by the following conservation equations:

∂ζα

∂t
+∇.Jα = 0 (100)

where ζα could define a set of dynamical variables and Jα an unknown flux associated with
ζα.

Then, the following equation of motion describes the evolution of entropy:

∂σ

∂t
+∇.JT = ∑

α

Jα.∇Xα with JT = ∑
α

Xα Jα (101)

where ∇Xα is the affinity associated with the density ζα and flux Jα.
The classical non-equilibrium thermodynamics model assumes a linear response close

to the equilibrium:
Jα = ∑

β

Lαβ∇Xβ , ∀α (102)

Onsager and Casimir have established contraints on tensor L =
[
Lαβ

]
, and more

especially, due to physics contraints, that L =
[
Lαβ

]
should be symmetric and positive-

definite for entropy growth.
At this step, Baptiste Coquinot has established the dynamics generated with a bracket

with respect to the tensor L =
[
Lαβ

]
, proving a formal equivalence between the classical out-

of-equilibrium thermodynamics and metriplectic dynamical systems. Baptiste Coquinot
has shown that the pseudometric nature of the usually empirical dissipative bracket could
be deduced from the second law of thermodynamics and Onsager–Casimir relations.
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Considering the phase space with the basis {ζα} in which the entropy is geometrically
constructed, Baptiste Coquinot has shown how L =

[
Lαβ

]
is related to a bracket on the

phase space by rewriting the evolution equations, at a space point x and time t. To establish
this relation, Coquinot writes:

∂ζα(x,t)
∂t = −∇.Jα(x, t) = −∇.

[
Lαβ(x, t)∇

(
∂σ
∂ξβ

)
(x, t)

]
= −

∫
Ω

[
δΩ(x− y)∇.

[
Lαβ(y, t)∇

(
∂σ
∂ξβ

(y, t)
)]]

d3y

=
∫
Ω

[
∇
(

∂ζα(x,t)
∂ζγ(y,t)

)
Lγβ(y, t)∇

(
∂S

∂ξβ(y,t)

)]
d3y where S =

∫
Ω

σ

(103)

Coquinot then deduces the equation on the dynamics of Entropy:

∂σ(x,t)
∂t = −∇.JT(x, t) + Jα.∇

(
∂σ
∂ζα

)
(x, t)

= −∇.
[

∂σ
∂ζα

(x, t)Lαβ(x, t)∇
(

∂σ
∂ζα

)
(x, t)

]
+∇

(
∂σ
∂ζα

)
(x, t)Lαβ(x, t)∇

(
∂σ
∂ζα

)
(x, t)

= − ∂σ
∂ζα

(x, t)∇.
[

Lαβ(x, t)∇
(

∂σ
∂ζα

)
(x, t)

]
=
∫
Ω

[
∇
(

∂σ
∂ζα

(y, t)δΩ(x− y)
)

Lαβ(y, t)∇
(

∂σ
∂ζβ

(y, t)
)]

d3y

=
∫
Ω

[
∇
(

∂σ(x,t)
∂ζα(y,t)

)
Lαβ(y, t)∇

(
∂S(t)

∂ζβ(y,t)

)]
d3y

(104)

Coquinot deduced that the dynamics of out-of-equilibrium thermodynamics on the phase
space can be expressed with a symmetric bracket for any two functionals f and g:

( f , g) =
1
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Coquinot has observed that this equation is a pure geometric object, independent of 

the basis   , where the functional derivatives can be seen as functional gradients, and 

∫
Ω

∇
(

∂ f
∂ζa(y)

)
Lαβ∇

(
∂g

∂ζβ(y)

)
d3y (105)

Coquinot has observed that this equation is a pure geometric object, independent of
the basis {ζα}, where the functional derivatives can be seen as functional gradients, and
both functional gradients are contracted thanks to the pseudometric

[
Lαβ

]
and where the

bracket is symmetric thanks to the Onsager–Casimir relations.
As previously, it has been demonstrated that:

∂σ(x, t)
∂t

=
∫
Ω

[
∇
(

∂σ(x, t)
∂ζα(y, t)

)
Lαβ(y, t)∇

(
∂S(t)

∂ζβ(y, t)

)]
d3y =
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(σ, S) (106)

Coquinot writes the evolution of any functional f as:

d f
dt

=
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To include the first law of thermodynamics, Coquinot proposes ε as a basic variable in
the thermodynamic framework ( ∂H

∂ε is then unity and the other elements of the basis are
independent of ε) and obtains, for any functional f , the following:

( f , H) = 0 (108)

By construction, the non-equilibrium thermodynamics preserves
∫
Ω

ζα for any α, and

ε is chosen as one of the ζα values, and the dissipative bracket formulates the first law of
thermodynamics. With bilinearity, symmetry and degeneracy properties, a metriplectic dy-
namical system results from coupling such a bracket with the accompanying noncanonical
Poisson bracket.

The following is a quote from Baptiste Coquinot: “Our construction above shows that
the dissipative brackets are entirely natural for non-equilibrium thermodynamics, just as
the Poisson brackets are natural for Hamiltonian dynamics. Above, we explicitly deduced a
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generic dissipative bracket from fundamental thermodynamic first principles, presumably
for the first time. This general bracket includes non-equilibrium thermodynamic theories
that resemble fluids, such as those initially proposed by Morrison and later by others
(Grmela & Öttinger, Edwards, Materassi & Tassi)”. This Coquinot development provides a
non-equilibrium thermodynamics point of view to found dissipative bracket theory. It does
so by first taking into account variables for building the bracket of the metriplectic flow and
then by proposing a methodical approach to derive brackets for dissipation. The Onsager–
Casimir reciprocity relations describe time-reversal invariance at the microscopic scale for
the relaxation of quantities at the macroscopic scale close to thermodynamic equilibrium
in the linear regime and link time reversibility at the microscopic scale with a symmetry
property of corresponding evolution equations at the macroscopic scale. Through this
equivalence, Baptiste Coquinot establishes a formal equivalence between a metriplectic
dynamical systems subclass and classical out-of-equilibrium thermodynamics, demonstrat-
ing that the dissipative bracket pseudometric nature, which is typically a hypothesis, is
the exact transcription of the second principle of thermodynamics and Onsager–Casimir
relations. By deriving a generic dissipative bracket from fundamental thermodynamic
first principles, Coquinot’s design demonstrates that brackets for dissipation are canonical
for non-equilibrium thermodynamics, just as Hamiltonian dynamics Poisson brackets are
canonical. According to Baptiste Coquinot, entropy, a Casimir invariant, plays a similar
role to the Hamiltonian in analytical mechanics. The pseudometric’s non-negativity assures
that entropy continues to increase in accordance with the second law of thermodynamics.
According to Baptiste Coquinot, the natural variables that make up the basis of the phase
space are different from one another from both a Hamiltonian and a thermodynamic stand-
point, but one can change the variables by using the thermodynamic identity to obtain a
bracket in any full set of phase space variables. The first law of thermodynamics is well
formulated in the Coquinot dissipative bracket, with respect to all the characteristics. The
linkage of such a bracket with the corresponding noncanonical Poisson bracket was first
noticed by Baptiste Coquinot.

7. Dirac’s Theory of Constrained Hamiltonian Systems: Dissipative Bracket

For Lagrangian systems with degenerate Lagrangians, Paul Dirac introduced the
generalized Hamiltonian dynamics in 1950. For the Dirac model, the system phase space
is endowed with two Poisson brackets: the Poisson bracket of the standard case deduced
from its symplectic structure, and the Dirac bracket.

The Dirac restricted bracket could be used to infer the transverse Poisson structure.
Using Dirac’s constraint bracket formula, Oh [119] defined the requirements in 1986 for the
transverse Poisson structure to a coadjoint orbit to be at most quadratic. Let (M, {, }) be
a Poisson manifold, x a point in M, ℘ be the symplectic leaf through x, N be a transverse
submanifold to ℘ at x, U be the neighborhood of x and y ∈ U. Consider functions
ψ1, . . . , ψ2n such that N = {y ∈ U/ψ1(y) = 0, . . . , ψ2n(y) = 0} and denote by C the non-
singular matrix such that Cij(y) =

{
ψi, ψj

}
(y). Then the transverse Poisson structure to ℘

is given by:

{ f , h}N =
{

f̃ , h̃
}
−

2n

∑
i,j=1

{
f̃ , ψi

}(
C−1

)
ij

{
ψj, h̃

}
(109)

where f , h ∈ C∞(N) and f̃ , h̃ are arbitrary extensions to U of f , h.
Dirac proved the Jacobi identity for this bracket, relying heavily on the invertibility of

C, and as a consequence of the constraints are Casimir invariants, {ψi, h}N = 0 , ∀h.
Michel Saint-Germain used natural identifications typical of the Lie–Poisson scenario

to derive from Dirac’s constraint bracket formula, a formula for computing the transverse
Poisson structure for a coadjoint orbit. Damianou then hypothesized that the transverse
Poisson structure to any coadjoint orbit is polynomial for a semisimple Lie algebra. Cush-
man and Roberts’ research has then demonstrated this conjecture.
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Cristel Chandre has more recently examined Dirac’s theory of constrained Hamiltonian
systems, demonstrating that the identity of Jacobi arises from the constraints considered as
Casimir invariants, for any reversibility of the Poisson bracket matrix. The validity of the
identity given by Jacobi is guaranteed throughout phase space, not simply on the surface
bounded by the restrictions, according to Cristel Chandre’s demonstration.

Cristel Chandre has considered a finite-dimensional Hamiltonian system with vari-
ables z = (z1, . . . , zn), given by a Hamiltonian H(z), and a Poisson bracket:

{ f , h} = ∂ f
∂z

J(z)
∂h
∂z

(110)

J(z), the Poisson matrix, is associated with a bracket that is antisymmetric with
the Jacobi identity in addition to the Leibnitz rule and the bilinearity, ensured by the
bracket form.

m < n − 2 constraints are imposed from the variable z; ψi(z) = 0 for i = 1, . . . , m.
Dirac brackets given by an antisymmetric matrix D are not in the general Poisson bracket
and the inverse of C. The matrix associated with the Dirac bracket is given by:

JN = J − JK+DKJ (111)

where the matrix K has elements Kli =
∂ψl
∂zi

. The matrix D is defined with the property that
the constraints are Casimir invariants, leading to the following condition for D:

JK+(I − DC) = 0 with C = KJK+ (112)

In this way, it has been demonstrated how Jacobi identity can be attained.

8. Transverse Poisson Structure for Dissipative Heat Equation Introduced by
Herve Sabourin

By restricting consideration to the case of nilpotent orbits, Hervé Sabourin has exam-
ined the coadjoint orbit transverse Poisson structure in a complex Lie algebra, considered as
semisimple. Hervé Sabourin demonstrated that a determinantal formula based on Cheval-
ley’s restriction of the invariants on the slice may adequately characterize the transverse
Poisson structure for nilpotent orbits with a subregular property. The transverse Poisson
structure is transformed into a three-dimensional Poisson bracket based on the Slodowy
slice model.

When M is the dual Lie algebra g∗ of a complex Lie algebra g, it is equipped with
Lie–Poisson structure in standard form. The Killing form 〈., .〉 of g identifies g with its
dual g∗, and a Poisson structure on g is given for functions f and g on g at x ∈ g by
{ f , g}(x) = 〈x, [d f (x), dg(x)]〉 where d f (x) and dg(x) are elements of g ∼= g∗ ∼= T∗x g. By
means of the ad-invariant Killing form, the adjoint orbits G.x of G are identified with the
coadjoint orbits G.µ, by the isomorphism g ∼= g∗. The symplectic leaf through µ ∈ g∗ is the
coadjoint orbit G.µ of the adjoint Lie group G of g.

A transverse slice to G.x is given by choosing any complement n to the centralizer
g(x) = {y ∈ g/[x, y] = 0} of x in g and by taking N as the affine subspace x + n⊥ of g∗,
where ⊥ is the orthogonal complement with respect to the Killing form. Using the property
that g(x)⊥ = ad∗gx, we have the following decomposition: Tx(g∗) = Tx(G.x) ⊕ Tx(N),
where N is a transverse slice to G.x at x. Sabourin has given an explicit formula for the
Poisson structure {., .}N transverse to G.x. Let (Z1, · · · , Zk) be a basis for g(x), and let
(X1, · · · , X2r) be a basis for n, where 2r = dim(G.x) is the rank of the Poisson structure
at x. These bases lead to linear coordinates q1, · · · , qk+2r on g, centered at x, defined
by qi(y) = 〈y− x, Zi〉 for i = 1, · · · , k with dqi(y) = Zi, and qk+i(y) = 〈y− x, Xi〉 for
i = 1, · · · , 2r with dqk+i(y) = Xi. The Poisson matrix {., .} at y ∈ g is given by:
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({
qi, qj

}
(y)
)

1≤i,j≤k+2r =

(
A(y) B(y)
−B(y)T C(y)

)
where


Ai,j(y) =

〈
y,
[
Zi, Zj

]〉
, for 1 ≤ i, j ≤ k

Bi,m(y) = 〈y, [Zi, Xm]〉 , for 1 ≤ i ≤ k, 1 ≤ m ≤ 2r
Cl,m(y) = 〈y, [Xi, Xm]〉 , for 1 ≤ l, m ≤ 2r

(113)

C(x) is a skew-symmetric invertible matrix, and so C(y) is invertible for y in a neigh-
borhood of x in g, and hence for y in a neighborhood V of x in N. Then, the Poisson matrix
of {., .}N at n ∈ V in the coordinates q1, · · · , qk (restricted to V) is given by Dirac reduction:

ΛN = A(n) + B(c)C(n)−1B(n)T (114)

For the case of semisimple Lie algebra, Sabourin has used the Jordan–Chevalley de-
composition theorem, where x could be decomposed in x = s + e, where s is semisimple, e
is nilpotent and [s, e] = 0, with following relation between centralizers: g(x) = g(s) ∩ g(e).
We have the vector space decomposition g = g(s)⊕ ns where ns = g(s)⊥, and ns is g(s)
invariant such that [g(s), ns] ⊂ ns (observing that 〈g(s), [g(s), ns]〉 = 〈[g(s), g(s)], ns〉 ⊂
〈g(s), ns〉 = {0}). Sabourin has then considered the following decomposition g = g(x)⊕
ne ⊕ ns where ne is any complement of g(x) in g(s). Then taking n = ne ⊕ ns, Sabourin
has denoted Nx = x + n⊥ and has proved that if n ∈ Nx, such that n = g(s), then
〈n, [g(s), ns]〉 ⊂ 〈g(s), ns〉 = {0} and in particular 〈n, [g(x), ns]〉 = {0} and 〈n, [ne, ns]〉 =
{0}. Considering the basis vectors X1, · · · , X2r of n such that X1, · · · , X2p ∈ ne and
X2p+1, · · · , X2r ∈ ns and as 〈n, [g(x), ns]〉 = {0} and 〈n, [ne, ns]〉 = {0}, then the Poisson
matrix takes at n ∈ Nx the form:

Λ(n) =

 A(n) Be(n) 0
−Be(n)

T Ce(n) 0
0 0 Cs(n)

 where


Ai,j(n) =

〈
n,
[
Zi, Zj

]〉
, for 1 ≤ i, j ≤ k

Be;i,m(n) = 〈n, [Zi, Xm]〉 , for 1 ≤ i ≤ k, 1 ≤ m ≤ 2p
Ce;l,m(y) = 〈n, [Xi, Xm]〉 , for 1 ≤ l, m ≤ 2p
Cs;l,m(y) = 〈n, [Xi, Xm]〉 , for 2p + 1 ≤ l , m ≤ 2r

(115)

Sabourin has deduced from it that the Poisson matrix of the transverse Poisson struc-
ture on Nx is given by:

ΛNx (n) = A(n) + Be(c)Ce(n)
−1Be(n)

T (∗) (116)

Sabourin has also proved that:

ΛN = A(n) + Be(c)Ce(n)
−1Be(n)

T where n ∈ N (117)

yielding formally the same formula, except that it is evaluated at points n of N rather than
at points of Nx, and providing the following proposition:

Sabourin Proposition: Let x ∈ g be any element, G.x its adjoint orbit, and x = s + e its Jordan–
Chevalley decomposition. Given any complement ne of g(x) in g(s) and putting n = ns ⊕ ne,
where ns = g(s)⊥, the parallel affine spaces Nx = x + n⊥ and N = e + n⊥ are respectively
transverse slices to the adjoint orbit G.x in g and to the nilpotent orbit G(s).e in g(s). The Poisson
structure on both transverse slices has the same Poisson matrix, namely that of (*), in the same
affine coordinates restricted to the corresponding transverse slice.

In short, given by Sabourin, the transverse Poisson structure to any adjoint orbit G.x
of a semisimple (or reductive) Lie algebra g is essentially determined by the transverse
Poisson structure of the underlying nilpotent orbit G(s).e defined by the Jordan–Chevalley
decomposition x = s + e. Sabourin has also proved that the transverse Poisson structure
on N = e + n⊥ is a polynomial Poisson structure that is quasihomogeneous of degree −2.
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More explicitly, Sabourin has explicitly described the subregular orbit adjoint trans-
verse Poisson structure Osr ⊂ g, where g is a semisimple Lie algebra. The generic rank of the
transverse slice N adjoint transverse Poisson structure is two, and dim(N)− 2 independent
Casimirs are known; Sabourin has derived that the adjoint transverse Poisson structure
is the determinantal structure determined by these Casimirs, up to multiplication by a
constant, based on the theory of simple singularities introduced by Brieskorn and Slodowy
slice model.

The following result is given by Sabourin on invariant functions and Casimirs. Let
Osr = G.e be a subregular orbit in the semisimple Lie algebra g. Let (h, e, f ) be the corre-
sponding canonical sl2-triple, and consider the transverse slice N = e + n⊥ to G.e, where
n is an adh-invariant complement to g(e). Let S(g∗)G be the algebra of ad-invariant poly-
nomial functions on g, then S(g∗)G is a polynomial algebra generated by l homogeneous
polynomials (G1, · · · , Gl) deduced from a classical theorem due to Chevalley. These func-
tions are Casimirs of the Lie–Poisson structure on g, since ad-invariance of Gi implies that
[x, dGi(x)] = 0, and hence the Lie–Poisson bracket is:

{F, Gi}(x) = 〈x, [dF(x), dGi(x)]〉 = −〈[x, dGi(x)], dF(x)〉 = 0 for any function F on g.
Sabourin has observed that if we denote by χi the restriction of Gi to the transverse

slice N, then it follows that these functions are Casimirs of the adjoint transverse Pois-
son structure.

In the Lie–Poisson case, M. Saint-Germain has proved in his PhD the rationality of the
transverse Poisson structure. This result has been completed by P. Damianou for coadjoint
orbits in a semisimple Lie algebra, and by Hervé Sabourin in 2005.

Via the Jordan–Chevalley decomposition of x ∈ g, Hervé Sabourin has studied the
transverse Poisson structure to any adjoint orbit G.x and has proved that it can be reduced
to the case of an adjoint nilpotent orbit.

As the transverse structure to the regular nilpotent orbit Oreg of g is always trivial,
Hervé Sabourin has considered the case of the subregular nilpotent orbit Osr of g with
dimension of Osr two less than the dimension of the regular orbit, so that the transverse
Poisson structure has rank 2. Sabourin has proved that we could replace, for the transverse
Poisson structure, the complicated Dirac constraints with a simple determinantal formula:

{ f , g}det = det(∇ f ,∇g,∇χ1, . . . ,∇χl) =
d f ∧ dg ∧ dχ1 ∧ . . . ∧ dχl

dq1 ∧ dq2 ∧ . . . ∧ dql+2
(118)

where χ1, . . . , χl are independent polynomial Casimir functions with χi the restriction of
the i-th Chevalley invariant Gi to the slice N, and q1, . . . , ql+2 are linear coordinates on N.

Sabourin has proved the following theorem:

Sabourin Theorem: Let Osr be the subregular nilpotent adjoint orbit of a complex semisimple Lie
algebra g, and let (h, e, f ) be the canonical triple associated with Osr . Let N = e + n⊥ be a slice
transverse to Osr , where n is an adh -invariant complementary subspace to g(e) . Let {., .}N and
{., .}det denote respectively the adjoint transverse Poisson structure and the determinantal structure
on N. Then {., .}N = c{., .}det for some c ∈ C∗

From this determinantal formula, Sabourin has deduced that the Poisson matrix of the
transverse Poisson on N takes, in suitable coordinates, the block form:

Λ̃ =

(
0 0
0 Ω

)
where Ω = c′

 0 ∂F
∂ql+2

− ∂F
∂ql+1

− ∂F
∂ql+2

0 ∂F
∂ql

∂F
∂ql+1

− ∂F
∂ql

0

 (119)

where F is the polynomial F(u1, . . . , ul−1, ql , ql+1, ql+2) with u1, . . . , ul−1 being the defor-
mation parameters, given by Casimir for the Poisson structure on N, of simple singularity
of the singular surface N ∩ ℵ, where ℵ is the nilpotent cone of g.
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9. Application for SL(2,R) and SU(1,1)

For SU(1,1)/U(1) group acting transitively on Poincaré unit disk, we will introduce
the moment map. Considering the Lie group:

SU(1, 1) =
{(

a b
b∗ a∗

)
=

(
1 ba∗−1

0 1

)(
a∗−1 0

0 a∗

)(
1 0

a∗−1b∗ 1

)
/a, b ∈ R, |a|2 − |b|2 = 1

}
(120)

and its Lie algebra given by elements:

su(1, 1) =
{(

ir η
η∗ −ir

)
/r ∈ R, η ∈ C

}
(121)

a basis for this Lie algebra su(1, 1) is (u1, u2, u3) ∈ g with

u1 =
i
2

(
1 0
0 −1

)
, u2 = −1

2

(
0 1
1 0

)
and u3 =

1
2

(
0 −i
i 0

)
(122)

with [u1, u3] = −u2, [u1, u2] = u3, [u2, u3] = −u1. The Harish–Chandra embedding is given
by ϕ(gx0) = ζ = ba∗−1. From |a|2 − |b|2 = 1, one has |ζ| < 1. Conversely, for any |ζ| < 1,
taking any a ∈ C such that |a| =

(
1− |a|2

)−1/2 and putting b = ζa∗, one obtains g ∈ G for
which ϕ(gx0) = ζ. The domain D = ϕ(M) is the unit disk D = {ζ ∈ C/|ζ| < 1}.

The compact subgroup is generated by u1, while u2 and u3 generate a hyperbolic
subgroup. The dual space of the Lie algebra is given by:

su(1, 1)∗ =
{(

z x + iy
−x + iy −z

)
/x, y, z ∈ R

}
(123)

with the basis
(
u∗1 , u∗2 , u∗3

)
∈ g∗:

u∗1 =

(
1 0
0 −1

)
, u∗2 =

(
0 i
i 0

)
and u∗3 =

(
0 1
−1 0

)
(124)

Let us consider D = {z ∈ C/|z| < 1} as the open unit disk of Poincaré. For each ρ > 0,
the pair

(
D, ωρ

)
is a symplectic homogeneous manifold with ωρ = 2iρ dz∧dz∗

(1−|z|2)2 , where ωρ

is invariant under the action:

SU(1, 1)× D → D
(g, z) 7→ g.z = az+b

b∗z+a∗
(125)

This action is transitive and is globally and strongly Hamiltonian. Its generators are
the Hamiltonian vector fields associated with the functions:

J1(z, z∗) = ρ
1 + |z|2
1− |z|2 , J2(z, z∗) =

ρ

i
z− z∗

1− |z|2 , J3(z, z∗) = −ρ
z + z∗

1− |z|2 (126)

The associated moment map J : D → su∗(1, 1) defined by J(z).ui = Ji(z, z∗), maps D
into a coadjoint orbit in su∗(1, 1). Then, we can write the moment map as a matrix element
of su∗(1, 1):

J(z) = J1(z, z∗)u∗1 + J2(z, z∗)u∗2 + J3(z, z∗)u∗3 = ρ

 1+|z|2
1−|z|2 −2 z∗

1−|z|2

2 z
1−|z|2 − 1+|z|2

1−|z|2

 ∈ g∗ (127)

The moment map J is a diffeomorphism of D onto one sheet of the two-sheeted
hyperboloid in su∗(1, 1), given by J2

1 − J2
2 − J2

3 = ρ2 , J1 ≥ ρ withJ1u∗1 + J2u∗2 + J3u∗3 ∈
su∗(1, 1). We note O+

ρ , the coadjoint orbit Ad∗SU(1,1) of SU(1, 1), given, for the two-sheeted
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hyperboloid, by the upper sheet. The KKS orbit method associates each of these coadjoint
orbits with a representation of the discrete series of SU(1, 1), provided that ρ is a half-
integer greater than or equal to 1 (ρ = k

2 , k ∈ N and ρ ≥ 1). When explicitly executing the
KKS construction, the representation Hilbert spaces Hρ are realized as closed reproducing
kernel subspaces of L2(D, ωρ

)
.The KKS orbit method shows that each coadjoint orbit of a

connected Lie group is associated with a unitary irreducible representation of G acting in a
Hilbert space H.

Since the unit disk is Kählerian, it is symplectic and so can be given a phase space
structure and interpretation. This Poisson bracket could be written in terms of the Poincaré
disk coordinates as:

{ f , g} =
(
1− |z|2

)2

2i

(
∂ f
∂z

∂g
∂z∗
− ∂ f

∂z∗
∂g
∂z

)
(128)

It is possible to define new coordinates (q, p) that are canonical in the sense that:

{ f , g} =
(

∂ f
∂q

∂g
∂p
− ∂ f

∂p
∂g
∂q

)
(129)

with coordinates given by:
q + ip

2
=

z√
1− |z|2

(130)

The metriplectic equation is then given by:

∂ f
∂t

= { f , H}+ ( f , H) =

(
1− |z|2

)2

2i

(
∂ f
∂z

∂H
∂z∗
− ∂ f

∂z∗
∂H
∂z

)
+ ( f , H) (131)

These equations for SU(1,1) Lie group are illustrated in Figure 4.
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10. Lindblad Equation and Metriplectic Model

We shall explore the equation introduced by Lindblad, the dissipative Hamiltonian Li-
ouville equation of the quantum density matrix, to illustrate earlier models. To demonstrate
that the equation introduced by Lindblad can be written as a damped Hamiltonian sys-
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tem and the GENERIC (General Equation of Non-Equilibrium Reversible and Irreversible
Coupling) model, which was developed by Grmela and Öttinger, we will use the study
performed by Markus Mittnenzweig and Alexander Mielke. They have expressed the dissi-
pative portion of the Lindblad operator as a gradient of relative entropy, demonstrating
how the maximum entropy principle can lead to equilibria.

As noted by H.C. Öttinger, after formulating the thermodynamically consistent nonlin-
ear master equation, one can search for unique circumstances in which precise or approxi-
mative linear master equations can be generated. H. Graber has conducted this, and he has
come to the conclusion that the master equations that result are not of the well-known Lind-
blad form. The thermodynamic quantum master equation’s nonlinearity is its most notable
characteristic. The linear Liouville and Schrödinger equations, which describe reversible
classical and quantum systems, as well as the Fokker–Planck equations, which describe
irreversible classical systems, are fundamentally different from this. The nonlinearity is
brought on by the interaction of quantum mechanics and irreversible thermodynamics.
Even the harmonic oscillator’s master equation exhibits severe nonlinearity. The well-
known master equations of the Lindblad type ignore this underlying nonlinearity. The
thermodynamic master equations’ solutions, like those for the linear Lindblad equations,
always remain in the physical domain, which is known to be a subtle problem for nonlinear
equations. H.C. Öttinger’s work demonstrates how nonlinearity can be handled for the
two-level system. Since noncommutativity results in quantum nonlinearity, Öttinger’s
master equation cannot be of the standard Lindblad type. The symmetric anticommutator
provides the most natural linearization of the GENERIC master equation. Linearizations,
however, ruin the thermodynamic structure and are hence not advised. The linearized
equation is then of the Lindblad form, where the Hamiltonian must be redefined and
a Lindblad operator with real and imaginary parts introduced. The thermodynamic ar-
guments prove that the quantum master equation should be extremely nonlinear. The
thermodynamic structure leads to a clear formulation of a nonlinear quantum master
equation. The linearized GENERIC quantum master equation developed by H.C. Öttinger
is generated following approximation in the second term that is used to reconstruct the
standard Lindblad master equation. The validity range is lowered by the thermodynamic
nonlinearity, which naturally results in canonical equilibrium solutions.

The dissipative evolution equation of quantum systems governed by Hamiltonian and
dissipative effects is given on the density matrix ρ = ρ∗ ≥ 0:

∂ρ
∂t = 1

} [ρ, H] +=ρ
with [ρ, H] = ρH − Hρ

and =ρ =
N2−1

∑
n,m=1

an,m([Qn, ρQ∗m] + [Qnρ, Q∗m]) with
{

Qn : arbitrary operators
an,m : Hermitian positive semi− definite matrix

(132)

The entropy production is convex and positive, and H. Spohn has demonstrated that
it is a gauge of the semigroup’s dissipativity. Additionally, he has noted that the relative
entropy decays along solutions and is a Liapunov function:

F(ρ) = Tr
(
ρ
(
log ρ− log ρ̂β

))
= Tr(ρ(log ρ + βH)) + log Zβ

with ρ̂β = 1
Zβ

e−βH and Zβ = Tr
(
e−βH) (133)
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The dissipative evolution equation can be expressed as a damped Hamiltonian system,
as demonstrated by Markus Mittnenzweig and Alexander Mielke:

∂ρ
∂t = (J(ρ)− K(ρ))DF(ρ)
where
J(ρ) : ξ 7→ i

β [ρ, ξ] generating Poisson Bracket with J(ρ) = −J(ρ)∗

K(ρ) = K(ρ)∗ and 〈ξ, K(ρ)ξ〉 ≥ 0 purely dissipative
〈DF(ρ), v〉 = Lim

h→0
1
h (F(ρ + hv)− F(ρ))

with ρ̂β = 1
Zβ

e−βH and Zβ = Tr
(
e−βH)

(134)

The evolution of the quantum mechanical system can be coupled to more macroscopic
dissipative components z and thus with the total state q = (ρ, z). They have considered
the GENERIC model for isothermal systems with fixed temperature T∗ > 0, with the
free energy F(q) = E(q) − T∗S(q). The associated structure is the following damped
Hamiltonian system:

∂q
∂t = (J(q)− β∗K(q))DF(q) where J(q)DS(q) = 0 and K(q)DE(q) = 0
with β∗ = 1

T∗ , E(ρ, z) = Tr(ρH) + E(z) , S(ρ, z) = −kBTr(ρ log ρ) + S(z)
(135)

They proved that equilibria can be obtained by the maximum entropy principle.
For the Poisson structure, the variable z is totally dissipative, which means that J(q)

has a block structure in the following form:

J(ρ, z) =
[ i
} [ρ, .] 0

0 0

]
(136)

The Onsager operator K(q) is in the following form:

K(ρ, z) =
(

0 0
0 K(z)

)
+

M
∑

i=1

(
ΘQm

Cm
−ΘQm

Cm
Bm(z)

−B∗m(z)Θ
Qm
Cm

B∗m(z)Θ
Qm
Cm

Bm(z)

)
with Bm(z)DE(z) = H , ΘQm

Cm
Bm(z) = [Q∗m, Cm[Qm, Bm(z)]]

(137)

The dissipation operator is defined in terms of the dissipation potential, which is
quadratic in the driving forces:

DS(ρ, z) =
(

DρS(ρ)
DzS(ρ, z)

)
=

(
−kB log ρ

DzS(z)

)
and DE(ρ, z) =

(
H

DzE(z)

)
(138)

The above assumptions guarantee a GENERIC system with the evolution equations
given by the coupled system:

∂ρ
∂t = i

} [ρ, H]−
M
∑

m=1
ΘQm(z)

Cm(ρ,z)(kB log ρ + Bm(z)DS(z))

∂z
∂t = K(z)DS(z) +

M
∑

m=1
B∗m(z)Θ

Qm(z)
Cm(ρ,z)(kB log ρ + Bm(z)DS(z))

(139)

Öttinger and Mielke argued that the dissipative superoperators Cm should be given
by the canonical correlation operator ℵρ (symmetric and positive semidefinite), which
associates with the density matrix:

ℵρ A =
∫ 1

0 ρs Aρ1−sds
where ℵρinduces the scalar product 〈A, B〉ρ =

〈
ℵρ A, B

〉
.

(140)
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The operator ℵρ is invertible.

℘ρ A = ℵ−1
ρ A =

∫ ∞

0
(ρ + sI)−1 A(ρ + sI)−1ds (141)

The operator ℘ρ A defines the Bogoliubov–Kubo–Mori metric on the set of density matrices.
There exists a connection to the von Neumann entropy because ℘ρ A can be identified

by its Hessian up to the factor

−kB:
〈

A, D2S(ρ)
〉
= −kB

〈
A,℘ρB

〉
(142)

Kubo proved the following identity:〈
ℵρ A, log ρ

〉
= 〈A, ρ〉 = ℵρ[A, log ρ] (143)

that has been reused by Mielke to establish the relation between the von Neumann entropy
and the canonical correlation operator.

∂ρ
∂t = i

} [ρ, H]−
M
∑

m=1

([
Qm, kB[Qm, ρ] + ℵρ(Qm, Gm(z))

])
∂z
∂t = K(z)DS(z) +

M
∑

m=1
B∗m(z)

[
Qm, kB[Qm, ρ] + ℵρ(Qm, Gm(z))

]
with Gm(z) = Bm(z)DS(z)

(144)

We find the analogy with the classical Lindblad equation:

∂ρ

∂t
=

i
} [ρ, H]− kB

M

∑
m=1

[Qm, [Qm, ρ]] (145)

11. Synthesis

In this paper, we present a new Souriau Lie group thermodynamics as a symplectic
foliation model of heat and information geometry. With the discovery of the “moment
map,” Jean-Marie Souriau made a significant contribution to the calculus of variations, as
illustrated in Figure 5, by introducing symplectic structures and geometrizing Noether’s
theorem. Jean-Marie Souriau is regarded as a pioneer in the geometrization of the calculus
of variations based on Lie groups and symmetries. He suggested a covariant model for
thermodynamics and provided new geometric definitions of heat and Planck temperature
from an ontological perspective.

Based on a symplectic model for statistical mechanics known as “Lie group thermo-
dynamics,” proposed by Jean-Marie Souriau, we have developed the foliation geometry
of thermodynamics. Entropy is an invariant Casimir function in coadjoint representa-
tion. Symplectic leaves, level sets of entropy, describe non-dissipative dynamics. On the
other hand, symplectic leaves are described transversely for dissipative dynamics. The
Koszul–Fisher metric extended by Jean-Marie Souriau on symplectic manifolds (as coad-
joint orbit) with a moment map is the metric that is taken into consideration at this point.
We could assume that transverse structures are related to Riemannian foliation given by
the Koszul–Fisher metric.

In this model, geometric heat is a component of the dual Lie algebra, and geomet-
ric (Planck) temperature is a component of the Lie algebra of the group operating on
the system. We have the characteristics that the Gibbs density is covariant and that the
entropy and Koszul–Fisher–Souriau metric are invariants under the action of the group.
Souriau addressed the general case of non-null cohomology in which a symplectic cocycle
known as the Souriau cocycle emerges and the coadjoint operator is not equivariant (but
“affine” equivariant).
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The “transverse Poisson structure” connected to the Slodowy slice and Sabourin
transverse structure describes the geometry of dissipative dynamics. Onsager–Casimir
relations and the metriplectic and GENERIC models are addressed by Baptiste Coquinot.
The Coquinot dissipative bracket is connected to the Onsager tensor, while the Poisson
bracket represents non-dissipative dynamics (I have underlined also a link of the Onsager
tensor with the Koszul–Fisher–Souriau tensor).

Because we just need to understand the Lie group acting on the thermodynamic
system, this model is entirely intrinsic. We use it to describe dissipative quantum systems
with a relation to the Dirac bracket in the Lindblad equation.

These brand-new symplectic thermodynamic structures provide the way for new
exploration in four crucial application domains, as illustrated in Figure 6:

• Quantum deep tech: quantum thermodynamics, error correction by quantum feed-
back on Lindblad equation;

• Climate change: atmosphere thermodynamics, Earth global warming studies, contrail
reduction for H2 engine;

• Cyber security: KLJN noise and key distribution, entropy for cryptography, KRR
energy devaluation;

• Artificial intelligence: thermodynamics-informed neural networks, symplectic and
metriplectic integrator, non-equilibrium thermodynamics based on four pillars of con-
tributions from Sadi Carnot (second principle of thermodynamics), François Massieu
(thermodynamics potentials), Pierre Duhem (Clausius–Duhem equation) and Jean-
Marie Souriau (Lie group thermodynamics).



Entropy 2022, 24, 1626 33 of 36Entropy 2022, 24, x FOR PEER REVIEW 38 of 41 
 

 

 

Figure 6. Geometric Thermodynamics Science for Quantum Deep Tech, Climate Change, Cyber Se-

curity and Artificial Intelligence. 

Funding: This research received no external funding. 

Institutional Review Board Statement: The study was conducted in accordance with the Declara-

tion of Helsinki, and approved by Thales. 

Data Availability Statement: No data. 

Conflicts of Interest: The author declares no conflict of interest. 

References 

1. Souriau, J.-M. Structure des Systèmes Dynamiques; Dunod: Paris, France, 1969. 

2. Souriau, J.-M. Mécanique statistique, groupes de Lie et cosmologie. Colloque International du CNRS “GEOMETRIE Symplec-

tique et Physique Mathématique”, Aix-en-Provence 1974, Proceedings edited by CNRS, 1976. Available online: https://www.ac-

ademia.edu/42630654/Statistical_Mechanics_Lie_Group_and_Cosmology_1_st_part_ (accessed on 20 April 2022). 

3. Souriau, J.-M. Géométrie Symplectique et Physique Mathématique. In Proceedings of the Deux Conférences de Jean-Marie Sou-

riau, Colloquium do la Société Mathématique de France, Paris, France, 19 February–12 Novembre 1975. 

4. Souriau, J.-M. Mécanique Classique et Géométrie Symplectique; CNRS-CPT-84/PE.1695; CNRS: Marseille, France, 1984. 

5. Souriau, J.M. Equations Canoniques et Géométrie Symplectique; Pub. Sci. Univ. Alger. Sér. A 1954, 1, 239–265. 

6. Souriau, J.M. Géométrie de l’Espace des Phases, Calcul des Variations et Mécanique Quantique, Tirage Ronéotypé; Faculté des Sciences: 

Marseille, France, 1965. 

7. Souriau, J.-M. On Geometric Dynamics. Discret. Contin. Dyn. Syst. 2007, 19, 595–607. 

8. Souriau, J.-M. Réalisations d’algèbres de Lie au moyen de variables dynamiques. Il Nuovo Cim. A 1967, 49, 197–198. 

https://doi.org/10.1007/bf02739084. 

9. Souriau, J.-M. Définition covariante des équilibres thermodynamiques. Suppl. Al Nuovo Cim. 1966, IV, 203–216. 

10. Souriau, J.-M. Thermodynamique et géométrie. In Proceedings of the Differential Geometry Methods in Mathematical Physics 

II, Bonn, Germany, 13–16 July 1977; Bleuler, K., Reetz, A., Eds.; Springer: Berlin/Heidelberg, Germany, 1978. 

11. Souriau, J.-M. La structure symplectique de la mécanique décrite par Lagrange en 1811. Math. Sci. Hum. 1986, 94, 45–54. 

12. Souriau, J.-M. Grammaire de la nature. 1996. Private Publication. http://www.jmsouriau.com/Grammaire_de_la_nature.htm 

(accessed on 31 May 2020). 

13. Barbaresco, F. Jean–Louis Koszul and the elementary structures of information geometry. In Geometric Structures of Information; 

Signals Commun. Technol.; Springer: Cham, Switzerland, 2019; pp. 333–392. 

14. Barbaresco, F. Lie Groups Thermodynamics & Souriau-Fisher Metric. In Proceedings of the SOURIAU 2019 Conference, Institut 

Henri Poincaré, Paris, France, 31 May 2019. 

Figure 6. Geometric Thermodynamics Science for Quantum Deep Tech, Climate Change, Cyber
Security and Artificial Intelligence.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by Thales.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Souriau, J.-M. Structure des Systèmes Dynamiques; Dunod: Paris, France, 1969.
2. Souriau, J.-M. Mécanique statistique, groupes de Lie et cosmologie. Colloque International du CNRS “GEOMETRIE Symplectique

et Physique Mathématique”, Aix-en-Provence 1974, Proceedings edited by CNRS. 1976. Available online: https://www.academia.
edu/42630654/Statistical_Mechanics_Lie_Group_and_Cosmology_1_st_part_ (accessed on 20 April 2022).

3. Souriau, J.-M. Géométrie Symplectique et Physique Mathématique. In Proceedings of the Deux Conférences de Jean-Marie
Souriau, Colloquium do la Société Mathématique de France, Paris, France, 19 February–12 November 1975.

4. Souriau, J.-M. Mécanique Classique et Géométrie Symplectique; CNRS-CPT-84/PE.1695; CNRS: Marseille, France, 1984.
5. Souriau, J.M. Equations Canoniques et Géométrie Symplectique. Pub. Sci. Univ. Alger. Sér. A 1954, 1, 239–265.
6. Souriau, J.M. Géométrie de l’Espace des Phases, Calcul des Variations et Mécanique Quantique, Tirage Ronéotypé; Faculté des Sciences:

Marseille, France, 1965.
7. Souriau, J.-M. On Geometric Dynamics. Discret. Contin. Dyn. Syst. 2007, 19, 595–607. [CrossRef]
8. Souriau, J.-M. Réalisations d’algèbres de Lie au moyen de variables dynamiques. Il Nuovo Cim. A 1967, 49, 197–198. [CrossRef]
9. Souriau, J.-M. Définition covariante des équilibres thermodynamiques. Suppl. Al Nuovo Cim. 1966, IV, 203–216.
10. Souriau, J.-M. Thermodynamique et géométrie. In Proceedings of the Differential Geometry Methods in Mathematical Physics II,

Bonn, Germany, 13–16 July 1977; Bleuler, K., Reetz, A., Eds.; Springer: Berlin/Heidelberg, Germany, 1978.
11. Souriau, J.-M. La structure symplectique de la mécanique décrite par Lagrange en 1811. Math. Sci. Hum. 1986, 94, 45–54.
12. Souriau, J.-M. Grammaire de la Nature. 1996. Private Publication. Available online: http://www.jmsouriau.com/Grammaire_

de_la_nature.htm (accessed on 31 May 2020).
13. Barbaresco, F. Jean–Louis Koszul and the elementary structures of information geometry. In Geometric Structures of Information;

Springer: Cham, Switzerland, 2019; pp. 333–392.
14. Barbaresco, F. Lie Groups Thermodynamics & Souriau-Fisher Metric. In Proceedings of the SOURIAU 2019 Conference, Institut

Henri Poincaré, Paris, France, 31 May 2019.

https://www.academia.edu/42630654/Statistical_Mechanics_Lie_Group_and_Cosmology_1_st_part_
https://www.academia.edu/42630654/Statistical_Mechanics_Lie_Group_and_Cosmology_1_st_part_
http://doi.org/10.3934/dcds.2007.19.595
http://doi.org/10.1007/BF02739084
http://www.jmsouriau.com/Grammaire_de_la_nature.htm
http://www.jmsouriau.com/Grammaire_de_la_nature.htm


Entropy 2022, 24, 1626 34 of 36

15. Barbaresco, F. Souriau Exponential Map Algorithm for Machine Learning on Matrix Lie Groups. In Geometric Science of Information;
Nielsen, F., Barbaresco, F., Eds.; GSI 2019, Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2019;
Volume 11712.

16. Barbaresco, F. Lie Group Statistics and Lie Group Machine Learning Based on Souriau Lie Groups Thermodynamics & Koszul-
Souriau-Fisher Metric: New Entropy Definition as Generalized Casimir Invariant Function in Coadjoint Representation. Entropy
2020, 22, 642.

17. Barbaresco, F.; Gay-Balmaz, F. Lie Group Cohomology and (Multi)Symplectic Integrators: New Geometric Tools for Lie Group
Machine Learning Based on Souriau Geometric Statistical Mechanics. Entropy 2020, 22, 498. [CrossRef] [PubMed]

18. Barbaresco, F. Jean-Marie Souriau’s Symplectic Model of Statistical Physics: Seminal Papers on Lie Groups Thermodynamics–
Quod Erat Demonstrandum. In Geometric Structures of Statistical Physics, Information Geometry, and Learning; Barbaresco, F.,
Nielsen, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; Volume 361.

19. Barbaresco, F. Souriau-Casimir Lie Groups Thermodynamics and Machine Learning. In Geometric Structures of Statistical Physics,
Information Geometry, and Learning; Springer: Berlin/Heidelberg, Germany, 2021.

20. Barbaresco, F. Koszul lecture related to geometric and analytic mechanics, Souriau’s Lie group thermodynamics and information
geometry. Inf. Geom. 2021, 4, 245–262. [CrossRef]

21. Barbaresco, F. Invariant Koszul Form of Homogeneous Bounded Domains and Information Geometry Structures. In Progress in
Information Geometry. Signals and Communication Technology; Nielsen, F., Ed.; Springer: Berlin/Heidelberg, Germany, 2021.

22. Barbaresco, F. Symplectic Theory of Heat and Information Geometry. In Handbook of Statistics n◦46 “Geometry and Statistics, 1st ed.;
Nielsen, F., Rao, A.S., Rao, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; ISBN 9780323913454.

23. Barbaresco, F. Densité de probabilité gaussienne à maximum d’Entropie pour les groupes de Lie basée sur le modèle symplectique
de Jean-Marie Souriau. In Proceedings of the GRETSI’22 Conference, Nancy, France, 6–9 September 2022.

24. Barbaresco, F. Théorie symplectique de l’Information et de la chaleur: Thermodynamique des groupes de Lie et définition de
l’Entropie comme fonction de Casimir. In Proceedings of the GRETSI’22 Conference, Nancy, France, 6–9 September 2022.

25. Barbaresco, F. Entropy Geometric Structure as Casimir Invariant Function in Coadjoint Representation: Geometric Theory of Heat
& Information Geometry Based on Souriau Lie Groups Thermodynamics and Lie Algebra Cohomology. In Frontiers in Entropy
Across the Disciplines; World Scientific: Singapore, 2022; pp. 133–158, Chapter 5.

26. Barbaresco, F. Souriau Entropy Based on Symplectic Model of Statistical Physics: Three Jean-Marie Souriau’s Seminal Papers on
Lie Groups Thermodynamics. In Frontiers in Entropy Across the Disciplines; World Scientific: Singapore, 2022; pp. 55–90, Chapter 3.

27. Libermann, P.; Marie, C.M. Géométrie Symplectique; Bases théoriques de la Mécanique; Publications Mathématiques de l’Université
Paris 7; Reidel: Dordrecht, The Netherland, 1987. (In English)

28. Libermann, P.; Marle, C.-M. Symplectic Geometry and Analytical Mechanics; Reidel: Kufstein, Austria, 1987.
29. Marle, C.M. Géométrie Symplectique et Géométrie de Poisson; Calvage & Mounet: Paris, France, 2018.
30. Marle, C.-M. From Tools in Symplectic and Poisson Geometry to, J.-M. Souriau’s Theories of Statistical Mechanics and Thermody-

namics. Entropy 2016, 18, 370. [CrossRef]
31. Marle, C.-M. Projection Stéréographique et Moments, Hal-02157930, Version 1; June 2019. Available online: https://hal.archives-

ouvertes.fr/hal-02157930/ (accessed on 31 May 2020).
32. Marle, C.-M. On Gibbs states of mechanical systems with symmetries. J. Geom. Symmetry Phys. JGSP 2020, 57, 45–85. [CrossRef]
33. Marle, C.-M. Examples of Gibbs States of Mechanical Systems with Symmetries. J. Geom. Symmetry Phys. JGSP 2020, 58, 55–79.

[CrossRef]
34. Marle, C.-M. On Generalized Gibbs States of Mechanical Systems with Symmetries. arXiv 2021, arXiv:2012.00582v2.
35. Marle, C.-M. États de Gibbs construits au moyen d’un moment de l’action hamiltonienne d’un groupe de Lie: Signification

physique et exemples. Diaporama Bilingue Français–Anglais Présenté le 7 Juin 2021 au Colloque en L’honneur de Jean-Pierre
Marco. Available online: http://marle.perso.math.cnrs.fr/diaporamas/GibbsStatesMomentMap.pdf (accessed on 31 May 2020).

36. Marle, C.M. Gibbs States on Symplectic Manifolds with Symmetries. In Geometric Science of Information; Nielsen, F.,
Barbaresco, F., Eds.; GSI 2021; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2021; Volume 12829.

37. de Saxcé, G.; Marle, C.M. Structure des Systèmes Dynamiques Jean-Marie Souriau’s Book 50th Birthday. In Geometric Structures of
Statistical Physics, Information Geometry, and Learning; Barbaresco, F., Nielsen, F., Eds.; Wiley: Hoboken, NJ, USA, 2016; Volume 361.

38. de Saxcé, G. Link between Lie Group Statistical Mechanics and Thermodynamics of Continua. Entropy 2016, 18, 254. [CrossRef]
39. de Saxcé, G. Euler-Poincaré equation for Lie groups with non null symplectic cohomology. Application to the mechanics. In GSI

2019. LNCS; Nielsen, F., Barbaresco, F., Eds.; Springer: Berlin, Germany, 2019; Volume 11712.
40. Grabert, H. Nonlinear relaxation and fluctuations of damped quantum systems. Z. Phys. B 1982, 49, 161–172. [CrossRef]
41. Neuttiens, G. Etats de Gibbs d’une action Hamiltonienne, Mémoire de fin d’études présenté en vue de L’obtention du Titre de

Master en Sciences Mathématiques, à Finalité Approfondie, Université de Liège. 2022. Available online: https://matheo.uliege.
be/bitstream/2268.2/15192/4/Etats%20de%20Gibbs%20d%27une%20action%20hamiltonienne.pdf (accessed on 31 May 2020).

42. Chirco, G.; Josset, T.; Rovelli, C. Statistical mechanics of reparametrization-invariant systems. It takes three to tango. Class.
Quantum Grav. 2016, 33, 045005. [CrossRef]

43. Chirco, G.; Laudato, M.; Mele, F.M. Covariant momentum map thermodynamics for parametrized field theories. Int. J. Geom.
Methods Mod. Phys. 2021, 18, 2150018. [CrossRef]

http://doi.org/10.3390/e22050498
http://www.ncbi.nlm.nih.gov/pubmed/33286271
http://doi.org/10.1007/s41884-020-00039-x
http://doi.org/10.3390/e18100370
https://hal.archives-ouvertes.fr/hal-02157930/
https://hal.archives-ouvertes.fr/hal-02157930/
http://doi.org/10.7546/jgsp-57-2020-45-85
http://doi.org/10.7546/jgsp-58-2020-55-79
http://marle.perso.math.cnrs.fr/diaporamas/GibbsStatesMomentMap.pdf
http://doi.org/10.3390/e18070254
http://doi.org/10.1007/BF01314753
https://matheo.uliege.be/bitstream/2268.2/15192/4/Etats%20de%20Gibbs%20d%27une%20action%20hamiltonienne.pdf
https://matheo.uliege.be/bitstream/2268.2/15192/4/Etats%20de%20Gibbs%20d%27une%20action%20hamiltonienne.pdf
http://doi.org/10.1088/0264-9381/33/4/045005
http://doi.org/10.1142/S0219887821500183


Entropy 2022, 24, 1626 35 of 36

44. Koszul, J.-L.; Zou, Y.M. Introduction to Symplectic Geometry; Springer Science and Business Media LLC: Berlin/Heidelberg,
Germany, 2019.

45. Cartier, P. Some Fundamental Techniques in the Theory of Integrable Systems, IHES/M/94/23, SW9421. 1994. Available online:
https://cds.cern.ch/record/263222/files/P00023319.pdf (accessed on 31 May 2020).

46. Balian, R.; Alhassid, Y.; Reinhardt, H. Dissipation in many-body systems: A geometric approach based on information theory.
Phys. Rep. 1986, 131, 1–146. [CrossRef]

47. Balian, R. From Microphysics to Macrophysics; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany; Volumes
1–2, 1991.

48. Balian, R.; Valentin, P. Hamiltonian structure of thermodynamics with gauge. Eur. Phys. J. B 2001, 21, 269–282. [CrossRef]
49. Balian, R. The Entropy-Based Quantum Metric. Entropy 2014, 16, 3878–3888. [CrossRef]
50. Balian, R. François Massieu et les Potentiels Thermodynamiques, Évolution des Disciplines et Histoire des Découvertes; Académie des

Sciences: Paris, France, 2015.
51. Balian, R. Introduction à la Thermodynamique Hors-Equilibre; Techincal Report; CEA: Salt Lake City, UT, USA, 2003.
52. Casimir, H.G.B. Uber die konstruktion einer zu den irreduziblen darstellungen halbeinfacher kontinuierlicher gruppen gehörigen

differentialleichung. Proc. R. Soc. Amst. 1931, 34, 844–846.
53. Ishi, H. Special Issue “Affine differential geometry and Hesse geometry: A tribute and memorial to Jean–Louis Koszul”. Inf.

Geom. 2021, 4, 155–157. [CrossRef]
54. Kaufman, A.N. Dissipative Hamiltonian Systems: A Unifying Principle. Phys. Lett. A 1983, 8, 419–422. [CrossRef]
55. Morrison, P.J. A Paradigm for Joined Hamiltonian and Dissipative Systems. Phys. D 1986, 18, 410–419. [CrossRef]
56. Morrison, P.J. Thought on Brackets and Dissipation. J. Phys. Conf. Ser. 2009, 169, 012006. [CrossRef]
57. Morrison, P.J. Structure and structure-preserving algorithms for plasma physics. AIP Phys. Plasmas 2017, 24, 055502. [CrossRef]
58. Grmela, M. Bracket Formulation of Diffusion-Convection Equations. Phys. D 1986, 21, 179–212. [CrossRef]
59. Materassi, M.; Tassi, E. Metriplectic Framework for Dissipative Magneto-Hydrodynamics. Phys. D 2012, 241, 729–734. [CrossRef]
60. Coquinot, B. A General Metriplectic Framework with Application to Dissipative Extended Magnetohydrodynamics; Internship report;

Département de Physique, École Normale Supérieure: Paris, France, 2019.
61. Coquinot, B.; Morrison, P.J. A General Metriplectic Framework with Application to Dissipative Extended Magnetohydrodynamics.

J. Plasma Phys. 2020, 86, 3. [CrossRef]
62. Onsager, L. Reciprocal relations in irreversible processes I. Phys. Rev. 1931, 37, 405–426. [CrossRef]
63. Onsager, L.; Machlup, S. Fluctuations and irreversible processes. Phys. Rev. 1953, 91, 1505–1512. [CrossRef]
64. Casimir, H.B.G. On onsager’s principle of microscopic reversibility. Rev. Mod. Phys. 1945, 17, 343. [CrossRef]
65. Hubmer, G.F.; Titulaer, U.M. The Onsager-Casimir relations revisited. J. Stat. Phys. 1987, 49, 331–346. [CrossRef]
66. Luesink, E.; Ephrati, S.; Cifani, P.; Geurts, B. Casimir preserving stochastic Lie-Poisson integrators. arXiv 2021, arXiv:2111.13143v2.
67. Marle, C.M. Dirac brackets and bihamiltonian structures. In Thirty Years of Bihamiltonian Systems, Bedlewo, Poland, 3–9 August 2008;

Universite Pierre et Marie Curie: Paris, France, 2008.
68. Dirac, P.A.M. Generalized Hamiltonian dynamics. Can. J. Math. 1950, 2, 129–148. [CrossRef]
69. Dirac, P.A.M. Generalized Hamiltonian dynamics. Proc. R. Soc. Lond. A 1958, 246, 326–332. [CrossRef]
70. Dirac, P.A.M. Lectures on Quantum Mechanics; Belfer Graduate School of Science, Yeshiva University: New York, NY, USA, 1964.
71. Sniatycki, J. Dirac brackets in geometric dynamics. Ann. Inst. Henri Poincaré 1974, 4, 365–372.
72. Saint-Germain, M. Algèbres de Poisson et Structures Transverses. Ph.D. Report, Université de Paris, Paris, France, 1997.
73. Saint-Germain, M. Poisson algebras and transverse structures. J. Geom. Phys. 1999, 31, 153–194. [CrossRef]
74. Cushman, R.; Roberts, M. Poisson structures transverse to coadjoint orbits. Bull. Sci. Math. 2002, 126, 525–534. [CrossRef]
75. Damianou, P.A. Transverse poisson structures of coadjoint orbits. Bull. Sci. Math. 1996, 120, 195–214.
76. Dixmier, J. Algèbres Enveloppantes; Gauthier-Villars: Paris, France, 1974.
77. Dixmier, J. Représentations irréductibles des algèbres de Lie nilpotentes. An. Acad. Brasil. Cientas 1963, 35, 491–519.
78. du Cloux, F. Extensions entre représentations de groupes nilpotents. Astérisque 1985, 124–125, 130–211.
79. du Cloux, F. Non isomorphisme entre U(q)/l et S(q)/l. C. R. Acad. Sci. Paris 1981, 293, 5–8.
80. Duflo, M.; Vergne, M. Une propriété de la représentation coadjointe d’une algèbre de Lie. C. R. Acad. Sci. Paris 1969, 268, 583–585.
81. Vergne, M. La structure de Poisson sur l’algèbre symétrique d’une algèbre de Lie nilpotente. Bull. Soc. Math. Fr. 1972, 100,

301–335. [CrossRef]
82. Raïs, M. La représentation coadjointe du groupe affine. Ann. Inst. Fourier 1978, 28, 207–237. [CrossRef]
83. Roberts, M.; Wulff, C.; Lamb, J.S.W. Hamiltonian systems near relative equilibria. J. Differ. Equ. 2002, 179, 562–604. [CrossRef]
84. Engo, K.; Faltinsen, S. Numerical Integration of Lie-Poisson Systems While Preserving Coadjoint Orbits and Energy. SIAM J.

Numer. Anal. 2001, 39, 128–145. [CrossRef]
85. Grothendieck, A. Cohomologie Locale des Faisceaux Cohérents et Théorèmes de Lefschetz locaux et Globaux, Séminaire de Géométrie

Algébrique du Bois-Marie 1962 (SGA 2); North-Holland Publishing Company: Amsterdam, The Netherlands, 1968.
86. Brieskorn, E. Singular elements of semi-simple algebraic groups. Actes du Congrès Intern. Math. Tome 2. 1971, 279–284.
87. Slodowy, P. Simple Singularities and Simple Algebraic Groups; Lecture Notes in Mathematics, 815; Springer: Berlin/Heidelberg,

Germany, 1980.

https://cds.cern.ch/record/263222/files/P00023319.pdf
http://doi.org/10.1016/0370-1573(86)90005-0
http://doi.org/10.1007/s100510170202
http://doi.org/10.3390/e16073878
http://doi.org/10.1007/s41884-020-00042-2
http://doi.org/10.1016/0375-9601(84)90634-0
http://doi.org/10.1016/0167-2789(86)90209-5
http://doi.org/10.1088/1742-6596/169/1/012006
http://doi.org/10.1063/1.4982054
http://doi.org/10.1016/0167-2789(86)90001-1
http://doi.org/10.1016/j.physd.2011.12.013
http://doi.org/10.1017/S0022377820000392
http://doi.org/10.1103/PhysRev.37.405
http://doi.org/10.1103/PhysRev.91.1505
http://doi.org/10.1103/RevModPhys.17.343
http://doi.org/10.1007/BF01009967
http://doi.org/10.4153/CJM-1950-012-1
http://doi.org/10.4153/CJM-1950-012-1
http://doi.org/10.1016/S0393-0440(98)00066-7
http://doi.org/10.1016/S0007-4497(02)01118-1
http://doi.org/10.24033/bsmf.1740
http://doi.org/10.5802/aif.686
http://doi.org/10.1006/jdeq.2001.4045
http://doi.org/10.1137/S0036142999364212


Entropy 2022, 24, 1626 36 of 36

88. Slodowy, P. Four Lectures on Simple Groups and Singularities; Communications of the Rijksuniversiteit; Mathematical Institute:
Utrecht, The Netherlands, 1980.

89. Premet, A. Special transverse slices and their enveloping algebras. Adv. Math. 2002, 170, 1–55. [CrossRef]
90. Sabourin, H. Sur la structure transverse à une orbite nilpotente adjointe. Can. J. Math 2005, 57, 750–770. [CrossRef]
91. Damianou, P.A.; Sabourin, H.; Vanhaecke, P. Transverse Poisson structures to adjoint orbits in semisimple Lie algebras. Pac. J.

Math. 2007, 232, 111–138. [CrossRef]
92. Damianou, P.A.; Sabourin, H.; Vanhaecke, P. Transverse Poisson Structures: The Subregular and Minimal Orbits: Differential

Geometry and its applications. In Proceedings of the 10th International Conference on DGA2007, Olomouc, Czech Republic,
27–31 August 2007; pp. 419–431.

93. Damianou, P.A.; Sabourin, H.; Vanhaecke, P. Nilpotent Orbit in Simple Lie Algebras and their Transverse Poisson Structures. In
Proceedings of the AIP Conference Proceedings, Incheon, South Korea, 18–20 May 2018.

94. Mielke, A. Dissipative quantum mechanics using GENERIC. In Recent Trends in Dynamical Systems. Proceedings of a Conference in
Honor of Jürgen Scheurle; Johann, A., Kruse, H.-P., Rupp, F., Schmitz, S., Eds.; Springer Verlag: Berlin/Heidelberg, Germany, 2013;
pp. 555–586.

95. Mittnenzweig, M.; Mielke, A. An Entropic Gradient Structure for Lindblad Equations and Couplings of Quantum Sys-tems to
Macroscopic Models. J. Stat. Phys. 2017, 167, 205–233. [CrossRef]

96. Spohn, H. Entropy production for quantum dynamical semigroups. J. Math. Phys. 1978, 19, 1227–1230. [CrossRef]
97. Wilcox, R.M. Exponential operators and parameter differentiation in quantum physics. J. Math. Phys. 1967, 8, 962–982. [CrossRef]
98. Arnold, A. Mathematical properties of quantum evolution equations. In Quantum Transport. Modelling, Analysis and Asymptotics;

Allaire, G., Arnold, A., Abdallah, N.B., Degond, P., Frosali, G., Hou, T.Y., Eds.; Springer: Berlin/Heidelberg, Germany; Fondazione
CIME Roberto Conti: Florence, Italy, 2008; pp. 45–109, Lectures from C.I.M.E. summer school, Cetraro, Italy, 11–16 September
2006.

99. Lindblad, G. On the generators of quantum dynamical semigroups. Comm. Math. Phys. 1976, 48, 119–130. [CrossRef]
100. Karrlein, R.; Grabert, H. Exact time evolution and master equations for the damped harmonic oscillator. Phys. Rev. E 1997, 55, 153.

[CrossRef]
101. Öttinger, H.C. Nonlinear thermodynamic quantum master equation: Properties and examples. Phys. Rev. A 2010, 82, 052119.

[CrossRef]
102. Beckett, A. Homogeneous Symplectic Spaces and Central Extensions. arXiv 2022, arXiv:2207.03231.
103. Satake, I. Algebraic Structures of Symmetric Domains; Princeton University Press: Princeton, NJ, USA, 1980.
104. Mikami, K. Local Lie algebra structure and momentum mapping. J. Math. Soc. Jpn. 1987, 39, 233–246. [CrossRef]
105. Poincaré, H. Sur une forme nouvelle des équations de la Mécanique. Compte-Rendus Des Séances De L’académie Des Sci. 1901, 18,

48–51.
106. Gallissot, F. Les formes extérieures en mécanique. Ann. De L’institut Fourier 1952, 4, 145–297. [CrossRef]
107. Cartan, E. Sur les invariants intégraux de certains espaces homogènes clos et les propriétés topologiques de ces espaces. Ann. Soc.

Pol. Math. 1929, 8, 181–225.
108. Vorob’ev, Y.M.; Karasev, M.V. Poisson manifolds and the Schouten bracket. Funktsional. Anal. I Prilozhen. 1988, 22, 1–11. [CrossRef]
109. Lichnerowicz, A. Les variétés de Poisson et leurs algèbres de Lie associées. J. Differential Geom. 1977, 12, 253–300. [CrossRef]
110. Koszul, J.L. Crochet de Schouten-Nijenhuis et cohomologie. In Astérisque Numéro Hors-Série Élie Cartan et Les Mathématiques

D’aujourd’hui (Lyon, 25–29 Juin 1984); SMF: Lyon, France, 1985; Volume 137, pp. 257–271.
111. Berezin, F.A. Some remarks about the associated envelope of a Lie algebra. Funct. Anal. Its Appl. 1967, 1, 91–102. [CrossRef]
112. Dazord, P.; Lichnerowicz, A.; Marle, C.-M. Structure locale des variétés de Jacobi. J. Math. Pures et Appl. 1991, 70, 101–152.
113. Pukanszky, L. On the characters and the plancherel formula of nilpotent groups. J. Funct. Anal. I 1967, 1, 255–280. [CrossRef]
114. Pukanszky, L. Lemons sur les Representations des Groupes; Dunod: Paris, France, 1967.
115. Kostant, B. Lie group representations on polynomial rings. Am. J. Math. 1963, 85, 327–404. [CrossRef]
116. Ouzilou, R. Déformations des Structures de Poisson et Formulation Isospectrale des Problèmes D’évolution Non Linéaires; fascicule 3B

« Séminaire de géométrie »; Publications du Département de Mathématiques de Lyon: Lyon, France, 1984; pp. 1–13.
117. Sato, N. Dissipative Brackets for the Fokker-Planck Equation in Hamiltonian Systems and Characterization of Metriplectic

Manifolds. Phys. D Nonlinear Phenom. 2020, 411c, 132571. [CrossRef]
118. Sato, N. Metriplectic Brackets for the Fokker-Planck Equation in Hamiltonian Systems. In Proceedings of the 4th Asia-Pacific

Conference of Plasma Physics, Virtual, 26–31 October 2020.
119. Oh, Y.-G. Some remarks on the transverse Poisson structures of coadjoint orbits. Lett. Math. Phys. 1986, 12, 87–91. [CrossRef]

http://doi.org/10.1006/aima.2001.2063
http://doi.org/10.4153/CJM-2005-030-4
http://doi.org/10.2140/pjm.2007.232.111
http://doi.org/10.1007/s10955-017-1756-4
http://doi.org/10.1063/1.523789
http://doi.org/10.1063/1.1705306
http://doi.org/10.1007/BF01608499
http://doi.org/10.1103/PhysRevE.55.153
http://doi.org/10.1103/PhysRevA.82.052119
http://doi.org/10.2969/jmsj/03920233
http://doi.org/10.5802/aif.49
http://doi.org/10.1007/BF01077717
http://doi.org/10.4310/jdg/1214433987
http://doi.org/10.1007/BF01076082
http://doi.org/10.1016/0022-1236(67)90015-8
http://doi.org/10.2307/2373130
http://doi.org/10.1016/j.physd.2020.132571
http://doi.org/10.1007/BF00416457

	Symplectic Statistical Mechanics Introduced by Jean-Marie Souriau 
	List of Notations 
	Information Geometry Foundation of Souriau “Lie Group Thermodynamics” 
	Fisher Metric Symplectic Structure and Souriau–Casimir Entropy 
	Symplectic Structures of Fisher–Souriau Metric 
	Souriau–Casimir Entropy and Lie Algebra Cohomology 
	Link between Souriau–Casimir Entropy and Koszul–Poisson Cohomology 

	Metriplectic Model for Dissipative Heat Equation 
	Canonical/Noncanonical Hamiltonian Structures and Poisson Bracket { .,. }  
	Metric Flow Structures and Symmetric Bracket ( .,. )  
	Dissipation Bracket as Double Bracket 
	Dissipation bracket as Cartan–Killing Bracket 
	Dissipation bracket as Casimir Dissipation Bracket 
	Hamilton Dissipation Bracket 
	The Metric Structure of the Symmetric Dissipative Metriplectic Bracket 


	Non-Equilibrium Thermodynamic Theory of Dissipative Brackets 
	Dirac’s Theory of Constrained Hamiltonian Systems: Dissipative Bracket 
	Transverse Poisson Structure for Dissipative Heat Equation Introduced by Herve Sabourin 
	Application for SL(2,R) and SU(1,1) 
	Lindblad Equation and Metriplectic Model 
	Synthesis 
	References

