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Abstract: An exact solution of the Ising model on the simple cubic lattice is one of the long-standing
open problems in rigorous statistical mechanics. Indeed, it is generally believed that settling it would
constitute a methodological breakthrough, fomenting great prospects for further application, similarly
to what happened when Lars Onsager solved the two-dimensional model eighty years ago. Hence,
there have been many attempts to find analytic expressions for the exact partition function Z, but all
such attempts have failed due to unavoidable conceptual or mathematical obstructions. Given the
importance of this simple yet paradigmatic model, here we set out clear-cut criteria for any claimed
exact expression for Z to be minimally plausible. Specifically, we present six necessary—but not
sufficient—conditions that Z must satisfy. These criteria will allow very quick plausibility checks
of future claims. As illustrative examples, we discuss previous mistaken “solutions”, unveiling
their shortcomings.

Keywords: 3D Ising model; exactly solvable models

1. Introduction

Exact results are always welcome in science, even if they are simplified or idealized
models of more realistic natural phenomena [1]. For example, an elucidating discussion
about the general importance of analytical solutions in physics can be found in Ref. [2].
The Ising model of magnetism was originally proposed by Wilhelm Lenz in 1920 and
exactly solved in one dimension by his graduate student Ernst Ising in 1924. A summary of
the thesis was published in 1925 [3]. The Ising model long ago ceased to be a paradigm
restricted only to magnetism models. Currently, it has found applications in diverse areas,
from neuroscience to sea ice and voter models, to name a few [4]. Since Lars Onsager’s
solution of the 2D Ising model in 1942 (which was published in 1944 [5]), statistical physics
in general and equilibrium statistical mechanics in particular have experienced a great
flourishing of powerful mathematical techniques [6,7], allowing considerable progress
towards obtaining exact expressions for many relevant models [8–10].

In spite of all these advances, one of the most paradigmatic systems in statistical
physics, namely, the ferromagnetic Ising model with interactions between nearest-neighbor
two-state spins on the simple cubic lattice [11]—henceforth referred as the 3D Ising model—
has withstood all attempts at exact solution. According to Rowlinson [12], the first claim
of analytically cracking the 3D Ising model was presented at StatPhys 2, held in Paris in
1952, by John R. Maddox, who later became editor of Nature (see also Refs. [13–15]). Eliott
W. Montroll, still during the conference, showed that the proposed expression could not
be correct, by comparing it with the first few terms of the well established exact series
expansions for the high and low temperature limit cases. It was identified later that the
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error was due to an incorrect application of the Jordan–Wigner transformation. Since then,
new announcements of an exact solution have been made every few years, only to be
systematically proved incorrect (e.g., Refs. [16–19]). What is seemingly lacking, in this
historical context, is a set of clear-cut plausibility criteria that can be used to quickly verify
whether or not a claimed solution is minimally worth considering. Therefore, we shall list a
number of necessary—but not sufficient—conditions that a correct partition function Z must
satisfy. Although some of these have already (in part or in full) appeared in the literature,
here they are presented in an unified, rigorous, and comprehensive way. We emphasize
that on the one hand these conditions can be used to refute unfounded claims—and thereby
to identify any inappropriate protocols that are responsible for the incorrect features for
Z. On the other hand, they might serve as a guide for the development of promising
solution schemes. Finally, we briefly mention two reasons why the 3D Ising model is
considered a major open problem, besides the obvious intellectually instigating fact that
it still stands eighty years since Onsager solved the 2D version. First, despite the simple
definitions of Ising-like models, their usefulness in studying a large number of diverse
processes is overwhelming [11,20–27]. However, this should not be a surprise. Indeed,
given the universality classes of classical spin models, of which the Ising is probably the
most emblematic example, they all can be mapped to distinct instances of the logic problem
of satisfiability (SAT) [28]. In this way, the analytic solution of the 3D case conceivably
would represent a great boost for its already wide applicability. Second, the 3D Ising
model near the critical point is very closely related to string and gauge field theories [29].
In particular, these associations can be analyzed through conformal bootstrap methods [30]
(for a review, see, e.g., [31]). Hence, the eventual determination (or eventual disproof of
existence) of an exact solution certainly will impact other important areas of physics.

All these potential perspectives involving a rigorous analytical expression for the
partition function of the 3D Ising model certainly justify the establishment of a minimal set
of clear-cut criteria for the validation of its exact solution, as presented below.

2. The 3D Ising Model

Suppose a finite simple cubic lattice Z3
N of size L × L × L, with L a finite positive

integer. There are N = L3 sites that can be tagged as l = (l1, l2, l3) for i = 1, 2, 3 indicating
the ith spatial direction (with unit vector êi) and li = 1, . . . , L. Consider also two disjoint

lattices, Z̃3
N and ∂Z3

N , of sites labeled, respectively, by lb = (n1, n2, n3), with 2 ≤ ni ≤ L− 1,

and l f = (m1, m2, m3), where at least one mi is necessarily 1 or L. Note that Z3
N = Z̃3

N ∪ ∂Z3
N ,

for Z̃3
N (∂Z3

N) representing the “bulk” (“frontier” or boundary) sites of Z3
N . In other words,

∂Z3
N is the border or surface, whereas Z̃3

N is the inside region or interior of the lattice.
The spin variable σl at the vertex l ∈ Z3

N can assume only two possible values, namely,
−1 and +1. The Hamiltonian of the 3D anisotropic Ising model on Z3

N and with zero
external magnetic field is given by

HN(σ) = −
3

∑
i=1

Ji

(
∑

l′′b−l′b=êi

σl′′b
σl′b

+ ∑
l−l f =ε(l) êi

σl σl f

)
,

= H(b)
N (σ) + H( f )

N (σ) , (1)

where ε(l) = ±1 if l ∈ Z̃3
N and ε(l) = +1 if l ∈ ∂Z3

N . The quantities J1,2,3 are the couplings
constants in the three distinct spatial directions, i = 1, 2, 3. The two terms in the last equality
in Equation (1) can readily be identified as the energy contributions from the system bulk
b and frontier f regions for a state σ of the system. In fact, each σ represents a possible
distinct configuration of −1 s and +1 s along the sites of the whole lattice and characterizes
a specific system state.

Different boundary conditions (BCs) can be imposed to the problem [32,33]. They
essentially specify constraints on the spin configuration of the set {σ}∂Z3

N
(see below).
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The canonical partition function is conventionally defined as
ZN(K1, K2, K3) = ∑σ exp[β HN(σ)], where β = (kB T)−1 and Ki = β Ji is the ith reduced
temperature. The sum is over all the possible spin configurations {σ} over Z3

N (observing
the specified BCs). The partition function per site in the thermodynamic limit, the object of
our interest here, is defined as

Z(K1, K2, K3) = lim
N→∞

[
ZN(K1, K2, K3)

]1/N . (2)

The challenge of finding an exact analytic expression for the above Z has been called
the “holy grail of statistical mechanics” [34]. To this day, it remains one of the most
important unsolved problems in statistical physics.

The above seemingly simple model has a notorious history of errors and controversies.
In 1925, soon after arriving at the exact solution of the 1D ferromagnetic Ising model (with
an external field), Ising himself erroneously extrapolated to 2D one of his 1D findings [3].
Specifically, he generalized incorrectly to 2D and 3D his (correct) result that there can be
no spontaneous magnetization in 1D for positive T. The historical details can be found in
Ref. [35]. Another controversy related to the Ising model concerns the critical exponents
for the 2D model. Up until Onsager’s exact solution of the model, it was assumed that
the critical exponents were given by the mean field approximation. Onsager’s solution
allowed the mistake to be caught [36]. A few years later, when Maddox in 1952 presented
his claim of a solution to the 3D model, he applied the Jordan–Wigner transformation to
effectively try to map 2D planes of spin operators into fermionic creation and annihilation
operators [15]. The corresponding trick works for the 2D Ising model because linear chains
of spin operators can indeed be mapped into fermionic creation and annihilation operators.
However, this trick does not easily generalize to 2D planes. There are 2D generalizations of
the Jordan–Wigner transforation, but thus far none of these methods have been shown to
be useful for solving the 3D Ising model. All claims of an exact solution for the 3D model
have been shown to contain errors (see Section 4).

3. Necessary Conditions for a Valid Solution

Our main goal in this contribution is to establish a set of six necessary conditions that
must be satisfied by any prospective of an 3D Ising model exact analytic expression for
Z(K1, K2, K3). Although the list consists of necessary conditions, these are not also sufficient
conditions. In other words, any claimed Z may be wrong even if all necessary conditions
are satisfied. However, if even just one condition is violated, the claimed expression for Z
is certainly wrong.

Next, we present the noted conditions in a order somehow going from the more basic
and fundamental to the more technical and abstract.

3.1. Condition 1

In the thermodynamic limit the per-site partition function Z of the 3D Ising model must be
independent of the boundary conditions [15,37,38].

Surprisingly, the very broad reach of this requirement seems not to be properly
appreciated as one should expect. Some recent erroneous claims of an exact Z even have
assumed that certain special BCs could violate Condition 1 (see Section 4). Given such
misunderstandings, below we present a very general and rigorous (although concise)
proof that this indeed must be the case.

The thermodynamic limit represented by Equation (2) is known to be equivalently
stated in terms of sequences of subgraphs Gk of Z3 (e.g., see [39,40]). There is a large
relative freedom in choosing the structure of the successive Gks, provided they satisfy three
fundamental properties, known as van Hove’s assumptions [38].

Denoting the number of vertices of a finite lattice G as V(G), these assumptions are
as follows:

• ∪k Gk = Z3,
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• Gk ⊂ Gk+1,
• limk→∞ V(∂Gk)/V(Gk) = 0, for ∂Gk representing the frontier of Gk, namely,

∂Gk = {l ∈ Gk | ∃ j /∈ Gk, |l− j| = 1}.
From the above, it is also possible to define G̃k = {l ∈ Gk | l /∈ ∂Gk}, which is the

bulk or core graph associated to Gk. As a trivial example of a Gk satisfying all the above
characteristics, we note the aforementioned limited cubic lattice Z3

N , where k = N = L3.
Thus, Z(K1, K2, K3) can be written more generally as

Z(K1, K2, K3) = c lim
k→∞

[
ZGk (K1, K2, K3)

] 1
V(Gk)

, (3)

where
ZGk (K1, K2, K3) = ∑

σ∈{σ}Gk

exp[β HGk (σ)]

and HGk (σ) is the natural extension of Equation (1) to Gk. Further, c is a constant of a
purely topological origin. It may differ from 1 depending on the characteristics of the
chosen sequence Gk. However, it should not alter the resulting physics associated to the
obtained partition function. Therefore, c might be set equal to 1 for the sake of discussion.

An important aspect of the finite Ising model relates to the boundary conditions
assumed for the Gks. A rather general formulation for typical BCs relies on the following
construction. Let Ω(G) represent all the possible combinations of the spin configurations
on the vertices of the finite G, i.e., an element of Ω is denoted by σ and is a map σ :
G → {−1, 1}. Consider then ∂Gk and a specific subset Γk

BC ⊂ Ω(∂Gk). We say that Γk
BC

determines the BCs on the Ising model if the allowed spin configurations σBC belong to

ΩBC(Gk) = Ω(G̃k)× Γk
BC.

For instance, for Γk
BC = Ω(∂Gk), we have the usual free BCs, namely, for any site in the

frontier the spin value can assume both values,−1 and +1, without restrictions. On the other
hand, for Gk displaying torus (or periodic), cylindrical, Klein, twisted, screw, etc., topology,
then the permitted configurations in Γk

BC are established by proper pairwise mappings
in the form σl′′f

↔ σl′f
. Hence, the finite partition function with the BCs determined by

Γk
BC reads

ZBC
Gk

(K1, K2, K3) = ∑
σ∈ΩBC(Gk)

exp[β(H(b)
Gk

(σ) + H( f )
Gk

(σ))]. (4)

We can now easily show that in the proper limit the partition function is independent
on the BCs. We first observe that, for the free BCs,

lim
k→∞

ln[Zfree
Gk

]

V(Gk)
(5)

exists (for a proof, see Ref. [38]). Let us denote the limit in Equation (5) as ln[Z(K1, K2, K3)].
Second, we determine a bound for H( f )

Gk
(σ) in Equation (4). For any site l f in ∂Gk, the

maximum number of l ∈ Gk such that |l− l f | = 1 is 5 for the simple cubic lattice, then we

have that |H( f )
Gk
| < 5 V(∂Gk). Third, by lemma 2.2.1 in [37]∣∣∣∣ ln[ZBC

Gk
]− ln[Zfree

Gk
]

∣∣∣∣ ≤ β |H( f ) BC
Gk

− H( f ) free
Gk

|. (6)

Finally, by dividing Equation (6) by V(Gk), considering the triangular inequality

|H( f ) BC
Gk

− H( f ) free
Gk

| ≤ 2× β 5 V(∂Gk)
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and since the sequence Gk is van Hove, then

lim
k→∞

ln[ZBC
Gk

]

V(Gk)
= lim

k→∞

ln[Zfree
Gk

]

V(Gk)
. (7)

Thus, we readily conclude that

lim
k→∞

(
ZBC

Gk
(K1, K2, K3)

)1/V(Gk)
= Z(K1, K2, K3) (8)

is well defined and independent on the BCs.

3.2. Condition 2

The claimed partition function per site of the 3D model Z(K1, K2, K3) must reduce to Onsager’s
solution whenever one of the three reduced temperatures vanishes.

Indeed, suppose without loss of generality that J3 = 0, so that K3 = 0. Then, for ll
indicating the sites which lie in the plane x3 = l (whose set of spin configurations we
represent by {σl}), the 3D Hamiltonian of size N = L× L× L = L2 × L can be written as
(σj ≡ 0 if j /∈ Gk)

HL2×L(σ) = −
L

∑
l=1

∑
ll

2

∑
i=1

Ji σll
σll+êi =

L

∑
l=1

HL2(σl), (9)

with HL2(σl) the energy associated to the plane x3 = l for σl a given distribution of
spins in such plane. Note that the 3D Hamiltonian is now expressed as the sum of L
independent and identical 2D Hamiltonians. In this case, the 3D partition function ZN =
ZL3(K1, K2, 0) = ZL2×L factors as

ZL2×L = ∑
σ1

. . . ∑
σL

L

∏
l=1

exp[−β HL2(σl)] = (ZL2)L, (10)

where ZL2 = ZL2(K1, K2) is the finite 2D partition function, whose per-site thermodynamic
limit Z(K1, K2) is naturally defined as

Z(K1, K2) = lim
L→∞

[
ZL2(K1, K2)

]1/L2
. (11)

Thus, from Equation (10), we get

Z(K1, K2, 0) = lim
L→∞

Z1/L3

L2×L = lim
L→∞

(ZL
L2)

1/L3

= lim
L→∞

Z1/L2

L2 = Z(K1, K2). (12)

Thus, the 3D per-site partition function must reduce to Onsager’s solution when any
of the three couplings is made to vanish.

3.3. Condition 3

For the isotropic case, namely K = Ki (i = 1, 2, 3), any claimed per-site partition function
must be analytic for 0 ≤ K < Kc [41] and for Kc < K < ∞ [42], where Kc = 0.221 654 626 . . . is
the well known numerically estimated value of the critical temperature of the 3D Ising model.

Of course, when there are interactions besides nearest-neighbor or when there is an
applied magnetic field, the range of analyticity in K for the partition function can be distinct
from the above one (see, for instance, Refs. [38,41,42]).

Note also that an exact expression for Z should lead to an exact formula for Kc. Thence,
if one has derived a tentative exact Z, its analyticity should be relatively easy to test, e.g.,
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for complex functions from the Cauchy–Riemann equations [43], and for real functions
using standard techniques, as those described in [44]. We observe that the numerical value
of the critical temperature is known with very high precision from Monte Carlo simulations
and other numerical approaches [45–48].

3.4. Condition 4

For the isotropic case, the series expansion in the high (low) temperature limit—K small
(large)—of the claimed solution must perfectly match the already established series to all known
orders (see, e.g., Refs. [38,41]).

This is a direct consequence of the fact that in the domain of an analytic function, its
series expansion around a fixed expansion point must be unique.

Let vi = tanh[Ki] be the high temperature expansion variable. For the isotropic case,
i.e., v = vi (i = 1, 2, 3), we define

Z(K) = 2 (cosh[K])3 Zhigh(v). (13)

For details, see, for instance, Equation (9) in Ref. [49]. This high temperature
formulation is obtained by performing the sum over all states, and then using (for σi = ±1)

exp[Kσiσj] = cosh[K] + σiσj sinh[K] = cosh[K](1 + σiσj tanh[K]) .

This identity justifies the choice of the high temperature variable v = tanh[K]. It is
well known (see Ref. [39] for the 2D analog) that Zhigh(v) is then given by a properly defined
generating function for graphs of given length, all of whose nodes have even degrees and
whose edges only connect nearest neighbors, in the limit of an infinite lattice. Such graphs
have been variously called “closed graphs” or “multipolygons.”

The first few expansion terms of Zhigh(v) have been rigorously determined [38] via
finite lattice methods [50]. From Condition 3, Z(K) is analytic for T > Tc. Therefore,
for large T, the function Zhigh(v) is also analytic. In this way, the series expansion of
Z(K)/(2 (cosh[K])3) must coincide with the noted known terms.

Similarly, by setting ui = exp[−4Ki] as the low temperature variable, for the isotropic
case we have ui = u (i = 1, 2, 3). Then, one can write the partition function as

Z(K) = u−3/4 Zlow(u) . (14)

See, for instance, Equation (1.5) in Ref. [40]. This low temperature formulation simply
ennumerates the number of configurations with a given domain wall area. Indeed,
the quantity Zlow is the generating function, in the limit of an infinite lattice, of closed
surfaces of given area (see, e.g., Ref. [40]). The prefactor u−3/4 is due to the ground state
energy not being zero. If each of the three bonds per site in the ground state contribute an
energy −βJ = −K, then the partition function per site for the ground state is
exp[−3K] = u3/4.

The first few exact terms of the low temperature expansion of Zlow(u) have been
calculated [50]. Therefore, similarly to the high temperature expansion, for T < Tc low
enough, any claimed exact solution should meet term-by-term the noted series.

The first few expansion terms of both Zhigh(v) and Zlow(u) are known, thanks to the
finite lattice method [50]. Ian Enting and Tom de Neef originally developed this innovative
approach in the 1970s for generating series expansions, with applications to exact
enumeration problems [51]. Since then, this powerful numerical method has led to
significant advances. For example, Iwan Jensen used it to calculate the statistics of
self-avoiding polygons on the square lattice [52]. Very recently, Nathan Clisby wrote an
expository article concerning the method’s relevance to the enumerative combinatorics of
lattice polymers [53]. It is arguably the most powerful algorithmic technique for obtaining
exact series expansions to high order of models whose exact solution is not known,
including, of course, the 3D Ising model.
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Table 1 lists the first few non-zero terms of the high and low temperature expansions.
Therefore, according to the present condition, any claimed Z that does not exactly comply
with the terms in Table 1 cannot be the exact partition function for the 3D Ising model.

Table 1. The first ten nonzero coefficients in the high temperature expansion of Zhigh(v) = ∑∞
n=0 anvn

and in the low temperature expansion of Zlow(u) = ∑∞
n=0 bnun (see main text). The coefficients were

obtained by Guttmann and Enting using the finite lattice method [50].

n (High) an n (Low) bn

0 1 0 1
4 3 3 1
6 22 5 3
8 192 6 −3

10 2046 7 15
12 24,853 8 −30
14 329,334 9 101
16 4,649,601 10 −261
18 68,884,356 11 807
20 1,059,830,112 12 −2308

3.4.1. Condition 5

The claimed exact Z should display permutation symmetry and convexity on the reduced
temperature variables Ki = β Ji.

The first property, namely permutation symmetry, as proposed in [15], implies that
Z(K1, K2, K3) = Z(Kπ(1), Kπ(2), Kπ(3)), where π(i) is a permutation for i = 1, 2, 3. Since the
final Z does not depend on the BCs or on the specific choice of the van Hove sequence,
consider Gk in Equation (3) as the simple cubic lattice Z3

N with free BCs. Then, the proof is
direct since the finite ZN(K1, K2, K3) trivially presents the aforementioned symmetry.
Further (refer to Ref. [48]), if one can use Z to derive an equation for the critical βc,
i.e., F(βc J1, βc J2, βc J3) = 0, then also βc must be invariant under any permutation of J1,
J2, and J3.

In Ref. [38], it has been shown that, for the isotropic case Ji = J (i = 1, 2, 3),
the partition function must be a convex function in β. For the anisotropic case, the proof
follows exactly the same steps. Indeed, considering again Gk the finite cubic lattice with
free BCs, one finds that Gk is convex (details omitted here). However, because the limit of a
van Hove sequence of convex functions is also convex [54], the final result holds. As a
consequence, one has the following. For α ∈ [0, 1], βa, βb ∈ (0, ∞) and arbitrary J1, J2, J3,
then for βd = α βa + (1− α) βb

Z(βd J1, βd J2, βd J3) ≤ α Z(βa J1, βa J2, βa J3)

+(1− α) Z(βb J1, βb J2, βb J3). (15)

3.4.2. Condition 6

The claimed exact solution must bring clarity to the conundrum related to the behavior of the
partially resummed high temperature expansion of the anisotropic partition function [49,55].

Based on the anomalous behavior of the partially resummed series solution of the 3D
Ising model, it is now believed by many (but not all) that the 3D Ising model might “not
be solvable” [55]. Here, by not solvable we mean that Z may not be a differentiably finite
function (known in the mathematical jargon as a D-finite or holonomic function). Recall that
F(z1, z2, . . . , zN) is said holonomic if F is analytic in all the variables and satisfies a linear
differential equation, whose coefficients are polynomials in z1, z2, . . . , zN (see, e.g., [56]).
Hence, any claimed exact holonomic Z must be able to explain how and why the anisotropic
3D Ising model has a high-temperature series that, upon partial resummation, seems to
indicate non-D-finiteness.
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4. Some Previously Claimed Solutions in the Literature

We briefly review how previous advanced solutions have failed to satisfy the above
conditions, thus not representing the correct exact Z(K1, K2, K3).

As already noted, the proposal by Maddox in 1952 violated Condition 4 for the series
expansions, as did the ones by Das [16], Lou and Wu [17], and Z.-D. Zhang [18]. The serious
errors in the latter were also extensively addressed in Refs. [15,57]. Moreover, except for
the solution proposed by Zhang, all others also violate Condition 3. In fact, Zhang’s
solution only seems to satisfy it because the numerical value of the critical temperature
is imposed as an ansatz, built into his construction. Still, Zhang’s critical temperature of
Kc ≈ 0.221 658 637 208 698 [18] (taken from a conjecture of Rosengren [58]) differs from
the best known numerical estimate Kc ≈ 0.221 654 626. It may seem that the discrepancy is
small, but an exact solution should give the exact critical temperature to arbitrary precision,
i.e., to all decimal places. For the exact critical temperature, it is not acceptable to tolerate a
discrepancy in the 10th or even 1010th decimal place.

Crucially, none of the above claimed solutions minimally attend Condition 6. As
explained above, the resummed high temperature series of the anisotropic 3D model
seems to show an anomalous behavior, strongly suggesting non-D-finiteness. However,
the claimed solutions all behave normally under resummation of the anisotropic high
temperature series.

In 2021, D. Zhang [19] (not to be confused with Z.-D. Zhang) made another claim,
promptly criticized in [48]. It is easy to check that the assertion in [19] violates Conditions 1
and 4. The claimed solution also fails to bring new insights regarding Condition 6.
For Condition 3, the predicted critical temperature disagrees drastically with the known
numerically estimated value. Finally, regarding Condition 2, Zhang writes
(inaccurately) that:

When the interaction energy in the third dimension vanishes, Onsager’s exact
solution of the 2D Ising model is recovered immediately. This guarantees the
correctness of the exact solution of the 3D Ising model [emphasis added].

In fact, there is no such guarantee. Condition 2 is a necessary but not a sufficient
condition for a solution to be correct. For example, the expression (for vi as defined before)

ln[Z] = ln[2 cosh[K1] cosh[K2] cosh[K3]]

+
1

2 (2 π)3

∫ π

−π
dk1 dk2 dk3

× ln
[
(1 + v2

1) (1 + v2
2) (1 + v2

3)

−2 v1 (1− v2
2) (1− v2

3) cos[k1]

−2 v2 (1− v2
1) (1− v2

3) cos[k2]

−2 v3 (1− v2
2) (1− v2

1) cos[k3]

]
, (16)

correctly reduces to Onsager’s solution of the 2D model if any one of the three Ki are made
to vanish. However, this expression clearly is not correct because it violates Conditions 1, 3,
4, and 6 above. See also the famous (but wrong) conjecture of Mark Kac, e.g., in Ref. [39].

5. Final Remarks and Conclusions

The last few decades have witnessed significant developments [59–61] aimed at
obtaining an exact expression for the 3D Ising model. In the absence of strong theoretical
results pointing otherwise, such steady progress should dispel the false myth regarding the
(non)solvability of the 3D model (see below).

First, we emphasize that the ferromagnetic 3D Ising model with nearest neighbor
interactions is not an NP-complete problem. Recall that a problem is said to be NP-complete
when it can be used to simulate any problem classified as NP. A problem belongs to the
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NP complexity class when a proposed solution can be checked in polynomial time by a
deterministic Turing machine. It is an open question to determine if NP problems can also
be not just checked but also solved in polynomial time by a deterministic Turing machine
(P complexity class). It is true that there is a theorem concerning NP-completeness of the
Ising model due to Sorin Istrail [59]. Nonetheless, it refers to the 3D Ising spin glass with
arbitrary interactions, not to the ferromagnetic model. Moreover, the problem addressed
in [59] relates to finding the ground state. For the ferromagnetic case, the ground state is
trivial, viz., with all spins aligned (so doubly degenerate).

Second, although there is strong numerical evidence of non-solvability of the 3D
Ising model in terms of D-finite functions (see Condition 6), mathematical proofs for this
supposition are still lacking. If indeed this would be the case, an exact analytic solution
based on nonholonomic functions could still be possible. Actually, many experts have
been careful to make clear that the aforementioned non-solvability of the 3D Ising model is
conjectural. Barry Cipra, writing in Science [34], has stated that

It might still be possible to find exact answers for some special cases of the Ising
model, Istrail notes. In particular, the ferromagnetic case of the 3D Ising model
may turn out to be simple enough to solve.

And third, it is also not true that the progress is too slow or that the problem is
hopelessly too difficult. Nor is it a waste of time—quite the contrary. In the preface to
Polygons, Polyominoes and Polycubes, Anthony J. Guttmann writes [62],

This is indeed a golden age for studying such problems. With powerful
computers and new algorithms, unimaginable numerical precision in our
estimates of properties of many of these models is now possible. On the
mathematical side, we are developing tools for solving increasingly complex
functional equations, while the theory of conformal invariance, and the
developments around stochastic Löwner evolution have given us powerful tools
to predict, and in some cases to prove, new results. The scientific community in
this field is divided into those who think we will never solve the problem, of say
the perimeter or area generating function of self-avoiding polygons in two
dimensions, and those who think that we will. I am firmly in the latter camp. . .

Finally, we briefly discuss other three dimensional lattice systems. Condition 1 is
general and valid for all lattice systems, so long as the interactions in the Hamiltonian are
nearest-neighbor. In contrast, conditions 2, 4, and 5 as formulated are specific to the simple
cubic lattice. However, we can expect that there should be analogs of these conditions for
each lattice system. The same should be true for Condition 3 and the numerical value of
Kc. Condition 6, however, is the most difficult to generalize. Very little is known about the
analog of Condition 6 for other lattice systems.

Summarizing, we have reviewed, systematized, and enlarged a set of necessary
conditions characterizing a potentially exact Z for the 3D Ising model. We have arranged
this set into a single framework. Obviously, this set does not per se establish a concrete
protocol that can solve the Ising system. Nevertheless, if even a single criterion is violated,
one can be 100% certain that the methodology followed is fatally flawed. In this sense,
the advance reported here has the potential to guide the maturing of future attempts to
obtain the true Z.

We emphasize that the discussion about misguided attempts in the literature presented
here by no means has the intention of criticizing these authors. Our purpose is solely to
illustrate the subtleties and intricacies of the problem, which has deceived even some of
the most respectable researchers. Our discussion thus makes clear the real necessity of
clear-cut tests to check the plausibility of future claims.

Finally, we note an eventual (although improbable) curious consequence of our results.
An exact analytic expression for Z should observe all the previously addressed requirements.
However, it could be the case that such a function—observing the full set of conditions
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1–6—cannot exist. A proof, of course, would settle negatively the possibility of an analytical
Z. However, we conjecture that the six conditions are not mutually inconsistent.
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