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Abstract: The propagation of bankruptcy-induced shocks across domestic and global economies is
sometimes very dramatic; this phenomenon can be modelled as a dynamical process in economic
networks. Economic networks are usually scale-free, and scale-free networks are known to be
vulnerable with respect to targeted attacks, i.e., attacks directed towards the biggest nodes of the
network. Here we address the following question: to what extent does the scale-free nature of
economic networks and the vulnerability of the biggest nodes affect the propagation of economic
shocks? We model the dynamics of bankruptcies as the propagation of financial contagion across
the banking sector over a scale-free network of banks, and perform Monte-Carlo simulations based
on synthetic networks. In addition, we analyze the public data regarding the bankruptcy of US
banks from the Federal Deposit Insurance Corporation. The dynamics of the shock propagation
is characterized in terms of the Bank Failures Diffusion Index, i.e., the average number of new
bankruptcies triggered by the bankruptcy of a single bank, and in terms of the Shannon entropy of
the whole network. The simulation results are in-line with the empirical findings, and indicate the
important role of the biggest banks in the dynamics of economic shocks.

Keywords: financial contagion; bankruptcy risk; scale-free networks; targeted attacks; Shannon
entropy

1. Introduction

In today’s context of global financial interconnectedness, risk reduction offered by
country diversification may have its counterpart in the widespread diffusion of a contagion
from countries experiencing severe local economic crises [1–4]. A small, even a single
shock from a country may spread to other economically connected countries, thus causing
severe implications to the whole system. As a result, the behaviour of how the initial shock
propagates across the system may be very different depending on the countries’ network
structure, which plays a fundamental role in propagation dynamics.

In this framework, it is important to model the dynamics of the contagion, referring to
financial risk in general, with an emphasis on bankruptcy risk: to this end, many approaches
have been suggested by the literature (see Section 2 for a broad overview). In this direction,
the contagion could be modelled as a spreading process over a complex network, in which
the structure of the network itself has a measurable impact on the whole spreading process.

There is evidence that economic networks exhibit a scale-free structure, cf. [5–10].
Scale-free networks are networks in which the nodes degree distribution follows a power
law, and one may notice the presence of large hubs (the degree of a node is defined as the
number of links connected to this node).

Based on the analogy between the bankruptcy risk spreading over financial networks,
and a virus spreading over a network of human contacts, we can make use of research
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results regarding virus spreading processes. We shall also borrow terminology from
epidemiology, e.g., the concept of superspreaders—the nodes of the network with a large
number of links which can transmit a contagion to many other nodes once infected, and
the concept of the reproduction number RE—the number of nodes infected by a single
node on average. In the context of bankruptcies, however, we’ll be referring to RE as
the Bank Failures Diffusion Index. It has been shown [11] that the value of the effective
reproduction number RE is dominated by the superspreaders. For a scale-free network,
the degree of the largest nodes depends on the size of the network. Hence, the value of
RE grows with the size of the network. Furthermore, it has been also shown, in [11], that
if a node catching the contagion results in the node being removed from the network,
the disruption of the network starts from the biggest nodes. This phenomenon has been
referred to as self-targeting attacks due to the fact that the biggest, and, hence, the most
vulnerable nodes are being targeted automatically. The self-targeting happens because
the nodes with the highest number of connections have the highest likelihood of getting
infected. As a result, the value of RE starts to rapidly decrease over time.

In this paper, we aim to test whether a financial contagion process can be modelled by
means of a scale-free network structure. To this extent, we analyse publicly accessible data
from the Federal Deposit Insurance Corporation and we investigate to what degree the
scale-free nature of the economic network and the vulnerability of the biggest nodes affect
the propagation of economic shocks over the network itself. Using the aforementioned
scale-free network approach, we address the dynamics of financial contagion across the
banking sector.

The paper is structured as follows: Section 2 outlines the related literature on the
topic; Section 3 outlines the methodology of our contribution, while the proposed scale-free
model of the financial contagion/diffusion is presented in Section 4. Results are provided
in Section 5, before we conclude our contribution in Section 6.

2. Related Work

The plethora of contributions about financial contagions have improved knowledge
of this phenomenon, by outlining the importance of extreme negative outcomes and the
phenomenon of increased interdependence. Several methods have been proposed to model
or explain the contagion: GARCH [12], standard quantile and Bayesian quantile regres-
sion [13], non-linear Markov-switching model [14], agent-based models [15], copulas [16],
and the canonical model [17], just to name a few. A unified framework to identify the
channels for the international transmission of financial shocks has been provided by [18],
while other contributions investigate the contagion mechanism in different sectors [19],
and countries: in this context, most contributions agree on the fact that macro-prudential
authorities have to adopt a pan-European perspective [20]. In addition, nation-wide assess-
ments have been performed [21] showing that, say, the risk of cross-border bank contagion
in the European Union increased during 1990s.

Providing an extensive survey of the literature about contagions is out of the scope of
the current contribution, and we forward the interested reader to [22,23] for an overview.
Instead, we want to stress that several contributions introduce network analysis to model
the contagion: Ref. [24] introduces networks with both directed and undirected links,
finding that stable networks can be asymmetric and connected, being able to capture the
main features of inter-industry and financial networks. The authors of [25] introduce
network analysis to identify the connections between risk and sentiment contagion; the
authors of [26] investigate the tails of the phenomenon; while [27] builds a multiple network
of the bank system by coupling the bank system network with the depositor’s social
network in order to study the interaction and impact mechanism due to the contagion
of bank risk combined with panic sentiments of depositors; the authors of [28] adopt a
complex network approach to assess the level of heterogeneity and cohesiveness among
firms that make use of minibonds as a source of financing.
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Although scale-free networks have been theoretically investigated to model contagion
effects [29], their application to the analysis of bankruptcy risk is still limited: Ref. [30]
introduces a comparative analysis, Ref. [31] performs a computer-based simulation, and
Ref. [32] investigates the European scenario, on top of some contributions tailored to
specific sectors, such as re-insurance [33], real estate [34], and portfolio diversification [35].
Our contribution is intended to fill this gap, by applying scale-free networks to modelling
the effects of bankruptcy outbreaks across the banking sector.

Moreover, our approach can prove to be an effective aid to examining the distress
spillover effects across industries, such as the propagation of firm-level idiosyncratic shocks
in production networks. In particular, [36] shows that in a competing network of industries,
a distress shock can propagate to other industries through common major players and its
(indirect) spillover effects can deteriorate the profit margins of unaffected industry peers.
Ref. [37] identifies idiosyncratic shocks with the occurrence of natural disasters and finds
that affected suppliers impose substantial output losses on their customers, especially
when they produce specific inputs. These losses may cause adverse implications, such
as significant market-value losses which, in turn, spillover to other suppliers. In [38],
an alternative model of network formation is proposed that parsimoniously incorporates
realistic features of US firms’ buyer–supplier relationship. The model accounts for processes
of vertex (firm) death and the restoration of those edges (buyer–supplier relationships)
between surviving firms. New edges are also allowed to be formed, either by considering a
scale-free network structure (new edges are more likely to be attached to nodes with a high
degree) or randomly.

3. Methodology

In order to verify if financial contagion spreads in real world like a scale-free network
or not, we used publicly accessible data from the Federal Deposit Insurance Corporation
(FDIC) website. The FDIC is an independent agency created by Congress to maintain
stability and public confidence in the US nation’s financial system. To accomplish this
mission, the FDIC insures deposits; examines and supervises financial institutions for
safety, soundness, and consumer protection; makes large and complex financial institutions
resolvable; and manages receiverships. It is also appointed as a receiver for failed banks
and keeps track of a neat failed-bank list, where 563 bank failures are recorded in the US
since 1 October 2000 until October 2020 (see Data Availability Statement).

In Figure 1, we show a snapshot of the available data displaying the yearly number of
bank failures along with their approximate total asset volume (in USD ). The bank name,
the city, the closing date and the approximate deposit US dollar volume are also available
along with the above listed data.
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Figure 1. A snapshot of the data used in the study (source: The Federal Deposit Insurance Corpora-
tion (FDIC).
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In Figure 2, we plotted in a log–log scale the yearly Bank Failures Diffusion Index
(BFDI) for the period 2009–2013 against the cumulative number of failed banks. The
reported BFDI is calculated as the ratio between the number of new end-of-year failures
and the ones observed one period ahead, while the cumulative number of failed banks f
is averaged over the total number of (commercial) banks at each investigated year. For
maximum data stability, and following the methodology applied in Ref. [11], we consider
the period from 2009 to 2013, as we assume that the 2008 financial global crisis reveals its
full extent from 2009 and it starts to largely fade out by the end of 2013.

The red straight dashed line in the figure depicts a power law fit of the US banks’
Failures Diffusion Index as a function of the cumulative number of failed banks, which
yields an exponent α ≈ 2. This evidence would suggest that it might be reasonable to
model the observed diffusion behaviour as a scale-free network. In other words, what we
want to investigate is if the depicted behaviour in Figure 2 is, effectively, the consequence
of the scale-free nature of the banks’ failure-spreading process.

As a matter of fact, the scale-free nature assumption of the failure-spreading process,
if verified, would have significant implications, in terms of the understanding of the
network dynamics, and for implementing optimal control strategies over the network
itself. For example, as it is well-known in the literature, scale-free networks are highly
sensitive to so-called targeted attacks, which aim to compromise network integrity through
disrupting the biggest nodes [39–41]. If, as hypothesized, a self-targeting-attacks scenario is
playing out in the network of inter-related companies, the biggest nodes, i.e., the nodes
with the highest degree, become “destroyed” at the very early stages of the bankruptcy
spreading throughout the network. This is a strong possibility because the probability of a
node being contaminated by a malicious event is proportional to the degree of the node
itself. This has both crucial and practical implications in averting bankruptcy diffusion
and preventing a deep cross-border or cross-sectoral financial contagion. The identification
of the likely “infectious” superspreaders within the network by economic and financial
authorities would ensure better decision making and policy implementation, such as
dedicated financial support or special monitoring actions.

3 × 10 2 4 × 10 2 6 × 10 2

Cumulative failed banks

100

BF
DI

Data
Regression line

Figure 2. The yearly observed Bank Failures Diffusion Index (BFDI) against the cumulative number
of failed banks f (Period: 2009–2013, Source: FDIC). The red dashed line depicts a power law fit such
as BFDI ∝ f−α with α ≈ 2.

4. The Scale-Free Model of Financial Contagion Spreading

Based on the considerations reported in Section 3 on the implication of the scale-free
nature of financial contagion spreading across a network, we developed the following
mathematical model:

(a) the network links are kept fixed along time with time-varying strength. The probability
p of the diffusion of financial distress from a failed bank (node of the network) to
a susceptible one is initially kept constant and, subsequently, we let it depend also
on the (susceptible) node’s neighborhood structure. The rationale for this is that the
financial distress of a defaultable node can be induced by a failed directly connected
node, but it can be also triggered by the defaults of its neighbouring nodes. In a sense,
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we are arguing that (probably) the default of a big connected node has a much wider
impact than that of a small one.
In more detail, let ki be the degree of the i-th node, then the probability of a default of
the i-th node at a certain time step is given as:

pi = qi + ai ×∑
j

kb
j (1)

where the sum is taken over all the infected nodes (of index j) connected to the i-th
node, with qi =

Q
kg

i
and ai =

c
kd

i
, with both g and d taking values in the real interval

[0, 1]. This equation can be interpreted as follows. The term qi describes the probability
of a spontaneous default. We expect smaller companies to be more volatile; hence, we
assumed that the spontaneous default probability is a decreasing power law of the
node’s degree k, with the constant Q and the exponent d being model parameters. The
second term describes the default triggered by the defaults of the connected nodes; we
expect big infected neighbours to have a stronger impact, hence the exponent b > 0. In
addition, we expect big nodes to be less sensitive to the defaults of small neighbours,
so the exponent d > 0. One can conclude that the exponents b and d must be equal by
arguing that if a certain node of size k is linked to an infected node of equal size k, the
probability of a triggered default should be independent of the node size k. To sum up,
we have two more model parameters, the constant c and the exponent b, while d = b.

(b) At the simulation start, all the network nodes are susceptible to falling into a default
status which is induced into the network by selecting a random node. The simulation
run is deemed successful if at least a threshold fraction of 5% of the network nodes
fall into default.

(c) The period between the occurrence of financial distress and a subsequent default
status is taken to be equal to one time step, which corresponds to an iteration, and
each distressed node remains active for one time step. This means that if a node falls
into distress at tn, it will default at time tn+1 and will neither be susceptible to default
again nor induce a bankruptcy risk for any t ≥ tn+2. Here, the idea is that when a bank
goes into bankruptcy, it is immediately rescued by ad-hoc financial support policies
implemented either by national or international governance bodies;

(d) The networks we use are characterized by the cumulative degree distribution exponent
κ, i.e., the number of nodes n with degree exceeding k scales as n ≈ k−κ ;

(e) We also introduce the Shannon Entropy (SE) in order to quantify the complexity of
the effective remaining network of healthy nodes with a single number. The SE is a
concept introduced by [42] and its applications in information theory as well as in
other scientific disciplines are now countless. Entropy is a measure of the randomness
in a system: the noisier a system is, the less predictable it becomes and the higher
entropy it has. In our case, it reflects the diversity of the nodes.
We define the entropy of the network as S = −∑k[Pk × ln(Pk)], where Pk = Nk

N , Nk
denotes the number of nodes of degree k and N the total number of nodes in that
network. We consider how entropy evolves under different scenarios. The way
entropy changes over time basically reflects how many big nodes failed and were
“removed” from the network. We expect it to start decreasing during the contagion
spreading, as the network is initialized with the full spectrum of node sizes and, as the
big nodes become unhealthy and enter into a financial distress/bankruptcy status, the
system becomes distributed over a smaller number of states (i.e., nodes of different
sizes). Hence, decreasing entropy would imply that self-targeting attacks have been
successful in removing big infectious nodes (banks).
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5. Results

Simulations were run by means of the Python NetworkX package [43] using the
scale_free_graph function, which returns a scale-free directed graph [44]. The above
library function basically depends on the following four parameters: N (the number of
nodes in the graph) α, β and γ, such that α + β + γ = 1. The way these parameters are
set has a direct impact on the cumulative degree distribution exponent of the in and out
connections. We then converted the directed graph into an undirected one, avoiding self
connections or double connections between nodes.

For reproducibility, we report in Table 1 the parameters we used for performing the
simulations while a node degree distribution obtained by a simulated run is depicted in
Figure 3. In particular, the choice of parameters α = 0.1, β = 0.8 and γ = 0.1 allows to
obtain a power-law scaling exponent equal to κ = 2.0, which is in-line with the observed
pattern displayed in Figure 2.

0 200 400 600 800 1000
node count

0

100

200

300

de
gr

ee

Figure 3. The node degree distribution of a simulated network by NetworkX.

In Figure 4, we show the simulation results of the obtained entropy values versus the
percentage of corrupted banks for different settings of the default diffusion probability
parameters and for different implementations of government’s financial support policies.
As we were expecting, the entropy starts to fall during the economic shock, due to the
defaults of big banks. Another important feature of this figure is that random governmental
support of banks has almost no effect. Meanwhile, support provided to the key nodes of
the network—the biggest banks, the “superspreaders”, has a considerable effect which is
reflected by the fact that the entropy of the network remains bigger—this policy effectively
inhibits the decrease in entropy which is the intrinsic trend during economic shocks.
The decrease in entropy is approximately a power law of the cumulative fraction f which
corresponds to a straight line in these graphs; the exponents—the slopes of the graphs—as
shown by dashed lines. The behaviour described above is robust and survives a wide
range of the model’s parameters. Figure 4a,b provide two example cases, for b = 0.1
and g = 0.5 in graph (a), and for b = 0.4 and g = 1.0 in graph (b). Notice that the
effect of targetted governemental support is bigger in case (b). This can be explained by
noticing that smaller values of the exponent b mean that big banks are more vulnerable
with respect to the defaults of smaller partners and, hence, the governmental support is
needed more. The graphs (a) and (b) also differ in exponent g; however, the bigger value of
g in case (b) is expected to have an opposite effect: a larger g means that larger banks have
a smaller probability of a spontaneous default which would mean, the other way around,
that support would not be needed. This cannot be seen from the difference in graphs
(a) and (b), which is explained by the fact that during a shock, triggered defaults dominate
over spontaneous defaults; hence, the parameters associated with the spontaneous defaults
are less important than the parameters associated with the triggered defaults.

This result regarding system entropy has a direct implication on the predictability of
bankruptcy diffusion or financial contagions inside the network, as it would imply that



Entropy 2022, 24, 1713 7 of 11

the randomness of the system decreases as a self-targeting-attack strategy is active within
the network.

In Figure 5, we show in a log–log scale the simulated BFDI values versus the cumula-
tive number of defaults f . The observed behaviour is completely in-line what we saw in
Figure 4. During an economic shock, the simulated BFDI index decays approximately as a
power law of fraction f . The curves corresponding to targetted governemental support lie
beneath the other curves, evidencing that the applied policy successfully inhibits the propa-
gation of the economic shock. The random governmental support has almost no effect—the
corresponding curve almost coincides with the curve with no governemental support.
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Figure 4. Entropy value versus the percentage of corrupted banks for different settings of the default-
diffusion probability parameters and for different implementations of financial support policies
(GFA: government financial aid, No_GFA: no financial aid is induced into the network, GFA_SUPER:
financial aid is provided only to superspreaders, GFA_RANDOM: financial aid is induced randomly
into the network). (a) g = 0.5–b = 0.1. (b) g = 1.0–b = 0.4.
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Figure 5. Log–log plot of the simulated BFDI values versus the cumulative number of defaults.
(a) g = 0.5–b = 0.1. (b) g = 1.0–b = 0.4.

The effectiveness of an induced self-targeted-attack strategy is clearly captured in
Figure 6, where the BFDI, entropy and the average effective degree of the nodes are plotted
against time. We use the term effective to refer solely to those edges which are, at the
given moment in time, connected at both ends to surviving banks (nodes). In more detail,
the average effective degree is defined as the weighted average degree, with the weights
being equal to the squared degree, kavgeff =

〈
k3〉/

〈
k2〉, with the angular braces denoting

averaging over all the survived nodes of the network: 〈kn〉 ≡ 1
N ∑i kn, where ki is the

number of the remaining edges of the i-th survived node, and N—the total number of
surviving nodes. The quantity kavgeff is designed to reflect how the big nodes disappear
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from the network: the removal of a single big node decreases kavgeff significantly, while the
removal of several small nodes has only a minor effect.

Looking at Figure 6, it appears clear that the initial randomness of the system (entropy)
progressively decreases over the same time periods as when the self-targeting attacks break
out through the network. Moreover, the effectiveness of a self-targeted strategy is confirmed
by the decreasing values of the averaged nodes degree, a result which is in-line with what is
expected from the scale-free character of the network (larger banks are expected to default
earlier than smaller ones). All this can be seen from the fact that all the three curves move
in a strongly correlated way.

0 2 4 6 8 10
No of time steps

0

1

2

3

4

5

6

BF
D

I

0

10

20

30

40

50

60

av
g_

ef
f_

de
gr

ee

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

En
tr

op
y

Figure 6. The Bank Failure Diffusion Index, the effective averaged nodes degree and the entropy
values obtained from the output of a single simulation run.

Provided that the financial system is characterized by a wide range of interconnec-
tions, the analysis conducted in this paper suggests that the financial network has a high
sensitivity to the nodes with the highest degree. These nodes can, in various ways, give
rise to contagion with potential adverse effects on the system’s stability. An important
issue which should be considered when investigating financial-contagion processes is that
they can be activated by two channels of interconnectedness: a direct one, which concerns
all those bilateral links between banks and other financial institutions, and an indirect one
which relies on common exposures to similar economic sectors due to banks’ common
asset holdings, i.e., overlapping portfolios [45]. This latter observation, however, points to
a crucial issue: is there an effective way to identify the network’s superspreaders? One way
to address this question is to label those banks with the highest Endogenous Risk Index
(ERI) or the Indirect Contagion Indicator (ICI), i.e, banks might be ranked by the amount
of contagion they could spread in cases of distressed liquidations. The ICI and ERI could
allow the quantification of the most important overlaps on a global level and would reveal
more valuable information on banks’ interconnectedness than the size of their securities
holdings alone [46].
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Table 1. Scale-free graph and simulations parameters: N: number of nodes in graph; α, β, γ,
delta_in, delta_out: see [47] (the above parameters configuration lets us obtain the cumulative
degree distribution exponent best matching the observed real data, i.e., k ≈ 2); nr.of runs: number
of the simulated samples; max_fails: the maximum number of failures in a single simulation run;
max_dur = the maximum number of iterations for a single simulation run; distress_dur = the
duration of a bank distress event (equal to one iteration); min_overall_fail_frac: the minimum
fraction of failed banks for which the single simulation run is deemed successful.

NetworkX scale-free parameters

N = 1000

α = 0.1

β = 0.8
γ = 0.1

delta_in = 4.5

delta_out = 4.5

Simulations parameters

nr. of runs = 100

max_fails = 10,000

max_dur = 60

distress_dur = 1

min_overall_fail_frac = 5%

6. Concluding Remarks

The high interconnectedness of the global financial system has led to a growing
consciousness of the complex dynamics of contagion phenomena. In this study, after having
verified the scale-free behaviour of real data from the 2008 financial crisis, we studied if
and to what extent the scale-free nature of the network, as being highly vulnerable to
self-targeted attacks, can influence the contagion-spreading rate. To this end, by combining
a scale-free network approach with Monte-Carlo simulations, we examined how simulated
bankruptcy contagion effects spread through the banking system.

The so-far obtained results convey a clear economic interpretation which may provide
some insight into how to tackle a contagion at its earliest outbreak. In particular, we show
that the initial randomness of the system vanishes as self-targeting attacks spread through-
out the network: even though, initially, random network nodes (banks) were infected, very
soon the contagion reached the biggest nodes, as evidenced by the steady decrease in both
the network entropy, and the Bank Failures Diffusion Index. This has several practical
implications for identifying the optimal strategy of averting global financial shocks.

In closing, we would highlight that the results herein presented are very preliminary
insights into the topic of modelling economic shocks as a dynamic process over complex
networks. There is a clear need for further validation of the simulation results against larger
cross-country and cross-sector datasets. In addition, in order to move towards practical
applications of our findings for implementing effective financial support policies, further
simulations are needed to play out different strategies of averting and suppressing the
propagation of financial shocks.
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