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Abstract: The vapor pressures of six solid 5-X-1,10-phenanthrolines (where X = Cl, CH3, CN,
OCH3, NH2, NO2) were determined in suitable temperature ranges by Knudsen Effusion Mass
Loss (KEML). From the temperature dependencies of vapor pressure, the molar sublimation en-
thalpies, ∆cr

gHm
0(〈T〉), were calculated at the corresponding average 〈T〉 of the explored temperature

ranges. Since to the best of our knowledge no thermochemical data seem to be available in the
literature regarding these compounds, the ∆cr

gHm
0(〈T〉) values obtained by KEML experiments

were adjusted to 298.15 K using a well known empirical procedure reported in the literature. The
standard (p0 = 0.1 MPa) molar sublimation enthalpies, ∆cr

gHm
0(298.15 K), were compared with those

determined using a recently proposed solution calorimetry approach, which was validated using
a remarkable amount of thermochemical data of molecular compounds. For this purpose, solution
enthalpies at infinite dilution of the studied 5-chloro and 5-methylphenantrolines in benzene were
measured at 298.15 K. Good agreement was found between the values derived by the two different
approaches, and final mean values of ∆cr

gHm
0(298.15 K) were recommended. Finally, the standard

molar entropies and Gibbs energies of sublimation were also derived at T = 298.15 K. The volatilities
of the six compounds were found to vary over a range of three orders of magnitude in the explored
temperature range. The large difference in volatility was analyzed in the light of enthalpies and
entropies of sublimation. The latter was tentatively put in relation to the rotational contribution of
the substituent group on the phenanthroline unit.

Keywords: 5-substituted-1,10-phenanthrolines; vapor pressure; Knudsen Effusion; solution calorimetry;
standard molar sublimation enthalpy; standard molar sublimation entropy; standard molar sublimation
Gibbs energies; entropic effect of rotation

1. Introduction

The aromatic heterocyclic compound 1,10-Phenanthroline is formed by three con-
densed rings (Figure 1), and is well known for its pronounced metal-ion complexing
properties [1–6].
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It is well known that, while measuring vapor pressures is the most direct procedure 
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eter at a reference temperature Tref can be completed. To this end, some experiments were 
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taken by our group in the recent past [17,18], as well as by using some additivity proper-
ties referred to as Tref (without the need to consider any contribution due to its adjustment 
to Tref), especially when no literature data are available (as in this case, according to our 
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Several years ago, the molar heat capacities and some thermodynamic properties
of phen, its 2,9-dimethyl derivative and polycyclic related compounds were determined
in a suitable range of temperatures [7–11]. More recently, [12] we determined for the
first time the enthalpies and entropies of sublimation/evaporation of 1,10-phenanthroline
from vapor pressure measurements performed by the Knudsen effusion mass loss (KEML)
technique on the solid phase and isothermal thermogravimetry (TG) on the liquid phase,
supported by differential scanning calorimetry (DSC) to determine the enthalpy of fu-
sion. Before that work, the only information available on thermodynamic properties of
different phen derivatives, denoted as three-ring aza-aromatics, were on their sublimation
enthalpies [13,14].

As a continuation of our work on tricyclic nitrogen heterocyclic compounds, we have
undertaken a systematic study of the sublimation thermodynamics of 1,10-phenanthroline
derivatives, for which thermodynamic information is extremely scarce. In particular, in this
paper we focused on six 5-substituted 1,10-phenanthrolines, for which no thermodynamic
information is presently available. The molecular structure of the compounds tested is
reported in Figure 1. KEML measurements were performed on the crystal phases of these
compounds and sublimation enthalpies derived. Furthermore, in the effort to perform
a mutual validation of two completely independent techniques, the solution calorimetry
method developed by Solomonov and co-workers [15,16] was also used for two compounds.
This method is based on the relationship between evaporation/sublimation enthalpy
and enthalpies of solution and solvation of a studied compound in a properly selected
solvent. The main advantage of this method is that it is able to provide the stan-dard molar
evaporation or sublimation enthalpy (above a liquid or solid, respectively) at 298.15 K by
measuring the solution enthalpy of the compound tested in a selected solvent and using a
group-additivity scheme for calculation of the solvation enthalpy, without any enthalpic
contribution due to adjustment to the reference temperature.

It is well known that, while measuring vapor pressures is the most direct procedure to
derive sublimation enthalpies, a reliable determination of this thermodynamic parameter
at a reference temperature Tref can be completed. To this end, some experiments were
performed using two or more different techniques in suitable temperature ranges above the
same phase or on two different phases (i.e., above the solid and the liquid), as undertaken
by our group in the recent past [17,18], as well as by using some additivity properties
referred to as Tref (without the need to consider any contribution due to its adjustment
to Tref), especially when no literature data are available (as in this case, according to
our knowledge).

So, the aim of this study is to report the first vapor pressure and thermodynamic
data on sublimation for six solid 5-x-1,10-phenanthrolines (where X = Cl, CH3, CN, OCH3,
NH2, NO2) and to cross-validate with calorimetric results, with the view to guarantee the
accuracy of the derived thermochemical properties.

2. Materials and Methods
2.1. Compounds

Source, purification method and mass fraction purity of the studied compounds are
reported in Table 1.
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Table 1. Source, purification method and mass fraction purity of the studied compounds.

Compound Source Purification
Method

Final Mass
Fraction Purity

Analysis
Method

Water
Content/ppm

5-Cl-1,10-phenanthroline Sigma-Aldrich - >0.98 - 50
5-CH3-1,10-phenanthroline Sigma-Aldrich - >0.99 - 30

5-CH3O-1,10-phenanthroline Synthesis Chromatography >0.999 GC -
5-CN-1,10-phenanthroline Synthesis Recrystallization >0.999 GC -

5-NO2-1,10-phenanthroline Synthesis Recrystallization >0.999 GC -
5-NH2-1,10-phenanthroline Synthesis Recrystallization >0.999 GC -

benzene Ekos-1 Distillation >0.999 GC 20

In particular, 5-Cl- and 5-CH3-1,10-phenanthrolines were purchased (Sigma-Aldrich,
purity > 98%) and used as received. The 1,10-Phenanthroline-5,6-epoxide, precursor for
the synthesis of 5-CH3O-1,10-phenanthroline and 5-CN-1,10-phenanthroline, was pre-
pared from reaction of 1,10-phenanthroline and sodium hypochlorite according to a lit-
erature procedure [19]. The synthesis route for 5-CN-1,10-phenanthroline, 5-CH3O-1,10-
phenanthroline, 5-NO2-1,10-phenanthroline and 5-NH2-1,10-phenanthroline is reported in
Figure 2, while all details for their preparation are shown in the Supplementary Information.
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Figure 2. Synthesis route of: 5-cyano-1,10-phenanthroline (a), 5-methoxy-1,10-phenanthroline (b),
5-nitro-1,10-phenanthroline (c) and 5-amino-1,10-phenanthroline (d).

The synthesis of the 5-substituted nitro and amino derivatives (Figure 2c,d) was made
according to a procedure reported in reference [20]. Water content in 5-Cl- and 5-CH3-1,10-
phenanthrolines was checked using Karl Fischer titration (Mettler Toledo C20 Coulometric
KF Titrator).

2.2. Instruments
2.2.1. DSC Measurements

The melting temperatures and the enthalpies of fusion have been determined using
a STA625 Stanton Redcroft simultaneous TG/DSC apparatus, consisting of two open
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cylindrical shape aluminum pans, one empty for the reference and the other filled with
a suitable amount of sample. DSC experiments were carried out under argon flow rate
of 20 mL·min−1 at 2 K·min−1 and the raw data were acquired using a personal computer
through the RSI Orchestrator software supplied by Rheometric Scientific. Calibration of
temperature and heat flux was made using recommended high purity reference materials
(benzoic acid and indium in this study), whose melting temperatures Tfus and enthalpies
of fusion ∆cr

lHm
0 (Tfus) are well known [21,22]. Based on these calibrations, we estimated

u(Tfus) = 2·u(T) = 0.2 K, while for the ∆cr
lHm

0(Tfus) the standard deviations of three
replicates combined with the uncertainty of the heat flow calibration have been considered
more appropriate.

2.2.2. KEML Measurements

The Knudsen effusion mass loss (KEML) experiments were carried out using a Ugine-
Eyraud Model B60 Setaram thermobalance, accurately described in a previous paper [23].
It is essentially constituted by a furnace, a microbalance and a vacuum system. The mea-
suring cell is housed in a copper cylinder with a cap, which has the purpose of equalizing
the temperature of the sample to allow an optimal temperature measurement. The copper
cylinder is suspended to the arm of the microbalance with a standard measurement un-
certainty u(m) = 0.01 mg. The temperature was measured via a Pt100 Platinum Resistance
Thermometer inserted into the copper cylinder, being the standard measurements uncer-
tainty u(T) less than 0.2 K. The temperature control and the measurements of the mass loss
are made through a data logger (HP 34970A) driven by a LabVIEW software that permits
the continuous control of the system.

Two alumina cells (A and B) with different effusion orifice diameters (OD) of 3 and
1 mm, respectively, were alternatively used by loading approximately 50 mg of sample,
previously purified by sublimation under reduced pressure. The instrumental Knudsen
constant [24] was evaluated for each cell by performing KEML experiments (series A with
OD = 3 mm and series B with OD = 1 mm) under identical conditions of the compounds
tested using very pure calibration substances having well known vapor pressures (benzoic
acid [25,26] in this study). During each KEML experiment the temperature of the sample
was adjusted to evaluate the mass loss rate at different constant temperatures. For each
experiment, the isothermal temperature explored was first decreased and then increased.
This approach allows detecting possible changes in the composition of the sample caused by
impurities or decomposition reactions. This procedure would produce a gradual variation
of the sample’s vapor pressures, and, therefore, two non-overlapping data sets.

2.2.3. Solution Calorimetry Measurements

The solution enthalpies of 5-chloro and 5-methyl-1,10-phenanthrolines in benzene
at infinite dilution were measured at T = 298 K in a concentration range from 1.6 to
7.13 mmol·kg−1 using a TAM III precision solution calorimeter (Table S1).

The samples were dissolved by breaking a glass ampule in a glass cell containing pure
benzene. The details of the solution calorimetry experimental procedure have been fully
described elsewhere [27].

3. Results and Discussion
3.1. Melting Parameters Determination by DSC Experiments

The melting temperatures and the enthalpies of fusion of the six 5-X-1,10-phenanthroline
derivatives are reported in Table 2, along with the associated uncertainties. At the present
time, according to our knowledge, no melting data concerning these compounds are
available in literature.
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Table 2. Melting (onset) temperatures and molar enthalpies of fusion of the compounds studied
determined by DSC.

Compound
Tfus

a ∆cr
lHm

0 b

K kJ·mol−1

5-Cl-1,10-phenanthroline 396.5 ± 0.2 18.9 ± 0.6
5-CH3-1,10-phenanthroline 384.3 ± 0.2 8.9 ± 0.4

5-CH3O-1,10-phenanthroline
5-CN-1,10-phenanthroline

5-NO2-1,10-phenanthroline 473.0 ± 0.2 25.2 ± 0.8
5-NH2-1,10-phenanthroline 525.1 ± 0.2 24.1 ± 0.8

a Uncertainty of melting temperature corresponds to twice the standard uncertainty of calibration temperature
(u(Tfus)) = 2·u(T)). b Uncertainty related to the enthalpy of fusion combines the standard deviation of three
replicates with the uncertainties of the heat flow calibration.

3.2. Vapor Pressure Determination by KEML Experiments

The experimental vapor pressure data determined by KEML above the solids in
suitable experimental temperature ranges are summarized in Table 3. The corresponding
plots are shown in Figure 3.

Table 3. Vapor pressures of crystalline 5-substituted-1,10-phenanthrolines measured by KEML using
two different effusion orifices (1 and 3 mm diameter).

T/K ∆t/s ∆m/mg a p/Pa a 100 ∆p/p b T/K ∆t/s ∆m/mg a p/Pa a 100 ∆p/p b

5-chloro-1,10-phenanthroline∮
/mm = 1

∮
/mm = 3

367.1 4074 1.20 0.206 −3.7 323.1 15,821 0.19 0.00152 −2.6
361.3 4430 0.77 0.121 2.7 312.9 40,125 0.14 0.000437 7.8
355.4 4593 0.42 0.0626 −2.0 332.7 6951 0.29 0.00535 3.7
349.6 6239 0.30 0.0328 −4.0 327.7 14,246 0.31 0.00278 −0.3
343.8 9256 0.23 0.0167 −6.0 322.6 24,318 0.29 0.00153 4.4
338.0 21,233 0.29 0.00907 0.8 317.8 27,704 0.17 0.000784 0.9
332.2 31,710 0.23 0.00479 6.2 312.9 32,694 0.11 0.000424 4.8
365.2 5447 1.39 0.178 1.0 308.0 96,302 0.14 0.000186 −10.0
359.3 4836 0.67 0.0963 0.4 339.6 7394 0.65 0.0115 −1.0
353.6 4720 0.37 0.0537 2.7 337.6 6903 0.48 0.00903 −2.5
347.7 9264 0.37 0.0274 −0.2 334.7 9694 0.47 0.00624 −5.2
341.9 12,381 0.26 0.0142 −0.3 329.8 15,100 0.46 0.00389 6.4
336.1 24,654 0.26 0.00705 −1.8 325.0 19,951 0.30 0.00192 −3.4
363.3 5313 1.15 0.151 4.1 320.1 37,451 0.31 0.00104 −2.7
357.4 4453 0.51 0.0796 0.9 315.3 52,795 0.23 0.000552 −0.9
351.6 6174 0.38 0.0419 −0.9 309.8 72,493 0.15 0.000260 −1.1
345.8 12,210 0.41 0.0227 2.5
339.9 27,239 0.44 0.0108 −5.0
334.1 58,330 0.50 0.00577 1.5

5-methyl-1,10-phenanthroline∮
/mm = 1

∮
/mm = 3

372.3 5983 2.72 0.373 2.9 337.0 9042 0.59 0.0107 2.1
368.4 4837 1.48 0.250 −0.3 334.0 8058 0.37 0.00749 0.7
364.5 4987 1.03 0.168 −2.2 331.1 10,234 0.33 0.00516 −1.8
360.5 5436 0.80 0.119 2.2 328.1 13,521 0.31 0.00365 −1.4
356.6 5022 0.49 0.0785 0.0 325.2 22,546 0.35 0.00252 −2.4
352.7 6864 0.47 0.0542 2.7 322.2 21,835 0.25 0.00179 0.0
348.8 9740 0.44 0.0361 3.7 319.3 48,156 0.39 0.00128 3.3
344.7 17,221 0.48 0.0220 −2.6 316.3 66,072 0.35 0.000837 −1.4
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Table 3. Cont.

T/K ∆t/s ∆m/mg a p/Pa a 100 ∆p/p b T/K ∆t/s ∆m/mg a p/Pa a 100 ∆p/p b

340.8 18,658 0.33 0.0141 −4.1 311.6 244,549 0.69 0.000440 −3.9
370.3 5857 2.15 0.301 −0.1 338.9 7466 0.59 0.0128 −1.3
366.4 4954 1.25 0.206 −0.8 335.0 5878 0.29 0.00817 −1.5
362.4 4814 0.86 0.144 2.8 332.0 7950 0.29 0.00585 −0.5
358.5 6889 0.82 0.0955 0.4 329.1 12,120 0.31 0.00417 0.6
354.6 6808 0.51 0.0604 −6.0 326.1 19,705 0.34 0.00275 −4.8
350.7 9825 0.50 0.0403 −5.8 323.1 20,423 0.28 0.00219 8.4
346.8 12,692 0.45 0.0283 0.0 320.2 42,259 0.37 0.00139 0.4
342.9 15,825 0.37 0.0186 0.8 317.2 57,261 0.36 0.00101 5.6
338.9 22,030 0.35 0.0125 5.0 314.3 87,374 0.36 0.000646 −0.8
335.0 39,950 0.37 0.00726 −4.5 311.4 139,369 0.38 0.000431 −2.3
331.0 54,412 0.35 0.00504 5.0

5-methoxy-1,10-phenanthroline∮
/mm = 1

∮
/mm = 3

372.3 6709 1.52 0.183 0.6 352.6 6056 0.90 0.0194 4.5
368.4 4712 0.70 0.119 2.9 348.4 9816 0.86 0.0113 5.5
364.5 4606 0.43 0.0757 3.7 344.4 4851 0.25 0.00658 3.7
360.4 6832 0.39 0.0456 2.1 340.6 6547 0.20 0.00390 2.8
356.3 9829 0.35 0.0285 5.4 336.7 10,399 0.18 0.00225 2.3
352.3 15,280 0.33 0.0168 3.4 332.8 27,497 0.29 0.00134 5.5
348.5 40,339 0.51 0.00984 0.0 328.9 48,497 0.29 0.000758 5.1
370.7 5230 0.93 0.144 −4.5 325.0 111,603 0.39 0.000434 7.2
366.7 4490 0.52 0.0930 −2.5 350.4 5903 0.61 0.0134 −3.1
362.3 6220 0.42 0.0544 −2.6 346.5 4992 0.31 0.00801 −3.7
358.3 9393 0.40 0.0335 −2.5 342.6 6606 0.24 0.00471 −4.7
354.3 15,204 0.40 0.0208 −0.6 338.7 15,350 0.32 0.00268 −7.9
350.4 24,988 0.38 0.0120 −6.1 334.5 31,848 0.37 0.00148 −9.0

330.6 50,156 0.34 0.000865 −6.2
326.7 48,936 0.19 0.000496 −4.0

5-cyano-1,10-phenanthroline∮
/mm = 1

∮
/mm = 3

413.7 4686 4.33 0.799 1.5 376.4 6387 1.01 0.0217 6.4
409.8 4660 2.80 0.518 −5.7 372.4 4140 0.43 0.0141 7.6
405.9 4651 2.10 0.387 3.1 368.5 5050 0.32 0.00865 3.3
401.9 4673 1.43 0.261 2.1 364.7 8911 0.37 0.00552 2.5
398.1 4737 0.99 0.177 1.4 360.8 17,601 0.46 0.00349 2.8
394.2 4736 0.67 0.119 0.8 357.0 21,827 0.37 0.00226 6.1
390.3 4388 0.42 0.0801 1.3 353.0 39,028 0.37 0.00127 −2.6
386.3 6370 0.40 0.0527 1.0 349.2 69,135 0.43 0.000810 1.6
382.5 9638 0.38 0.0327 −5.8 345.3 11,8495 0.42 0.000463 −4.6
378.7 19,865 0.57 0.0236 3.6 378.3 6794 1.16 0.0234 −7.7
408.3 5201 2.84 0.468 −1.0 374.4 5730 0.68 0.0161 −1.4
404.3 4650 1.71 0.314 −3.1 370.6 4833 0.36 0.0101 −4.5
402.0 5241 1.49 0.242 −6.6 366.6 9197 0.46 0.00680 1.1
398.0 4350 0.84 0.164 −5.8 362.7 17,937 0.56 0.00421 −1.0
400.5 5104 1.31 0.219 −2.2 358.9 21,220 0.41 0.00257 −4.1
396.5 4545 0.79 0.147 −1.9 355.0 38,864 0.48 0.00164 −1.6
392.7 4333 0.51 0.0991 −2.5 351.1 69,000 0.52 0.00100 −2.5
388.8 4513 0.36 0.0665 −2.3 347.2 94,468 0.43 0.000598 −4.0
384.8 6556 0.34 0.0430 −3.2 377.1 4614 0.74 0.0218 −0.6
381.0 9294 0.32 0.0285 −3.0 369.4 4526 0.30 0.00909 −2.0
377.1 18,437 0.45 0.0203 5.8 373.3 6353 0.65 0.0140 −2.4
408.5 5599 3.18 0.488 1.1 365.6 8871 0.38 0.00584 −1.8
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Table 3. Cont.

T/K ∆t/s ∆m/mg a p/Pa a 100 ∆p/p b T/K ∆t/s ∆m/mg a p/Pa a 100 ∆p/p b

404.6 5152 2.07 0.344 3.1 361.7 18,077 0.49 0.00363 −2.9
400.8 5450 1.62 0.253 8.9 357.8 21,203 0.39 0.00247 4.8
396.9 4550 0.89 0.165 5.5 353.9 39,299 0.40 0.00135 −7.1
393.1 5393 0.70 0.110 4.1 350.0 68,371 0.50 0.000967 8.9
389.2 5304 0.46 0.0725 2.7 346.0 72,267 0.30 0.000551 3.4
385.4 8506 0.46 0.0454 −3.9
381.4 6767 0.25 0.0306 −1.1

5-nitro-1,10-phenanthroline∮
/mm = 1

∮
/mm = 3

411.9 4784 4.41 0.638 1.5 392.2 3973 2.93 0.100 −2.5
408.9 3676 2.55 0.480 −0.1 387.1 4240 1.92 0.0612 0.9
405.9 4039 2.15 0.366 1.4 382.6 2480 0.71 0.0382 2.0
403.0 4165 1.68 0.276 0.4 377.7 4454 0.75 0.0225 2.7
399.9 4172 1.25 0.204 −0.4 372.3 2679 0.25 0.0123 3.0
396.9 4283 0.95 0.151 −0.7 367.3 10,640 0.56 0.00698 3.5
394.3 4363 0.74 0.115 −1.5 362.4 20,845 0.61 0.00382 1.3
391.0 4053 0.50 0.0834 −1.1 357.7 44,081 0.72 0.00212 −0.4
389.0 4737 0.48 0.0685 −0.7 352.6 141,123 1.24 0.00113 0.7
413.2 4482 4.60 0.712 0.0 390.1 4700 2.85 0.0821 −0.8
410.2 4535 3.55 0.540 −0.3 385.2 4181 1.50 0.0485 −1.9
407.3 4522 2.73 0.416 0.9 380.1 4440 0.97 0.0291 1.9
404.5 4632 2.15 0.319 1.2 375.2 3939 0.50 0.0170 2.4
401.5 4598 1.59 0.237 −0.3 370.3 6481 0.47 0.00962 1.1
398.5 4622 1.20 0.177 −0.4 365.4 12,680 0.51 0.00524 −3.2
395.6 4524 0.89 0.134 0.7 360.4 21,482 0.45 0.00274 −7.7
392.6 4533 0.68 0.101 1.4 355.4 71,928 0.93 0.00168 4.9
390.6 4526 0.54 0.0807 −0.5 388.7 3640 1.89 0.0703 −1.8
418.4 4373 7.15 1.14 0.4 383.8 4280 1.34 0.0421 −1.0
416.5 4213 5.82 0.961 0.4 378.9 4161 0.76 0.0245 −2.1
415.0 4283 5.21 0.846 1.2 374.0 4320 0.47 0.0145 −0.7
424.1 4333 11.01 1.79 −4.6 369.1 6880 0.45 0.00863 3.9
420.7 3227 6.45 1.40 1.0 364.2 12,920 0.47 0.00472 1.1
417.8 3762 5.78 1.07 −0.1 359.3 35,846 0.66 0.00238 −8.2

5-amino-1,10-phenanthroline∮
/mm = 1

∮
/mm = 3

441.9 1731 0.92 0.407 −0.5 402.4 6685 0.44 0.00979 2.7
438.7 3251 1.32 0.312 0.9 399.3 6935 0.33 0.00706 4.6
436.3 4643 1.54 0.254 2.3 396.6 8429 0.30 0.00519 3.4
433.6 1920 0.50 0.200 3.2 393.7 10,468 0.27 0.00375 3.6
427.6 4411 0.66 0.113 2.1 390.5 18,821 0.32 0.00245 −2.9
421.0 5136 0.40 0.0584 0.2 387.1 28,236 0.33 0.00168 −1.9
418.3 5221 0.31 0.0449 0.7 384.4 45,736 0.42 0.00132 5.3
415.4 7575 0.32 0.0319 −5.4 381.4 158,054 1.01 0.000919 5.6
412.1 4566 0.14 0.0229 −4.5 403.6 2880 0.21 0.0106 −2.0
409.0 6392 0.17 0.0193 9.5 400.9 3242 0.17 0.00775 −3.5
406.1 23,930 0.40 0.0123 −5.5 397.6 7321 0.28 0.00567 1.3
403.3 24,877 0.31 0.00906 −5.3 394.6 13,323 0.36 0.00393 −1.8
440.9 1680 0.81 0.373 −0.7 391.8 18,483 0.35 0.00277 −5.1
438.1 1500 0.56 0.286 −1.4 388.7 36,843 0.49 0.00195 −5.5
434.7 2721 0.75 0.210 −2.3 385.8 54,628 0.55 0.00146 −0.5
431.9 1540 0.33 0.161 −2.2 383.9 69,853 0.54 0.00112 −4.3
429.0 1400 0.23 0.123 −2.1
425.9 1680 0.20 0.0920 −2.4
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Table 3. Cont.

T/K ∆t/s ∆m/mg a p/Pa a 100 ∆p/p b T/K ∆t/s ∆m/mg a p/Pa a 100 ∆p/p b

423.2 1521 0.14 0.0706 −2.5
416.9 3481 0.19 0.0416 6.8
413.9 6120 0.25 0.0304 5.2
410.4 8611 0.24 0.0203 1.2
407.7 15,540 0.32 0.0154 0.8
405.1 24,605 0.39 0.0116 0.1

a Estimated uncertainties (Standard uncertainties. Type B): u(T) = 0.2 K, u(m) = 0.01 mg and u(p) = 0.05p. Note
that pressures are deliberately given with one more digit than is significant. b ∆p/p = (p − pcalc)/p, where pcalc is
calculated from the fitting lines reported in Table 5.
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3.3. Sublimation Enthalpies of 1,10-Phenanthrolines Obtained by the Solution
Calorimetry Approach

Determination of sublimation enthalpies of 5-chloro and 5-methyl-1,10-phenanthrolines
is a challenging task since no values are now available in the literature, and it has prompted
us to apply a solution calorimetry method for these compounds. The approach for deter-
mination of evaporation and sublimation enthalpies based on the relationship between
evaporation/sublimation enthalpy of a compound Ai, with its solution ∆solnHm

Ai /S and sol-
vation ∆solvHm

Ai /S enthalpies in a solvent S was developed and validated in [15,16,27,28]:

∆cr
gHm

0 = ∆solnHm
Ai /S − ∆solvHm

Ai /S, (1)

Enthalpies of solution of 5-chloro and 5-methyl-1,10-phenanthroline in benzene were
measured by using solution calorimetry (see Table S1).

Enthalpies of solvation were predicted by using an additive scheme described else-
where [16,28]. According to this approach, solvation enthalpy of substituted 1,10-phenanthrolines
in benzene can be calculated using the following equation:

∆solvHm
Ai /S = ∆solvHm

ArH/S + Σ ∆solvHm
Yi→CH/S + Σ ∆solvHm

Xi→H/S, (2)
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where ∆solvHm
ArH/S is the solvation enthalpy of a parent aromatic compound, ∆solvHm

Xi→H/S

is the contribution to the solvation enthalpy related to a replacement of the hydrogen atoms
by any other groups, and ∆solvHm

Yi→CH/S is a contribution to the solvation enthalpy related
to a replacement of the CH-group in aromatic rings by any other groups. In the case of the
substituted 1,10-phenanthrolines the solvation enthalpies in benzene were calculated as
a sum of solvation enthalpy of phenanthrene (−74.6 kJ·mol−1) [28] and the contribution
related to the replacement of the CH-fragment in these rings by the specific units for 1,10-
phenanthrolines: −N = (−5.4 kJ·mol−1) [16] and the contribution related to the replacement
of the H-atom by the CH3—group (−3.5 kJ·mol−1), and Cl—group (−6.1 kJ·mol−1) [15].

Results of calculations of the ∆cr
gHm

0 values according to Equations (1) and (2) based
on experimental solution enthalpies are given in Table 4.

Table 4. Solution and solvation enthalpies in benzene of substituted 1,10-phenanthrolines and their
sublimation enthalpies at 298.15 K.

Compound
∆solnHm

Ai /S a ∆solvHm
Ai /S b ∆cr

gHm
0 c

kJ·mol−1 kJ·mol−1 kJ·mol−1

5-Cl-1,10-phenanthroline (cr) 19.39 ± 0.11 91.5 ± 1.0 110.9 ± 1.0
5-CH3-1,10-phenanthroline (cr) 18.34 ± 0.20 88.9 ± 1.0 107.2 ± 1.0

a From Table S1. b Calculated according to Equation (2). c Calculated according to Equation (1). Uncertainties of
vaporization/sublimation enthalpy are twice standard deviation [15].

3.4. Standard Molar Sublimation Enthalpies

The p/Pa vs. K/T data obtained from KEML experiments on effusion holes of 1-
and 3-mm diameters have been reported in Figure 3, and the fitted regression parameters
obtained from the least square method, intercepts and slopes (A and B, respectively), along
with the associated uncertainties as standard deviations, are given in Table 5.

Table 5. Regression parameters of the temperature dependence of vapor pressure for the crystalline
5-substituted-1,10-phenanthroline derivatives.

Compound ∆T/K
ln(p/Pa) = A − B/T

Aa B/K a OD b,
∮

/mm

5-Cl-1,10-phenanthroline 332.2–367.1 35.150 ± 0.245 13472 ± 85 1
308.0–339.6 34.986 ± 0.401 13392 ± 129 3

5-CH3-1,10-phenanthroline 331.0–372.3 33.691 ± 0.227 12921 ± 80 1
311.4–338.9 33.932 ± 0.296 12971 ± 96 3

5-CH3O-1,10-phenanthroline 348.5–372.3 40.905 ± 0.480 15864 ± 173 1
325.0–352.6 41.114 ± 0.587 15904 ± 199 3

5-CN-1,10-phenanthroline 377.1–413.7 38.031 ± 0.290 15833 ± 115 1
345.3–378.3 37.624 ± 0.313 15624 ± 113 3

5-NO2-1,10-phenanthroline 389.0–424.1 37.259 ± 0.112 15536 ± 45 1
352.6–392.2 38.004 ± 0.214 15796 ± 80 3

5- NH2-1,10-phenanthroline 403.3–441.9 38.349 ± 0.274 17341 ± 116 1
381.4–403.6 38.736 ± 0.574 17462 ± 225 3

a The associated uncertainties are standard deviations of the fitted parameters. b OD = Orifice diameter.

From the slopes B of these regression lines, the corresponding molar sublimation
enthalpies, at the mean values 〈T〉 of the corresponding experimental temperature ranges,
∆cr

gHm
0(〈T〉) have been obtained as the absolute value of the product of the slope and the

gas constant R. The values are reported in Table 6.
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Table 6. Sublimation enthalpies at the mean experimental temperature, and the corresponding values
adjusted to 298.15 K. Uncertainties are calculated according to the formula: u = 1/n·

√
Σui

2, where ui

represent the uncertainties associated to all terms used to calculate these values and n the number of
replicates (n = 2 in this case). The standard molar sublimation enthalpy recommended values are
displayed in bold.

Compound Method, OD 〈T〉/K
∆cr

gHm
0(〈T〉) Cp,m

0 (cr) b −∆cr
gCp,m

0 ∆cr
gH m

0

(298.15 K) c

kJ·mol−1 J·K−1·mol−1 J·K−1·mol−1 kJ·mol−1

5-Cl-1,10-phenanthroline KEML, 1 mm 349.6 112.0 ± 0.7 221.5 34.0 113.8 ± 0.9
KEML, 3 mm 323.1 111.4 ± 1.1 221.5 34.0 112.2 ± 1.1

average 113.0 ± 0.7
SC a 110.9 ± 1.0

recommended 112.0 ± 0.8

5-CH3-1,10-phenanthroline KEML, 1 mm 353.2 107.4 ± 0.7 229.4 35.2 109.4 ± 0.9
KEML, 3 mm 324.8 107.8 ± 0.8 229.4 35.2 108.8 ± 0.9

average 109.1 ± 0.6
SC a 107.2 ± 1.0

recommended 108.2 ± 0.8

5-CH3O-1,10-phenanthroline KEML, 1 mm 360.4 131.9 ± 1.4 279.2 42.6 134.6 ± 1.7
KEML, 3 mm 338.6 132.2 ± 1.7 279.2 42.6 134.0 ± 1.8

average 134.3 ± 1.2
recommended 134.3 ± 1.2

5-CN-1,10-phenanthroline KEML, 1 mm 395.0 131.6 ± 1.0 235.1 36.0 135.1 ± 1.5
KEML, 3 mm 361.7 129.9 ± 0.9 235.1 36.0 132.2 ± 1.2

average 133.7 ± 1.0
recommended 133.7 ± 1.0

5-NO2-1,10-phenanthroline KEML, 1 mm 405.3 129.2 ± 0.4 248.9 38.1 133.3 ± 1.4
KEML, 3 mm 373.0 131.3 ± 0.7 248.9 38.1 134.2 ± 1.2

average 133.7 ± 0.9
recommended 133.7 ± 0.9

5- NH2-1,10-phenanthroline KEML, 1 mm 422.5 144.2 ± 1.0 214.4 32.9 148.3 ± 1.7
KEML, 3 mm 392.6 145.2 ± 1.9 214.4 32.9 148.3 ± 2.1

average 148.3 ± 1.4
recommended 148.3 ± 1.4

a SC= Solution Calorimetry. b Calculated according to the group additivity procedure proposed by Chickos et al. [29–32]
with group contribution values reported in [31]. c ∆cr

gCp,m
0/J·K−1·mol−1 =−[0.75 + 0.15 Cp,m

0(cr)] [29–32].

In order to adjust the sublimation enthalpy values to the common reference tempera-
ture of 298 K, the following empirical formula proposed by Chickos et al. [29,30] was used:

∆cr
gHm

0(298.15 K)/kJ·mol−1 =

∆cr
gHm

0(〈T〉) + [∆cr
gCp,m

0/J·K−1·mol−1]·(〈T〉/K − 298.15)/1000,
(3)

where [∆cr
gCp,m

0/J·K−1·mol−1] = −[0.75 + 0.15·Cp,m
0 (cr)], being Cp,m

0 (cr), the isobaric
standard molar heat capacities of the crystals at the reference temperature (not available in
the literature). The Cp,m

0 values estimated by the group additivity contribution method
using the functional group values given in [31] and the ∆cr

gCp,m
0 values have been also

reported in Table 6.
The standard molar sublimation enthalpies referenced to T = 298.15 K, ∆cr

gH0
m(298.15 K),

calculated according to Equation (3) are reported in Table 6, along with those obtained
using the solution calorimetry. It is worth noting that in all cases the values derived
from KEML experiments with different effusion orifice diameters are in agreement within
the corresponding error interval. Comparison of the sublimation enthalpies derived by
the solution calorimetry approach and data measured by using KEML (Table 6) shows
good agreement within the boundaries of the experimental uncertainties. Such a good
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agreement between different methods can be considered as evidence of the consistency
of the sublimation data for 5-Cl- and 5-CH3-1,10-phenanthrolines in Table 6. For future
thermochemical calculations, average sublimation enthalpies from two methods should
be used.

The vapor pressure values at the average temperature T = 〈T〉, p(〈T〉), calculated using
the regression parameters A and B displayed in Table 5, are given in Table 7, along with
the molar sublimation entropies at 〈T〉 and p(〈T〉): ∆cr

gSm
0 (〈T〉, p(〈T〉). The standard

molar sublimation entropies values ∆cr
gS0

m(298.15 K, p0), calculated at T = 298.15 K and at
p0 = 0.1 MPa, are determined using the following equation

∆cr
gSm

0(298.15 K, p0)/J· K−1·mol−1 = ∆cr
gSm

0(〈T〉, p〈T〉)/J·K−1·mol−1 +

∆cr
gCp,m

0/J·K−1·mol−1 · ln[(298.15 K/〈T〉)] − R·ln(p0/p〈T〉)
(4)

Table 7. Vapor pressures at the average temperatures, p(〈T〉), sublimation entropies at the mean exper-
imental temperature and pressure, ∆cr

gSm(〈T〉, p(〈T〉), and the corresponding standard sublimation
entropies, enthalpies and Gibbs energies adjusted to 298.15 K.

Compound p(〈T〉)/Pa
∆cr

gSm(〈T〉, p(〈T〉) ∆cr
gSm

0(298.15 K, p◦) ∆cr
gHm

0(298.15 K) ∆cr
gGm

0(298.15 K)

J·K−1·mol−1 J·K−1·mol−1 kJ·mol−1 kJ·mol−1

5-Cl-1,10-phenanthroline 0.0341 a 320.3 ± 2.0 201.9 ± 4.3 113.8 ± 0.9 53.5 ± 2.2
0.00156 b 344.6 ± 3.3 197.9 ± 5.9 112.2 ± 1.1 53.2 ± 2.9

average c 199.9 ± 3.7 113.0 ± 0.7 53.4 ± 1.8
5-CH3-1,10-phenanthroline 0.0554 a 304.2 ± 1.9 190.4 ± 4.1 109.4 ± 0.9 52.6 ± 2.2

0.00247 b 332.0 ± 2.5 189.4 ± 4.5 108.8 ± 0.9 52.3 ± 2.2
average c 189.9 ± 3.0 109.1 ± 0.6 52.5 ± 1.6

5-CH3O-1,10-phenanthroline 0.0446 a 366.0± 4.0 252.5 ± 7.5 134.6 ± 1.7 59.3 ± 3.9
0.00287 b 390.5 ± 4.9 251.5 ± 8.7 134.0 ± 1.8 59.0 ± 4.3

average c 252.0 ± 5.7 134.3 ± 1.2 59.1 ± 2.9
5-CN-1,10-phenanthroline 0.1286 a 333.2 ± 2.4 230.6 ± 5.9 135.1 ± 1.5 66.4 ±3.3

0.00378 b 359.2 ±2.6 224.1 ± 5.4 132.2 ± 1.2 65.4 ± 2.8
average c 227.3 ± 4.0 133.7 ± 1.0 65.9 ± 2.2

5-NO2-1,10-phenanthroline 0.3419 a 318.6 ± 0.9 225.5 ± 4.8 133.3 ± 1.4 65.9 ± 2.9
0.0130 b 352.2 ± 1.8 228.8 ± 4.6 134.2 ± 1.2 66.0 ± 2.5

average c 227.3 ± 3.3 133.7 ± 0.8 66.0 ± 1.9
5- NH2-1,10-phenanthroline 0.0679 a 341.2 ± 2.3 234.6 ± 6.5 148.3 ± 1.7 78.3 ± 3.6

0.00322 b 369.8 ± 4.8 235.4 ± 9.2 148.3 ± 2.1 78.1 ± 4.9
average c 235.0 ± 5.6 148.3 ± 1.4 78.2 ± 3.0

a OD = 1 mm (series B); b OD = 3 mm (series A); c Uncertainty of the averages of the standard sublimation
entropies, enthalpies and Gibbs energies (uav) are calculated by combining the single uncertainties of the two
series (uA and uB, respectively) according to the following expression: uav = 1

2 ·[(uA)2 + (uB)2] 0.5.

The values of both the standard molar sublimation entropies and Gibbs energy,
∆cr

gS0
m(298.15 K, p0) and ∆cr

gG0
m(298.15), respectively, are listed in Table 7, while the

uncertainties due to the adjustment to 298 K were taken, as suggested in the literature [31],
as one third of the correction itself.

The analysis of Figure 3 and Table 6 shows several interesting results. First, the volatili-
ties of the 5-substituted 1,10-phenanthrolines here under study are very different depending
on the substituent. In particular, the volatility of the amino-substituted compound is much
lower than the cyano- and nitro-derivatives (whose vapor pressures are very similar) and,
even more, lower than the methoxy-, methyl- and chloro- ones. In the temperature range
explored in our experiments, the presence of the amino group leads to a vapor pressure
by 20 to 40 times lower compared with cyano- and nitro-substituted 1,10-phenanthrolines.
This difference is in large part associated with the high enthalpy of sublimation (Table 6),
most probably due to the hydrogen bonds established by the amino group in the crystal
phase, as observed by X-ray diffraction in aniline [33].

In the explored temperature range, the vapor pressure of the methoxy-substituted
derivative is about 14–16 times higher than that of the corresponding cyano- and nitro-
compounds, despite a very similar sublimation enthalpy. In this case the difference in
volatility is mainly due to the entropic term, which is significantly higher for 5-methoxy-
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1,10-phenanthroline. In the case of the chloro-and methyl-derivative, which are the most
volatile compounds in this group, the lowest enthalpy of sublimation largely overcomes the
effect of the low entropy change. It is interesting to wonder to what extent the differences
between the sublimation entropies of the six compounds (Table 7) may be read in the
light of the rotation of the group in position five, which is expected to be enhanced in
the gas phase compared to the crystal [34]. Indeed, this can account for the low value
of the chloro-derivative, whereas the fairly large value of the cyano-derivative calls for a
different explanation. In the case of the nitro- group, the partially double nature of the C–N
bond could lower the gain in the rotational entropy compared to the methoxy-substituted
compound, making the latter significantly more volatile, as mentioned above.

4. Conclusions

The Knudsen Effusion Mass Loss (KEML) technique was used for the first time to
determine the vapor pressures of the six 5-substituted 1,10-phenanthrolines (with the
following substituents: Cl, CH3, CN, OCH3, NH2, NO2. The molar sublimation enthalpies
at the corresponding average temperature 〈T〉, were calculated from the temperature
dependencies of vapor pressure. These values were adjusted to 298.15 K using a well
known empirical procedure reported in the literature, and the standard (p0 = 0.1 MPa)
molar sublimation enthalpies ∆cr

gHm
0(298.15 K) were compared with those determined

using solution calorimetry, according to a procedure recently proposed for validation
purpose. Good agreement was found between the values derived by the two different
approaches. Finally, the standard molar entropies and Gibbs energies of sublimation were
also derived at T = 298.15 K.

The volatility of the six compounds was found to vary over a range of three orders of
magnitude going from the less volatile amino derivative to the most volatile methyl and
chloro-substituted compounds. The observed trend of volatility amino < cyano ∼= nitro
< methoxy < methyl ∼= chloro parallels, as expected, that of the corresponding sublimation
enthalpies, with the exception of the methoxy derivative, whose volatility is one order of
magnitude greater than that of the cyano and nitro compounds, in spite of a very similar
sublimation enthalpy. An explanation of the increased volatility of the methoxy compound
can be found in its larger sublimation entropy, possibly related in turn to the increase of the
rotational entropy of the substituent group from the crystal to the gas phase. Indeed, the
more the substituents are free to rotate in the gas phase compared to the crystal phase, the
larger will be the related entropy gain due to sublimation. This might explain the low value
of the sublimation entropy of the chloro-derivative and the larger values of the methoxy-
and amino- compounds. A lower rotational gain could be speculated for the nitro- group
due to the partially double nature of C–N bond that hinders the rotation of the substituent
group of the molecule in the gaseous phase.
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