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Abstract: Non-orthogonal multiple access (NOMA) is a promising technology for future beyond-5G
wireless networks, whose fundamental information-theoretic limits are yet to be fully explored. Con-
sidering regular sparse code-domain NOMA (with a fixed and finite number of orthogonal resources
allocated to any designated user and vice versa), this paper extends previous results by the authors
to a setting comprising two classes of users with different power constraints. Explicit rigorous
closed-form analytical inner and outer bounds on the achievable rate (total class throughput) region in
the large-system limit are derived and comparatively investigated in extreme-SNR regimes. The inner
bound is based on the conditional vector entropy power inequality (EPI), while the outer bound
relies on a recent strengthened version of the EPI. Valuable insights are provided into the potential
performance gains of regular sparse NOMA in practically oriented settings, comprising, e.g., a
combination of low-complexity devices and broadband users with higher transmit power capabilities,
or combinations of cell-edge and cell-center users. The conditions for superior performance over
dense code-domain NOMA (taking the form of randomly spread code-division multiple access), as
well as a relatively small gap to the ultimate performance limits, are identified. The proposed bounds
are also applicable for the analysis of interference networks, e.g., Wyner-type cellular models.

Keywords: non-orthogonal multiple-access; entropy power inequality; sparse code-domain NOMA

1. Introduction

Non-orthogonal multiple access (NOMA) is a key enabler in the design of future
overloaded beyond-5G communication systems with many more designated users than
available physical resources, precluding the conventional orthogonal multiple access (OMA)
paradigm [1–4] (see also [5] for a very recent technology review). The main potential ap-
peal of NOMA over OMA stems from either supporting more simultaneous users or,
in lieu, facilitating higher user throughputs when orthogonality is practically unsustainable.
NOMA technologies generally comprise two main manifestations, power-domain NOMA
and code-domain NOMA. Power-domain NOMA essentially relies on direct superposi-
tion of the transmitted signals, successive interference cancellation (SIC) at the receivers
and appropriate power allocation to different users in order to achieve desired perfor-
mance objectives [1,2,6,7]. Under the code-domain NOMA paradigm, the users’ signals
are distinguished by different spreading signatures chosen to facilitate efficient multiuser
detection (MUD) at the receivers (see, e.g., [2,8]). In particular, sparse NOMA, or low-
density code-domain (LDCD) NOMA, has gained considerable interest in recent years
due to its appealing attributes. Relying on sparse spreading signatures, sparse NOMA
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potentially facilitates enhanced spectral efficiency with practical receiver implementa-
tion based on sparsity exploiting iterative message passing algorithms (MPAs), similarly
to the ones empowering the efficient decoding of low-density parity-check (LDPC) codes.
The interested reader is referred to the insightful surveys [1,2] for details about the utiliza-
tion of MPAs in NOMA, along with their concrete application for sparse NOMA [9–11],
including sparse-code multiple access (SCMA) [12]. Different designs of sparse spreading
signatures and their impact on MUD error-rate performance are discussed, e.g., in [11,13,14]
and references therein.

Transmission schemes combining power-domain NOMA and SCMA were also recently
proposed, e.g., in [15,16] for the cellular downlink channel and in [17–21] for the uplink
channel. Therein, the main objective is to identify efficient centralized algorithms for joint
resource and power allocation, that attempt to maximize the SCMA achievable throughput
under independent Rayleigh fading and certain simplifying assumptions (viz., independent
Gaussian signaling over each utilized physical resource, full synchronization and perfect
channel state information). Fairness and quality-of-service constraints may also be incor-
porated into the optimization algorithm (e.g., [19–21]). The performance of the proposed
algorithms is then evaluated by means of numerical simulations. More involved network
configurations have also been considered recently, e.g., system models encompassing relays
(see [22] and references therein for an exhaustive literature survey). Relaying may either
appear in the form of dedicated network elements, e.g., [22,23] or, alternatively, by means
of user cooperation, e.g., [24–27]. In this framework, focusing on power-domain NOMA
with SIC, the notion of virtual full-duplex (VFD) relaying [28] has gained particular interest
as means to circumvent the implementation challenges of true full-duplex operation; see,
e.g., [22,25–27]. The impact of imperfect SIC and residual inter-relay interference in this
framework was also recently considered in [26].

Notwithstanding their great practical promise and potential, sparse NOMA techniques
often pose serious analytical challenges and their information-theoretic performance limits
are not easily tractable even in the simplest settings. Typically, tools from random matrix
theory or statistical physics are harnessed for their analysis [29–32], while considering the
asymptotic large-system limit, where both the number of users and the number of available
resources grow large, while retaining a fixed ratio (see, e.g., [33–35]). The obtained results
typically yield excellent approximations for the expected performance with finite (and quite
moderate) system dimensions [29,30].

Sparse NOMA is dubbed: regular when a fixed (and finite) number of orthogonal
resources is allocated to any designated user and each resource is used by a fixed number of
users; irregular when the respective numbers are random and only kept fixed on average [33].
In the literature, one can also find a partly regular version of the sparse NOMA setup where
each user occupies a fixed number of resources and each resource is used by a random, yet
fixed on average, number of users (or vice versa) [34,36].

In a recent line of works by the authors [37–39], the particular manifestation of code-
domain NOMA known as regular sparse NOMA has been investigated and its asymptotic
spectral efficiency has been derived in closed form [38,39] (see Section 2 for a precise charac-
terization of the underlying asymptotic large-system limit and [38,39] for a discussion on
what distinguishes this particular setting from previous analyses). Therein, a generic setup
of a (non-fading) Gaussian vector multiple-access channel (MAC) with equal-power users
was considered, representing the case of a single-cell uplink model with fully coordinated
grant-based access, and the scheme was analytically proven to substantially decrease the
gap to the ultimate capacity limit of overloaded systems. Furthermore, regular sparse
NOMA was proven by the authors to outperform the dense code-domain NOMA alterna-
tive [40,41], along with its irregular and partly regular sparse counterparts [33,34]. Hence,
regular sparse NOMA seems to exhibit a rare combination of information-theoretic superi-
ority and computational feasibility (dense code-domain NOMA is operationally equivalent to
randomly spread code-division multiple access (RS-CDMA) [40,41], for which achieving
the optimal spectral efficiency becomes prohibitively complex in large systems [42]). However,
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analyzing the merits of regular sparse NOMA beyond the generic equal-power Gaussian
vector MAC setting is still a challenging, yet of utmost importance, open problem, which
does not seem to lend itself to closed-form characterization, as in [38,39].

Motivated by this noteworthy challenge, the current paper takes a step further towards
a generalization of the fundamental result of [38,39]. To this end, the focus remains on reg-
ular sparse NOMA within a single-cell Gaussian uplink (MAC) model, but the single-class
information-theoretic analysis of [37–39] is extended to a looser, yet more realistic, setting
comprising two user classes distinguished by their received powers. Again, the large-system
limit is considered and our main contribution is the derivation of closed-form bounds on the
achievable class-rate (total throughput) region, which are both insightful and analytically
tractable. An inner bound is first derived based on the standard conditional vector entropy
power inequality (EPI) [43]. A derivation of an outer bound follows, while relying on a
recent strengthened version of the EPI by Courtade [44,45]. Both bounds are tight with
respect to the individual achievable class-throughput constraints and only differ in the
achievable sum-rate (total throughput) constraint. The key tool in the derivations is a noise-
split “trick”, that, when combined with the EPI, induces closed-form bounds expressed
in terms of single-class achievable throughputs [38,39]. A simplified outer bound, which
does not rely on the EPI, is then presented for load-symmetric settings (under some mild
technical assumptions). This bound turns out to be tighter in certain cases. An in-depth
elucidative investigation of the corresponding lower and upper bounds on the achievable
sum rate in extreme-SNR regimes is also provided, which, by means of appropriate ap-
proximations [41], identifies conditions under which the bounds are useful and a superior
performance over dense code-domain NOMA is guaranteed. Conditions for attaining
a relatively small gap to the ultimate performance limits are also discussed.

Our contribution provides valuable insights into the potential performance gains of
regular sparse NOMA in several timely use cases of interest. One particular example
represents a 5G-and-beyond scenario, where the two user classes respectively correspond,
say, to low-complexity devices with stringent power constraints (e.g., Internet-of-Things
applications) and to broadband users with higher transmit power capabilities. Another ap-
plicable use case is a single cell with users located at the extremes of either the cell center
or the cell edge. Our analysis is also applicable to a compelling combination of power-
domain NOMA [2,6] and code-domain NOMA, which has only recently started to attract
attention in the literature [15–21], as discussed above. Accordingly, the corner points of
the achievable region bounds correspond to a SIC scheme between the two user classes,
while incorporating near-optimal joint iterative decoding (MPA) within each class. In fact,
by this interpretation, our analysis provides, in a sense, an analytical benchmark for the
setting considered in [20] (see also [18]), under the simplifying assumptions of non-fading
channels and full symmetry among the users in each user class. Note that, in the absence of
fading, the corresponding regular SCMA achievable sum rate, while assuming independent
Gaussian signaling over each utilized resource, trivially coincides with the Cover–Wyner
sum capacity (see, e.g., [43] and Section 3.3). Hence, our analytical bounds quantify the
gap from the ultimate performance limit induced by employing regular sparse spreading
signatures and may serve as reference for practical schemes that aim to approach the
sum-capacity limit using the SCMA paradigm, e.g., [17–21]. Note that, in the presence of
fading, characterizing the achievable rate region of the two-user-class system considered
in this paper is still a formidable open problem yet to be explored; hence, a direct and
explicit comparison with practical achievable sum rates reported in works, such as [20],
cannot be performed at this stage. Yet another applicable model is a two-cell interference
network, where the two user classes represent, respectively, the local cell users and the
users operating in the adjacent interfering cell. This may be further extended, e.g., to
Wyner-type cellular models with single-cell processing [46–49].

This paper is organized as follows: Section 2 describes the underlying system model
and the random graph models employed to construct the regular sparse spreading signa-
tures. Section 3 presents a general statement of the class-throughput achievable region
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and the corresponding closed-form analytical inner and outer bounds. Section 4 is de-
voted to a comparative extreme-SNR characterization of the lower and upper bounds
on the total achievable sum rate. Illustrative numerical results are provided in Section 5.
Finally, Section 6 ends this paper with some concluding remarks. Detailed proofs and some
technical observations are deferred to the appendices.

2. System Model

Notation: We use boldface lower-case letters to denote vectors and boldface uppercase
letters to denote matrices. [M]ij denotes the (i, j)-th entry of the matrix M. MT denotes
the transpose of M, while M† denotes the corresponding conjugate (Hermitian) transpose.
⊗ denotes the Kronecker product. IN denotes the N-dimensional identity matrix. CN (µ, Σ)
designates the distribution of a proper circularly symmetric complex Gaussian random
vector with mean µ and covariance matrix Σ. δx designates the probability distribution

of a single mass at x. Equality in distribution is denoted by d
=, stating that the distribution

of the random variables on both sides of the equality sign is the same. E{·} denotes
statistical expectation and EX{·} designates that the expectation is taken with respect to
the distribution of the random variable X. h(·) denotes differential entropy and I(·; ·)
denotes mutual information. For any ε ∈ (0, 1), we use the notation ε̄ , 1− ε. Base-2
logarithms are used throughout this paper unless otherwise stated (in which case the base
of the logarithm is explicitly designated). For the sake of clarity, we use ln(·) to denote the
natural logarithm.

We consider a MAC, representing a single-cell uplink, where the users belong to either
of two different classes distinguished by their received powers (henceforth referred to as
“Class 1” and “Class 2”). Within each class, all users are assumed to be received at the
same power level. The users’ signals are multiplexed over N shared orthogonal dimensions
(resources), which may represent, e.g., orthogonal time–frequency slots. However, it is
important to emphasize here that the setting is quite general and applies to any orthogonal
coordinate system; therefore, the dimensions are, by no means, restricted to the time–
frequency domain. Let K1 and K2 denote the number of users in Class 1 and Class 2,
respectively, and let βi , Ki/N, i = 1, 2 denote the respective loads (users per resource).
The total number of users is denoted by K , K1 + K2 and the total system load reads β ,
K/N = β1 + β2.

Focusing on a generic non-fading Gaussian channel model, the N-dimensional re-
ceived signal at some arbitrary time instance reads

y =
√

snr1
d A1x1 +

√
snr2

d A2x2 + z , (1)

where xi, i = 1, 2, is a Ki-dimensional complex vector comprising the coded symbols
of the users in Class i. Assuming Gaussian signaling, full symmetry, fixed powers and
no cooperation among encoders corresponding to different users, the input vector xi is
distributed as xi ∼ CN (0, IKi ). The matrix Ai represents the N × Ki sparse signature matrix
of Class-i users, where the kth column represents the spreading signature of user k in Class
i. The non-zero entries of Ai designate the corresponding user-resource mapping, namely,
user k in Class i occupies resource n if [Ai]nk 6= 0. Specifically, we adhere to the regular
sparse NOMA paradigm [37–39], where, for each Class i, i = 1, 2, due to the sparsity of Ai,
only a few of the users’ signals collide over any given orthogonal resource. The regularity
assumption generally dictates that each column of Ai (respectively, row) has exactly di ≥
2 ∈ N+ (respectively, βidi) non-zero entries. However, for notational simplicity, we assume
henceforth that d1 = d2 = d, while noting that extension of the analysis to the case where A1
and A2 have a different fixed number of non-zero column entries is straightforward (hence
omitted). Therefore, d takes the role of the system’s sparsity parameter. We assume here that
βi is chosen so that βid ≥ 2 ∈ N+, i = 1, 2, in order to avoid degenerate settings. The non-
zero entries of Ai are assumed to be independent and identically distributed (i.i.d.), but may
otherwise arbitrarily reside on the unit circle in the complex plane, in complete adherence
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to [38,39]. Thus, the normalization in (1) ensures that the columns of 1√
d

Ai have unit norm.
We also assume here that the signature matrices A1 and A2 are perfectly known at the
receiving end and uniformly chosen, respectively, randomly and independently per each
channel use and each user class i, from the set of (βid, d)-regular matrices. This assumption
is only introduced here for the sake of concreteness and the setting, in fact, generalizes
verbatim to the case where the signature matrix selection process is stationary and ergodic.
Finally, z ∼ CN (0, IN) denotes the N-dimensional circularly symmetric complex additive
white-Gaussian-noise (AWGN) vector at the receiving end. Thus, the parameter snri in (1),
i = 1, 2, designates the received signal-to-noise ratio (SNR) of each of the users in Class i.

A key additional underlying assumption, which follows [38,39], is that the signature
matrices {Ai}i=1,2 can be associated with the adjacency matrices of certain random (βid, d)-
semiregular bipartite (factor) graphs {Ai}i=1,2, with special properties to be stated next.
To this end, we first introduce the following two definitions.

Definition 1 (Locally Tree-Like Graphs [50,51]). Let G? denote the space of rooted isomorphism
classes of rooted connected graphs. A sequence of random graphs Gn, n ≥ 1, in the space G?, with
a root vertex vn chosen uniformly at random from the vertex set of Gn, is said to converge locally
(weakly) to a certain random rooted tree (T , o), if, for each r ≥ 0, the sequence of balls BGn

r (vn)
with radius r (in graph distance) around vn converges in law to BTr (o) in the space G?. A more
precise mathematical definition can be found, e.g., in [50,51].

Definition 2 (Bipartite Galton–Watson Tree (BGWT) [50]). A Galton–Watson tree (GWT) with
degree distribution F∗ is a rooted random tree obtained by a Galton–Watson branching process,
where the root has offspring distribution F∗ and all other genitors have offspring distribution F,
where (assuming ∑k kF∗(k) < ∞)

F(k− 1) =
kF∗(k)

∑k kF∗(k)
, k ≥ 1 . (2)

A BGWT with degree distribution (F∗, G∗) and parameter p is obtained from a Galton–Watson
branching process with alternated degree distribution. Namely, with probability p, the root has
offspring distribution F∗, all odd generation genitors have an offspring distribution G (related
to G∗ analogously to F) and all even generation genitors (apart from the root) have an offspring
distribution F. Similarly, with probability 1− p, the root has offspring distribution G∗ and the
offspring distributions of all odd and even generation genitors are switched. See [50] for a more
elaborate discussion.

We now further assume that the random graphs {Ai}i=1,2 associated with the sig-
nature matrices are locally tree-like and converge in the large-system limit to BGWTs
having degree distribution (δβid, δd) and parameter 1

1+βi
as a weak limit, where i = 1, 2.

The term “large-system limit” refers here to the regime where N, K1, K2 → ∞ while fixing
Ki/N = βi, i = 1, 2. We use henceforth the shorthand notation “N → ∞” to designate this
limiting regime.

From a practical perspective, it is important to note here that the aforementioned
locally tree-like property is valid, e.g., for regular LDPC codes [50,52] and it essentially
implies that, for large dimensions, short cycles are rare, which facilitates the use of iterative
near-optimal multiuser detection algorithms (while applying MPAs over the underlying
factor graphs). Moreover, the sparse signature matrices can in fact be constructed as
weighted parity-check matrices of regular LDPC codes, which we, in fact, employ us-
ing Gallager’s construction [53] to produce the finite dimensional simulation results in
Section 5 (see therein).
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3. The Achievable Rate Region
3.1. Preliminaries

For the sake of completeness, we first review the main result of [38,39] (adapted
to the current system model), which constitutes the basis for the analysis in the sequel. Let
us consider a single-class channel model (cf. ( 1)) as follows:

y =
√

snri
d Aixi + z , i = 1, 2 . (3)

Theorem 1 ([38], Theorem 3). Let Ai, i = 1, 2, be a sparse random N × Ki matrix with exactly
2 ≤ d ∈ N+ < ∞ (respectively, 2 ≤ βid ∈ N+ < ∞) non-zero entries in each column (respectively,
row), independent and identically arbitrarily distributed over the unit circle in C. Assume that the
(βid, d)-semiregular bipartite graph Ai associated with Ai is locally tree-like with the limiting
properties specified in Section 2. Let α , d−1

d and γi ,
βid−1

d , i = 1, 2. Further, let β̃i ,
α
γi

and

ζi ,
βid
γi

, i = 1, 2. Then, the normalized conditional input–output mutual information

1
N I(xi; y|Ai) =

1
NE{log det(IN + snri

d AiA†
i )} , i = 1, 2, (4)

converges, as N → ∞, to

Ci(snri) , Copt(snri, βi, d) = (βi − 1) log
(
1 + αsnri − 1

4F(γisnri, β̃i)
)

+ βi(d−1)+1
2 log

(
1 + (γi + α)snri − 1

4F(γisnri, β̃i)
)

− βi(d−1)−1
2 log

(
(1+βid snri)

2

G(γisnri ,ζi ,β̃i)

)
, i = 1, 2 ,

(5)

where (cf. [40])

F(x, z) ,
(√

x(1 +
√

z)2 + 1−
√

x(1−
√

z)2 + 1
)2

, (6)

and, for x, y, z ∈ R+, y ≥ (1 +
√

z)2,

G(x, y, z) ,

(√
(y−(1−

√
z)2)(x(1+

√
z)2+1)−

√
(y−(1+

√
z)2)(x(1−

√
z)2+1)√

y−(1−
√

z)2−
√

y−(1+
√

z)2

)2

. (7)

Let Ri denote the normalized spectral efficiency (total throughput) in bit/sec/Hz
of the users in Class i, i = 1, 2. LetR denote the achievable region of rate pairs (R1, R2) for
the channel (1). Then, by the standard properties of the MAC capacity region (e.g., [43]), it
follows that

R =
{
(R1, R2) : R1 ≤ 1

N I(x1; y|x2, {Ai}i=1,2),

R2 ≤ 1
N I(x2; y|x1, {Ai}i=1,2),

R1 + R2 ≤ 1
N I(x1, x2; y|{Ai}i=1,2)

}
.

(8)

In the large-system limit, the two constraints on the (class) individual rates can be
characterized explicitly and in closed form by means of Theorem 1. Namely, the two
bounds converge to the following limits:

1
N I(xi; y|xj, {Ai}i=1,2) −−−−−−−−−−→N→∞; i,j=1,2; i 6=j

Ci(snri). (9)

Note that Ci(snri) specifies, in the large-system limit, the normalized spectral efficiency
with optimum processing in bit/sec/Hz of the users in Class i, given the signals trans-
mitted by the users in Class j, j 6= i [38,39]. However, unfortunately, a corresponding
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limiting result for the maximum achievable sum rate 1
N I(x1, x2; y|{Ai}i=1,2) is still missing.

Furthermore, the limit does not seem amenable to closed-form characterization. Therefore,
we proceed, in the following sections, by deriving closed-form analytical lower and upper
bounds on this quantity in the large-system limit. These bounds produce, in turn, corre-
sponding inner and outer bounds on the achievable regionR which, as implied by (9), are
tight in their individual rate constraints.

3.2. Inner Bound

Proposition 1. Let us fix κ1 = κ ∈ (0, 1), κ2 = κ̄, and letRib be defined as

Rib =
{
(R1, R2) : R1 ≤ C1(snr1),

R2 ≤ C2(snr2),

R1 + R2 ≤ log
(
κ12

C1

( snr1
κ1

)
+ κ22C2

( snr2
κ2

))}
.

(10)

Then, the rate regionRib is achievable for the channel (1) in the large-system limit, as N → ∞.

Proof. See Appendix A.

As shown in Appendix A, the parameter κ is introduced by a noise-split step re-
quired for applying Theorem 1 (see (A2)). The inner bound (10) can then be tightened
by maximizing the sum-rate constraint over κ ∈ (0, 1) (which can be easily accomplished,
e.g., by a straightforward grid-search over (0, 1)). As a simple example, consider the ex-
treme case where the receive SNR of either of the user classes vanishes. In such case,
the optimized sum-rate constraint can be set arbitrarily close to the actual achievable sum
rate. Specifically, assume, without loss of generality, that snr2 → 0 (with snr1 and κ fixed).
Clearly, in such case, the achievable throughput of Class 2 users trivially satisfies R2 → 0.
The sum-rate constraint in (10) then approaches the limit

log
(

κ12
C1

( snr1
κ1

)
+ κ22C2

( snr2
κ2

))
−−−−→
snr2→0

log
(

κ2C1

( snr1
κ

)
+ 1− κ

)
−−→
κ→1

C1(snr1) ,
(11)

which is indeed the maximum achievable sum rate in this extreme setting. In fact, the opti-
mization with respect to κ turns out to be rather crucial, since poor choices of κ may lead
to cases where not all rate constraints in (10) are active and the inner bound no longer
specifies a pentagon in the (R1, R2)-plane. As indicated by numerical investigations, this
may occur in underloaded settings, which are of lesser interest in view of the expected use
cases of the underlying NOMA setting.

3.3. Outer Bound

Proposition 2. Let us fix µ1, µ2 ∈ (0, 1) such that µ3 , 1− µ1 − µ2 > 0, let µ̄1 , 1− µ1,
µ̄2 , 1− µ2, and letRob satisfy

Rob =
{
(R1, R2) : R1 ≤ C1(snr1),

R2 ≤ C2(snr2),

R1 + R2 ≤ log
(

µ̄1µ̄22
C1(

snr1
µ̄2

)+C2(
snr2
µ̄1

) − µ1µ22
C1(

snr1
µ1

)+C2(
snr2
µ2

)
)

− log µ3

}
.

(12)

Then, the rate regionRob includes the achievable region for the channel (1) in the large-system limit,
as N → ∞.
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Proof. See Appendix B.

Analogously to the proof of Proposition 1, a noise-split step introducing the parameters
{µ1, µ2} is required for the applicability of Theorem 1 (see (A13)–(A15)) and the outer
bound (12) can be tightened by minimizing the sum-rate constraint over the choice of µ1,
µ2 ∈ (0, 1), while satisfying 1− µ1 − µ2 > 0. Here as well, a proper choice of µ1 and µ2 is
crucial, as, otherwise, the sum-rate constraint may turn out too loose and become inactive.

To obtain more insight, it is also useful to consider the Cover–Wyner region, specifying
the ultimate MAC capacity region (without any random-spreading constraint). In the current
setting, the Cover–Wyner region reads [40]

RCW =
{
(R1, R2) : R1 ≤ log(1 + β1snr1) ,

R2 ≤ log(1 + β2snr2) ,

R1 + R2 ≤ log(1 + β1snr1 + β2snr2)
}

,

(13)

and constitutes a trivial outer bound on the achievable region. A comparison to (13) can
thus be used to identify settings where the outer bound of Proposition 2 is indeed useful.
Note that (13) is also, in fact, the achievable region with a corresponding idealized SCMA
scheme, where each user transmits independent Gaussian symbols over each of the utilized
orthogonal resources; see, e.g., [20].

3.4. Alternative Outer Bound for Symmetric Loading

To complete the characterization of the achievable region, we further introduce an al-
ternative outer bound, which applies to a particular symmetric construction of the signature
matrices (henceforth dubbed, for conciseness, “symmetric construction”). The bound relies
on a simple upper bound on the maximum achievable sum rate 1

N I(x1, x2; y|{Ai}i=1,2). Let

us consider the case where K1 = K2 = K
2 and thus β1 = β2 = β

2 . With some abuse of
notation, let us assume now that, in addition to the underlying assumptions of Theorem 1,
the signature matrices A1 and A2 are constructed such that the N × K matrix A , [A1 A2]
can be associated with the adjacency matrix of a locally tree-like (βd, d)-semiregular bi-
partite graph A (see Definitions 1 and 2). Additionally, let A have a BGWT with degree
distribution (δβd, δd) and parameter 1

1+β as a weak limit. Analogously to Section 2, we
assume here that the pair of matrices (A1, A2) is randomly chosen uniformly and indepen-
dently per each channel use from the set of matrices satisfying the above properties. Then,
the following proposition holds.

Proposition 3. Let the two user classes have equal sizes, corresponding each to a load β
2 . Let the sig-

nature matrices A1 and A2 be chosen according to the “symmetric construction”. Let Rob
sym be

defined as

Rob
sym =

{
(R1, R2) : R1 ≤ Copt(snr1, β

2 , d) ,

R2 ≤ Copt(snr2, β
2 , d) ,

R1 + R2 ≤ Copt( snr1+snr2
2 , β, d)

}
,

(14)

where Copt(·, ·, d) is specified in (5). Then, the rate regionRob
sym includes the achievable region for

the channel (1) in the large-system limit, as N → ∞.

Proof. Focusing on the sum-rate constraint, the underlying assumptions of the “symmetric
construction” imply that the maximum achievable sum rate satisfies
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1
N I(x1, x2; y|{Ai}i=1,2) =

1
NE
{

log
(

det
(

IN + snr1
d A1A†

1 +
snr2

d A2A†
2

))}
= 1

NE
{

log
(

det
(

IN + A(D⊗ I K
2
)A†

))}
(a)
= 1

NEA,Π

{
log
(

det
(

IN + A
((

ΠDΠT
)
⊗ I K

2

)
A†
))}

,

(15)

where

D =
1
d

[
snr1 0

0 snr2

]
, (16)

Π is a random permutation matrix satisfying

Π =

I2 w.p. 1
2 ,[

0 1
1 0

]
w.p. 1

2 ,
(17)

and (a) follows by symmetry with respect to A1 and A2. Next, applying Jensen’s inequality,
while relying on the convexity of the log det(·) function, we obtain

1
N I(x1, x2; y|{Ai}i=1,2)

= 1
NEA

{
EΠ

{
log
(

det
(

IN +A
((

ΠDΠT
)
⊗ I K

2

)
A†
))}∣∣∣A = A

}
≤ 1

NEA

{
log
(

det
(

IN + A
((

EΠ

{
ΠDΠT

})
⊗ I K

2

)
A†
))}

= 1
NEA

{
log
(

det
(

IN + snrav
d AA†

))}
−−−→
N→∞

Copt(snrav, β, d) ,

(18)

where we define the average SNR as

snrav , β1
β snr1 +

β2
β snr2 , (19)

yielding snrav = snr1+snr2
2 for the “symmetric construction”. The limit in (18) follows

from Theorem 1. Combining (18) with (9) finally yields (14), which completes the proof.

4. Extreme-SNR Characterization

To complement the analytical characterization of the achievable rate region by means
of the bounds in Propositions 1–3, we focus on the achievable sum rate and provide,
in this section, an in-depth investigation of the respective bounds in extreme-SNR regimes.
Although all bounds take an explicit closed form, the corresponding expressions are still
rather involved. Therefore, the main advantage of the extreme-SNR characterization is
that, by means of certain simplifying approximations (appropriate for extreme SNRs), it
leads to valuable insights that are otherwise hard to obtain, as is shown in the sequel.
In particular, this characterization demonstrates the impact of the parameters κ, µ1, µ2 used
in Propositions 1 and 2 on the tightness of the respective lower and upper bounds on
the achievable sum rate. For symmetric settings (see Section 3.4), it further allows us to
identify which of the two upper bounds on the achievable sum rate stated in Propositions 2
and 3 is tighter; hence, the corresponding outer bound is more useful for characterizing
the achievable region in extreme-SNR regimes. For the low-SNR regime, we specify
conditions under which the former bound of Proposition 2 is tighter, while, for the high-
SNR regime, it turns out that Proposition 3 generally provides a tighter bound in symmetric
overloaded settings.
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Our analysis examines the achievable sum rate as a function of snrav (the average
SNR), as defined in (19). Furthermore, without loss of generality, we assume henceforth
that snr2 = α̃snr1 for some α̃ ∈ (0, 1). This immediately implies (cf. (19)) that

snr1 = χsnrav , snr2 = α̃χsnrav , (20)

where

χ , β
β1+α̃β2

. (21)

Starting with the low-SNR regime, the achievable sum rate is approximated as

Csum ≈ S0
3 dB

(
Eb
N0
|dB −

(
Eb
N0

)
min
|dB

)
, (22)

where S0 denotes the low-SNR slope,
(

Eb
N0

)
min

is the minimum system average Eb
N0

that en-

ables reliable communications and 3 dB , 10 log10 2 [41]. The average SNR and Eb
N0

are
related via

βsnrav = Csum(snrav)
Eb
N0

. (23)

Let Csum(snrav) denote the achievable sum rate expressed as a function of snrav in nats/channel
use per dimension. Then, the minimum Eb

N0
that enables reliable communications and the

low-SNR slope read [41] (
Eb
N0

)
min

= β ln 2
Ċsum(0)

, (24)

S0 = − 2[Ċsum(0)]
2

C̈sum(0)
, (25)

where Ċsum(0) and C̈sum(0) denote the first and second derivatives at zero of Csum(snrav)

(note that (22), (24) and (25) tacitly assume that the minimum Eb
N0

corresponds to the point
of vanishing rate; a short discussion on this aspect is provided in Appendix D).

Turning to the high-SNR regime, we approximate the achievable sum rate as [41]

Csum(snrav) ≈ S∞(log snrav −L∞) , (26)

where S∞ denotes the high-SNR slope (multiplexing gain) and L∞ denotes the high-SNR
power offset. Note that we use here a slightly different high-SNR approximation than the
one originally proposed in [41], in the sense that it relies on approximating the sum rate
as a function of snrav (rather than Eb

N0
); consequently, the resulting high-SNR power offset

differs by a log β term when compared to [41].
In the following sections, we employ the above approximations for the lower and

upper bounds on the achievable sum rate and derive the corresponding extreme-SNR
parameters. Specifically, we consider the sum-rate bounds in (10) and (12), which, when
rewritten as functions of snrav, read

Clb
sum(snrav) = log

(
κ12

C1(
χsnrav

κ1
)
+ κ22C2(

α̃χsnrav
κ2

)

)
, (27)

Cub
sum(snrav) = log

(
µ̄1µ̄2
µ̄12

2
C1(

χsnrav
µ̄2

)+C2(
α̃χsnrav

µ̄1
) − µ1µ2

µ̄12
2

C1(
χsnrav

µ1
)+C2(

α̃χsnrav
µ2

)

)
, (28)

where we introduce the notation

µ̄12 , 1− µ1 − µ2 = µ3 . (29)
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For symmetric settings, we additionally rely on ([38], Proposition 5; see also [39], Proposi-
tion 4) for the extreme-SNR characterization of the sum-rate bound in (14).

Furthermore, note that the sum capacity (specifying the ultimate performance limit) is
given by the sum-rate constraint in (13), which, when expressed as a function of snrav, boils
down to

CCW
sum(snrav) = log(1 + βsnrav) . (30)

Hence, the corresponding low-SNR parameters are(
Eb
N0

)CW

min
= ln 2 , SCW

0 = 2 , (31)

while the high-SNR parameters read

SCW
∞ = 1 , LCW

∞ = − log β . (32)

4.1. The low-SNR Regime

Starting with the sum-rate lower bound (27), its low-SNR characterization is summa-
rized in the following proposition.

Proposition 4. The low-SNR parameters of the asymptotic sum-rate lower bound (27) read(
Eb
N0

)lb

min
= ln 2 , (33)

S lb
0 = 2

1+ d−1
d(β1+α̃β2)2 ·

(
β1
κ1

+
α̃2β2

κ2

) , (34)

where, as in Proposition 1, κ1 = κ ∈ (0, 1) and κ2 = κ̄.

Proof. See Appendix C.

As implied by Proposition 4, the sum-rate lower bound optimization with respect to κ
(see Section 3.2) takes a more explicit form in the low-SNR regime. Specifically, the low-SNR
slope (34) can be optimized by choosing κ ∈ (0, 1) such that the denominator therein is
minimized; namely, by setting

κ = κL
opt , arg min

κ∈(0,1)

β1
κ + α̃2β2

1−κ . (35)

To demonstrate the usefulness of this observation, while simplifying the discussion,
let us consider the symmetric setting where β1 = β2 = β

2 . Then, the optimal choice for κ
reduces to

arg min
κ∈(0,1)

1
κ + α̃2

1−κ , (36)

which yields

κL
opt =

1
1+α̃ , α̃ ∈ (0, 1) . (37)

Substituting back into (34), while accounting for the class-symmetry and setting

κ1 = 1
1+α̃ , κ2 = 1− κ1 = α̃

1+α̃ , (38)

we obtain (following some algebra)

S lb
0 = 2βd

βd+2(d−1) . (39)
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Note that S lb
0 is strictly lower, for all d ≥ 2, than the corresponding low-SNR slope

of the optimum spectral efficiency (total throughput) in a single-class setting with load β
and an SNR that equals snrav, as specified in Theorem 1, which reads ([38], Proposition 5;
see also [39], Proposition 4)

SSC
0 = 2βd

d(β+1)−1 = 2βd
βd+d−1 . (40)

In fact, (40) also specifies the low-SNR slope of the sum-rate upper bound for the “sym-
metric construction”, as stated in Proposition 3 (cf. (14)). Hence, (39) and (40) provide
compact lower and upper bounds on the low-SNR slope of the achievable sum rate un-
der class symmetry. Another interesting comparison is with the low-SNR slope of the
maximum achievable sum rate with RS-CDMA, representing a practical manifestation
of random dense NOMA (see Appendix G for a derivation of the RS-CDMA achievable
region). For the symmetric setting, this slope reads (following (A110), (A114) and ([41],
Equation (147)))

SRS
0 = 2

1+ 2(1+α̃2)
β(1+α̃)2

= 2β

β+ 2(1+α̃2)
(1+α̃)2

, (41)

which lets us conclude that S lb
0 > SRS

0 , as long as

d−1
d < 1+α̃2

(1+α̃)2 , (42)

hence, regular sparse NOMA is guaranteed to strictly outperform RS-CDMA in the low-
SNR regime as long as (42) is satisfied. Note, e.g., that setting d = 2 immediately implies
that (42) is satisfied for all α̃ ∈ (0, 1).

Turning to the sum-rate upper bound (28), its low-SNR characterization is summarized
in the following proposition.

Proposition 5. Let D denote the set

D ,
{

µ1, µ2 : µ1, µ2 ∈ (0, 1) , 1− µ1 − µ2 > 0 , (µ1 − µ2)
(

β1
µ1µ̄2
− α̃2β2

µ2µ̄1

)
> 0

}
, (43)

where, as in Proposition 2, µ̄1 , 1− µ1 and µ̄2 , 1− µ2. Then, for (µ1, µ2) ∈ D , the low-SNR
parameters of the asymptotic sum-rate upper bound (28) read

(
Eb
N0

)ub

min
= ln 2 , (44)

Sub
0 = 2

1+
(µ1−µ2)(d−1)

d(β1+α̃β2)2

(
β1

µ1µ̄2
− α̃2β2

µ2µ̄1

) . (45)

Furthermore, the sum-rate upper bound (28) is not useful in the low-SNR regime for (µ1, µ2) /∈ D .

Proof. See Appendix D.

Analogously to the characterization of the lower bound in Proposition 4, the low-SNR
slope (45) can be optimized by choosing (µ1, µ2) such that the denominator therein is
maximized; namely, by setting

(µ1, µ2) = (µU
1,opt, µU

2,opt) , arg max
(µ1,µ2)∈D

(µ1 − µ2)
(

β1
µ1µ̄2
− α̃2β2

µ2µ̄1

)
. (46)

Note that, for (µ1, µ2) ∈ D , the low-SNR slope Sub
0 is strictly smaller than SCW

0 = 2 (recall
that d ≥ 2); hence, the upper bound (28) is useful in this region of the parameters.
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Additional insight can be gained by focusing again on the symmetric setting
β1 = β2 = β

2 . In such case, we obtain that the optimal choice for (µ1, µ2) simplifies
to the following:

(µ1, µ2) = arg max
(µ1,µ2)∈D

2(µ1−µ2)(d−1)
βd(1+α̃)2

(
1

µ1µ̄2
− α̃2

µ2µ̄1

)
= arg max

(µ1,µ2)∈D

(µ1 − µ2)
(

1
µ1µ̄2
− α̃2

µ2µ̄1

)
.

(47)

Note that, in fact, for β1 = β2 = β
2 , the condition that specifies the set D simplifies to

(µ1 − µ2)
(

1
µ1µ̄2
− α̃2

µ2µ̄1

)
> 0. Then, rewriting the low-SNR slope (45) as

Sub
0 = 2

1+
2(µ1−µ2)(d−1)

βd(1+α̃)2

(
1

µ1µ̄2
− α̃2

µ2µ̄1

)
= 2βd

βd+(d−1)· 2(µ1−µ2)
(1+α̃)2

(
1

µ1µ̄2
− α̃2

µ2µ̄1

) ,
(48)

we conclude that the sum-rate upper bound (28) implied by Proposition 2 is tighter
in the low-SNR regime than the corresponding simple “symmetric construction“ bound
in (14), as long as there exists a pair of constants (µ1, µ2) ∈ D such that (cf. (40))

2(µ1−µ2)
(1+α̃)2

(
1

µ1µ̄2
− α̃2

µ2µ̄1

)
> 1 . (49)

Note that the existence of such constants is not guaranteed for all choices of the under-
lying parameters. To see this, let τ , µ2

µ1
and let us recall that, since 1− µ1 − µ2 > 0, the

ratio τ must satisfy 0 < τ < 1
µ1
− 1. Then, (49) can be rewritten as

2(1−τ)
(1+α̃)2

(
1

1−τµ1
− α̃2

τ(1−µ1)

)
> 1 , (50)

or, equivalently,

Aτ2+Bτ+C
τ(1−τµ1)(1−µ1)(1+α̃)2 > 0 , (51)

where τ(1− τµ1)(1− µ1)(1 + α̃)2 > 0 and

A = −(1 + α̃)2µ2
1 + (3− α̃)(1 + α̃)µ1 − 2 , (52)

B = (1 + α̃)(3α̃− 1)µ1 + (1− α̃)2 , (53)

C = −2α̃2 . (54)

Now, a careful examination of the constants A, B and C reveals that a necessary condi-
tion for (51) to hold is

0 < α̃ < 3− 2
√

2 ≈ 0.1716 . (55)

That is, the sum-rate upper bound (28) can be tighter than the corresponding “symmetric
construction“ upper bound in (14) only if α̃ is relatively low. To determine sufficiency, let
us consider the polynomial P(τ) , Aτ2 + Bτ + C. Then, it can be verified that, subject
to condition (55), the coefficients A, B and C satisfy

A < 0 , B > 0 ,C < 0 , µ1 ∈ (0, 1) , 0 < α̃ < 3− 2
√

2 . (56)

Let τ1 and τ2 denote the roots of P(τ), namely,

τ1 = −B+
√
B2−4AC

2A , τ2 = −B−
√
B2−4AC

2A . (57)
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Then (noting that B2 − 4AC > 0),

τ1 < τ2 , µ1 ∈ (0, 1) , 0 < α̃ < 3− 2
√

2 , (58)

and it turns out that, in addition to (55), condition (51) can only hold if the following
additional conditions are satisfied:{

τ1 < τ < τ2 , If τ2 < 1
µ1
− 1 ,

τ1 < τ < 1
µ1
− 1 , If τ1 < 1

µ1
− 1 < τ2 .

(59)

4.2. The High-SNR Regime

As in Section 4.1, we start with the sum-rate lower bound (27) and derive its high-SNR
characterization while focusing on the case where at least one of the two user classes is
overloaded. For concreteness, we assume henceforth that β1 > 1. Our main observations
are summarized in the following proposition.

Proposition 6. Assume that β1 > 1. Then, the high-SNR parameters of the asymptotic sum-rate
lower bound (27) read

S lb
∞ = 1 (60)

and

Llb
∞ =

{
L∞,1 + L∞,2 − log

(
2L∞,1 + 1

α̃ 2L∞,2
)
− log(α̃χ) , β2 ≥ 1

L∞,1 − log χ , 2
d ≤ β2 < 1

(61)

where L∞,i, i = 1, 2, denotes the high-SNR power offset of a single-class setting with load βi
(corresponding to Theorem 1), which reads ([38], Proposition 5)

L∞,i =


( 1

βi
− 1
)

log(1− βi)− (d− 1) log
(

1− 1
d

)
, βi < 1

−(d− 1) log
(

1− 1
d

)
, βi = 1

(βi − 1) log(βi − 1)− βi log βi − (βid− 1) log
(
1− 1

βid
)
, βi > 1 .

(62)

Proof. See Appendix E.

Remark 1. Analogous results for the case where the load β2 is constrained to satisfy β2 > 1,
as well as the case where β1 = β2 = 1, can be straightforwardly derived following similar lines
to the proof in Appendix E. The details are omitted for conciseness. Note also that, for the case where
both user classes are underloaded (i.e., 2

d ≤ β1, β2 < 1), the corresponding derivation indicates
that the sum-rate lower bound is too loose in the high-SNR regime and fails to capture the correct
high-SNR slope.

Remark 2. As indicated by (60) and (61), in sheer contrast to the low-SNR regime, the high-SNR
parameters of the sum-rate lower bound do not depend on the parameter κ for β1 > 1.

The high-SNR characterization of the sum-rate upper bound (28) is summarized next.

Proposition 7. Assume that β1, β2 > 1. Then, the high-SNR parameters of the asymptotic
sum-rate upper bound (28) read

Sub
∞ = 1 , (63)

and
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Lub
∞ = L∞,1 + L∞,2 − log

((
(β1d−1)α̃
β1(β1−1) +

β2d−1
β2(β2−1)

)
· χ

d

)
, (64)

where L∞,i, i = 1, 2, are specified in (62).

Proof. See Appendix F.

Remark 3. Note that, for β1, β2 > 1, the high-SNR parameters of the sum-rate upper bound turn
out to be independent of the choice of µ1, µ2. Derivations along the lines of Appendix F reveal
that, for 2

d ≤ β1, β2 < 1, the sum-rate upper bound follows the correct high-SNR slope only if
β1 + β2 ≤ 1, namely, when the (overall) system operates in the underloaded (or fully loaded) regime,
which is of lesser interest in the NOMA framework. Furthermore, the analysis shows that, for all
other choices of β1 and β2 (expect for β1, β2 > 1), the sum-rate upper bound (28) becomes too loose
for the high-SNR regime and does not capture the correct high-SNR slope.

To gain more insight, let us consider the symmetric overloaded setting where
β1 = β2 = β

2 > 1. In such case, the high-SNR slope equals unity for both the lower
and upper sum-rate bounds, namely,

S lb
∞ = Sub

∞ = 1 . (65)

Turning to the high-SNR power offset, note that, in the symmetric overloaded setting,
one obtains (cf. (21))

χ = 2
1+α̃ , (66)

while

L∞,1 = L∞,2

= β−2
2 log(β− 2)− β

2 log(β)− ( βd−2
2 ) log

(
1− 2

βd
)
+ 1 .

(67)

Hence, we conclude, from (61) and (67), that

Llb
∞ = L∞,1 − 1

= β−2
2 log(β− 2)− β

2 log β− ( βd−2
2 ) log

(
1− 2

βd
)

.
(68)

Similarly, considering the high-SNR power offset of the sum-rate upper bound (64),
we obtain

Lub
∞ = 2L∞,1 + log(β− 2)− log

(
1− 2

βd

)
− 2

= (β− 1) log(β− 2)− β log(β)− (βd− 1) log
(
1− 2

βd
)

.
(69)

The difference between the offsets (68) and (69) specifies the horizontal gap (in logarith-
mic scale) between these lower and upper bounds on the achievable sum rate in the high-
SNR regime. However, it is also insightful to compare Lub

∞ to the corresponding high-
SNR power offset induced by the “symmetric construction” outer bound of Proposition 3
(see (14)). This offset is simply given by (62), while substituting β instead of βi, and reads

Lub
∞,sym = (β− 1) log(β− 1)− β log β− (βd− 1) log

(
1− 1

βd
)

. (70)

Note that

Lub
∞ −Lub

∞,sym = (β− 1) log
(

β−2
β−1

)
+ (βd− 1) log

(
βd−1
βd−2

)
, (71)

which can be verified to always take on negative values for β > 2 and d ≥ 2 (in fact, in such
case, Lub

∞ is even strictly smaller than LCW
∞ (32)). Hence, we conclude that the “symmetric
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construction” sum-rate upper bound is tighter in the high-SNR regime for symmetric
settings, when β1 = β2 > 1. This observation is corroborated by the numerical results
presented in Section 5.

5. Numerical Results

In this section, we present some numerical results that demonstrate the effectiveness
of the inner and outer bounds derived in Section 3 for assessing the potential performance
gains of regular sparse NOMA. The focus here is on overloaded settings (β1, β2 > 1),
corresponding to use cases where NOMA is of particular interest, while noting that the
bounds also generally apply to underloaded regimes. The sparsity parameter d of the
signature matrices was set throughout to d = 2, since, as shown in [38,39], it induces
the highest achievable individual (per class) throughputs for regular sparse NOMA. Our
numerical investigation complements the analytical observations of Section 4, by considering
more general SNR regimes.

Figure 1 depicts the inner and outer bounds on the achievable region (8) in the large-
system limit, for the case where β1 = 1.5 and β2 = 2 (cf. (10) and (12)). The corresponding
noise-split parameters were set to κ = 0.9, µ1 = 0.05 and µ2 = 0.9 (these values were
numerically verified to be close to optimal). The SNRs of the two user classes were fixed
to snr1 = 15 dB and snr2 = 5 dB. The cautious reader should note that this choice for the
noise split parameters (µ1, µ2) is, by no means, a contradiction to the condition specified in
Proposition 5 for the usefulness of the outer bound (see (43)). This is since Proposition 5 only
applies to the low-SNR regime, while, in Figure 1, the two SNRs do not yield a low average
SNR setting. In fact, it can be numerically verified that choosing (µ1, µ2) = (0.05, 0.9) in the
low-SNR regime, which falls outside the region D in (43), leads to a very loose upper bound
on the achievable sum rate, significantly higher than the corresponding Cover–Wyner
sum-rate upper bound in (13). Hence, this choice is not useful in the low-SNR regime
as predicted by Proposition 5 (see also the discussion in Section 4.1). The boundary of
the inner bound is represented Figure 1 by the dashed black line, while the boundary of
the outer bound is designated by the dash–dotted black line. Note that the two bounds
differ only in the sum-rate constraint, while sharing the class–individual rate constraints
(which are characterized in full via Theorem 1, as discussed in Section 3.1). To assess
the tightness of the bounds, Figure 1 also shows an estimation of the boundary of the
achievable region (8) for a regular sparse NOMA system with a large but finite number of
orthogonal dimensions N = 30. Here, all rate constraints of the corresponding region were
evaluated based on Monte Carlo (MC) simulations of 1000 sparse matrix realizations using
Gallager’s construction for parity-check matrices of LDPC codes [38,39,53] (let us recall
that the main motivation for the derivation of the inner and outer bounds on the achievable
region is the fact that an exact analytical asymptotic result for the sum-rate constraint of
this region is still lacking; hence, we resorted to MC simulations). The boundary of this
region is represented by the solid blue line. Note that both inner and outer bounds are
rather tight and provide a very good assessment of the achievable region (specifically, the
limiting upper bound on the sum-rate constraint is higher than the simulated constraint by
about only 3%, while the corresponding lower bound is lower by less than 2%). Figure 1
also indicates that the asymptotic class–individual rate constraints provide an extremely
tight assessment of the corresponding throughputs in large finite-dimensional systems, as
already shown in [38,39]. We further note that extensive numerical investigations indicate
that the EPI-based bounds become tighter as the powers allocated to each class of users
become more unbalanced, which stems from the nature of the EPIs. This observation is
further demonstrated in the sequel.
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Figure 1. Achievable regions for snr1 = 15 dB, snr2 = 5 dB, d = 2, β1 = 1.5 and β2 = 2.

For the sake of comparison, Figure 1 also includes the achievable regions of two other
system settings of interest. The first region corresponds to dense code-domain NOMA,
represented here by RS-CDMA. The corresponding boundary of the achievable region in
the large-system limit is designated by the solid green line (see (A119) in Appendix G).
The second region corresponds to a setting where the signatures of individual users are
taken as the columns of a single regular sparse matrix, where each user occupies d = 2
resources and each resource is utilized by exactly βd = (β1 + β2)d users. No regularity is
imposed within either of the two classes of users and the signature columns are allocated to
the users in each class uniformly at random. The induced signature matrices A1 and A2 for
each class of users (after reordering of the columns) are therefore no longer row-regular. The
boundary of the corresponding achievable region, based on MC simulations (while fixing
N = 30), is designated by the solid purple line (referred to as ‘Single A’). Finally, Figure 1
also shows the Cover–Wyner region (13). The boundary of this region is designated by the
solid red line.

A comparison of all achievable regions in Figure 1 lets us conclude the following
(with the aid of additional investigations omitted for conciseness): Irregularity induces
a loss in the achievable rate region. This is clearly observed when comparing the achiev-
able region with a single regular sparse signature matrix construction (‘Single A’) and
the MC-based achievable region with two separate regular constructions of the signature
matrices for the two classes of users. The superiority of separate constructions is also
observed for the class–individual rate constraints when considering the inner bound (10).
Comparing the regular sparse construction in (1) and dense code-domain NOMA (here,
RS-CDMA), the MC simulation results indicate that the corresponding achievable region
strictly includes the achievable region with dense code-domain NOMA, in full agreement
with the analytical observations made in [38,39] with respect to single-class systems. Fur-
thermore, when the class-powers are far enough apart, this even holds for the inner bound
(10), as shown in Figure 1, implying that regular sparse NOMA indeed strictly outper-
formed dense code-domain NOMA (RS-CDMA) in this setting. Finally, considering the
outer bound on the achievable region (12), Figure 1 shows that, for power-unbalanced
settings, it provides a good assessment of the gap to the ultimate performance limits, as
designated by the Cover–Wyner capacity region.

The impact of the SNR balance between the two classes of users is illustrated in Figure 2.
A load-symmetric setting is considered where β1 = β2 = 2 and the received SNR of Class 1
users was set to snr1 = 10 dB. The received SNR of Class 2 users was set to snr2 = α̃snr1,
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where α̃ ∈ (0, 1). The figure depicts the sum-rate constraint of the rate region for the
settings and bounds considered in Figure 1 as a function of α̃. The lower and upper
bounds, according to (10) and (12), were numerically optimized, respectively, by fine-tuning
the values of κ, µ1 and µ2. In view of the load-symmetry in this example, the “symmetric
construction” upper bound in (14) is also included in the figure (designated by the dotted
line). Similar conclusions to the ones discussed with respect to Figure 1 can be reached.
The tightness of all three bounds is clearly demonstrated in the low α̃ region. In particular,
note that a threshold value for α̃ is observed, below which the sum-rate lower bound in (10)
already surpasses the dense code-domain NOMA achievable sum rate (thus guaranteeing
the superiority of regular sparse NOMA). The results also indicate that the sum-rate upper
bound in (12) is meaningful and resides below the Cover–Wyner sum capacity, when α̃
lies below a threshold (while, otherwise, it becomes too loose and ceases to be useful).
Note that, in this load-symmetric setting, the simple “symmetric construction” upper
bound in (14) turns out to be the tightest for most values of α̃. In fact, by Jensen’s inequality,
it also provides here a tight upper bound for the ‘Single A’ construction. However, neither
of the two upper bounds (in (12) or (14)) is universally superior. Although Figure 2 does
not represent an extreme-SNR regime per se, the main observations qualitatively corroborate
the conclusions of the analytical examination in Section 4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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4.4
4.5
4.6
4.7
4.8
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Figure 2. Achievable sum rate for snr1 = 10 dB, snr2 = α̃snr1 (α̃ ∈ (0, 1)), d = 2, β1 = 2 and β2 = 2.
Bounds are plotted for numerically optimized κ, µ1, µ2.

Finally, the preceding observations are further corroborated in Figure 3, where a
setting with β1 = 1.5, β2 = 2 and snr2 = 0.1× snr1 is considered (similarly to Figure 1).
Here, the sum-rate constraints depicted in Figure 2 (excluding the “symmetric construction”
upper bound (14)) are plotted as a function of the system average Eb

N0
(see (19) and (23)).

The tightness of the derived bounds over a wide range of Eb
N0

values is clearly demonstrated,
as well as the superior performance of regular sparse NOMA compared to dense code-
domain NOMA (which yields lower sum rates for all Eb

N0
values). Again, the results are in

full agreement with the conclusions of Section 4 regarding extreme-SNR regimes.
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Figure 3. Achievable sum rate for snr2 = 0.1× snr1, d = 2, β1 = 1.5 and β2 = 2. Bounds are plotted
for numerically optimized κ, µ1, µ2.

6. Conclusions

We investigate, in this paper, the achievable rate region in the large-system limit of
regular sparse NOMA with two user classes. The analytical challenges induced by the un-
derlying random matrix model were circumvented by deriving closed-form inner and
outer bounds on the achievable region. These bounds provide a valuable assessment
of the potential performance gains of regular sparse NOMA in use cases of interest beyond
the equal-power setting previously considered in [38,39]. The superiority of regular sparse
NOMA compared with highly complex dense alternatives is demonstrated. The analytical
characterization of the bounds in extreme-SNR regimes further elucidates their usefulness,
while exhibiting the benefits of their closed-form expressions.

It is important to recall, at this point, that regular sparse NOMA requires fully coor-
dinated signatures (to retain the regular structure of the signature matrices); therefore, it
might be inapplicable to massive connectivity use cases with sporadic user activity, where
such coordination cannot be practically accomplished. Hence, to complement the current
analysis, a similar setting with two mixed classes of users, where one class employs reg-
ular sparse NOMA and the second class employs random dense NOMA, was recently
considered in [54]. For this representation of a mixture of fully coordinated and lightly
coordinated users, the achievable region was completely and rigorously characterized us-
ing fundamental tools from free probability theory [30,55]. Potential extensions of both
lines of work to account for multiple user classes and multicell networks, as well as the
impact of fading and additional channel impairments, are the subject of current and future
planned investigations.
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AWGN Additive white Gaussian noise
BGWT Bipartite Galton–Watson tree
CDMA Code-division multiple access
EPI Entropy power inequality
GWT Galton–Watson tree
i.i.d. Independent identically distributed
LDCD Low-density code-domain
LDPC Low-density parity-check
MAC Multiple access channel
MC Monte Carlo
MPA Message-passing algorithm
MUD Multiuser detection
NOMA Non-orthogonal multiple access
RHS Right-hand side
RS Randomly spread
SIC Successive interference cancellation
SNR Signal-to-noise ratio

Appendix A. Proof of Proposition 1

By the fundamental properties of mutual information, the sum-rate constraint in (8)
can be decomposed as

1
N I(x1, x2; y|{Ai}i=1,2) =

1
N h(y|{Ai}i=1,2)− 1

N h(y|x1, x2, {Ai}i=1,2)

= 1
N h(y|{Ai}i=1,2)− 1

N h(z)

= 1
N h(y|{Ai}i=1,2)− log(πe) .

(A1)

Now, let us fix κ ∈ (0, 1) and let κ1 = κ, κ2 = κ̄ = 1− κ. Then, the channel output y
(cf. (1)) is statistically equivalent to

ỹ =
√

snr1
d A1x1 + z̃1 +

√
snr2

d A2x2 + z̃2 = w1 + w2 , (A2)

where z̃1 ∼ CN (0, κ1IN), z̃2 ∼ CN (0, κ2IN) and z̃1 and z̃2 are independent. The vectors

wi ,
√

snri
d Aixi + z̃i , i = 1, 2 , (A3)

are thus statistically independent conditional on the signature matrices {Ai}i=1,2 and have
a corresponding multivariate complex Gaussian density. Hence, since

1
N h(y|{Ai}i=1,2) =

1
N h(ỹ|{Ai}i=1,2) , (A4)

it follows, by the conditional EPI [43] and (A2), that

2
1
N h(y|{Ai}i=1,2) = 2

1
N h(ỹ|{Ai}i=1,2) ≥ 2

1
N h(w1|{Ai}i=1,2) + 2

1
N h(w2|{Ai}i=1,2) , 2hib

N . (A5)

Considering the exponential terms on the right-hand side (RHS) of the inequality
in (A5), we have
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1
N h(wi|{Ai}i=1,2) =

1
N E

{
log
(
(πe)N det

(
κiIN + snri

d AiA†
i

))}
= log(πe) + log κi +

1
N E

{
log
(

det
(

IN + snri/κi
d AiA†

i

))}
(a)−−−→

N→∞
log(πe) + log κi + Ci(

snri
κi

) , i = 1, 2 ,

(A6)

where (a) follows from Theorem 1 (note that the introduction of the parameter κ in the
open interval (0, 1), as part of the noise-split step (A2), is necessary for the applicability of
Theorem 1) . Then, considering the large-system limit and substituting (A6) back into (A5),
while relying on the continuity of the exponential and logarithmic functions, we obtain the
following lower bound:

1
N h(y|{Ai}i=1,2) ≥ hib

N −−−→N→∞
log(πe) + log

(
κ12

C1(
snr1
κ1

)
+ κ22C2(

snr2
κ2

)
)

. (A7)

Further denoting

Rib
N,sum , hib

N − log(πe) , (A8)

we thus finally conclude that the normalized mutual information (A1) can be lower-
bounded as

1
N I(x1, x2; y|{Ai}i=1,2) ≥ Rib

N,sum −−−→N→∞
log
(

κ12
C1(

snr1
κ1

)
+ κ22C2(

snr2
κ2

)
)

, (A9)

which, when combined with (9), yields (10). This completes the proof of the proposition.

Appendix B. Proof of Proposition 2

Analogously to the proof of Proposition 1 in Appendix A, we aim to upper-bound
the sum-rate constraint in (8). Towards this end, we employ a strengthened version of the EPI,
recently derived in [45] (see also [44]), which is adapted here to the complex setting.

Theorem A1 ([45], Corollary 2). Suppose that x and w are random vectors in CN , conditionally
independent given Q; moreover, suppose that w is conditionally Gaussian given Q. Define y =
x + w. For any v satisfying x→ y→ v|Q,

2
1
N (h(y|Q)−I(x;v|Q)) ≥ 2

1
N (h(x|Q)−I(y;v|Q)) + 2

1
N h(w|Q) . (A10)

Theorem A1 immediately implies the following conditional EPI for three random
summands (one of which is Gaussian).

Corollary A1 ([45], Theorem 3). Let x, y and w be three random vectors in CN , conditionally
independent given Q, with finite second moments. Moreover, conditional on Q, let w be distributed
as CN (0, Σ). Then,

2
1
N (h(x+w|Q)+h(y+w|Q)) ≥ 2

1
N (h(x|Q)+h(y|Q)) + 2

1
N (h(x+y+w|Q)+h(w|Q)) . (A11)

Proof. The Corollary follows from Theorem A1 by letting v = x + y + w and rearranging
the exponents [45].

Now, let us fix µ1, µ2 ∈ (0, 1), such that
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µ3 , 1− µ1 − µ2 > 0 , (A12)

and let us consider the following three independent random vectors:

x̌ ,
√

snr1
d A1x1 + ž1 , (A13)

y̌ ,
√

snr2
d A2x2 + ž2 , (A14)

w̌ , ž3 , (A15)

where žj ∼ CN (0, µjIN), j = 1, 2, 3, are independent complex Gaussian vectors, inde-
pendent also of x1, x2 and {Ai}i=1,2. Note that x̌, y̌ and w̌ are independent conditional
on the signature matrices {Ai}i=1,2 as well. Then, observing that

y d
= x̌ + y̌ + w̌ (A16)

hence,

2
1
N h(y|{Ai}i=1,2) = 2

1
N h(x̌+y̌+w̌|{Ai}i=1,2) , (A17)

Theorem A1 and Corollary A1 can be applied to yield the upper bound

2
1
N h(y|{Ai}i=1,2) ≤ 2hub

N , 2−
1
N h(w̌)

(
2

1
N h(x̌+w̌|{Ai}i=1,2)+

1
N h(y̌+w̌|{Ai}i=1,2)

− 2
1
N h(x̌|{Ai}i=1,2)+

1
N h(y̌|{Ai}i=1,2)

)
,

(A18)

where {Ai}i=1,2 take the role of Q and all differential entropies are neither ∞ nor −∞
by construction.

Starting with the Gaussian vector w̌, its normalized differential entropy reads

1
N h(w̌) = log(πe) + log µ3 . (A19)

Next, considering each exponential term inside the parentheses in the RHS of (A18), we
obtain, for the first term,

1
N h(x̌ + w̌|{Ai}i=1,2) =

1
N E

{
log
(
(πe)N det

(
(µ1 + µ3)IN + snr1

d A1A†
1

))}
(a)
= 1

N E
{

log
(
(πe)N det

(
µ̄2IN + snr1

d A1A†
1

))}
= log(πe) + log µ̄2 +

1
N E

{
log
(

det
(

IN + snr1/µ̄2
d A1A†

1

))}
(b)−−−→

N→∞
log(πe) + log µ̄2 + Copt

1 ( snr1
µ̄2

) ,

(A20)

where (a) is due to (A12) and (b) follows from Theorem 1. Treating the remaining terms in
an analogous manner, we obtain

1
N h(y̌ + w̌|{Ai}) −−−→

N→∞
log(πe) + log µ̄1 + C2(

snr2
µ̄1

) , (A21)

1
N h(x̌ |{Ai}) −−−→

N→∞
log(πe) + log µ1 + C1(

snr1
µ1

) , (A22)

1
N h(y̌ |{Ai}) −−−→

N→∞
log(πe) + log µ2 + C2(

snr2
µ2

) . (A23)

Then, substituting (A19)–(A23) back into (A18), it follows, by continuity (with the aid
of some algebra), that
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1
N h(y|{Ai}i=1,2) ≤ hub

N −−−→N→∞
log(πe)− log µ3

+ log
(

µ̄1µ̄2 2
C1(

snr1
µ̄2

)+C2(
snr2
µ̄1

) − µ1µ2 2
C1(

snr1
µ1

)+C2(
snr2
µ2

)
)

.
(A24)

Finally, denoting

Rub
N,sum , hub

N − log(πe) , (A25)

we conclude that

1
N I(x1, x2; y|{Ai}i=1,2) ≤ Rub

N,sum

−−−→
N→∞

log
(

µ̄1µ̄22
C1(

snr1
µ̄2

)+C2(
snr2
µ̄1

) − µ1µ22
C1(

snr1
µ1

)+C2(
snr2
µ2

)
)
− log µ3 ,

(A26)

which, together with (9), yields (12). This completes the proof of Proposition 2.

Appendix C. Proof of Proposition 4

Let Clb
sum(snrav) denote the lower bound on the achievable sum rate (27), when ex-

pressed in nats/channel use per dimension as a function of snrav. Then,

Clb
sum(snrav) = ln

(
κ1e

C1(
χsnrav

κ1
)
+ κ2eC2(

α̃χsnrav
κ2

)

)
, (A27)

where we use Ci(·) to denote the function Ci(·) converted to nats/channel use, i = 1, 2
(cf. (5)). The minimum Eb

N0
that enables reliable communications and the low-SNR slope

of the sum-rate lower bound then read (cf. (24)–(25))(
Eb
N0

)lb

min
= β ln 2

Ċlb
sum(0)

, S lb
0 = − 2[Ċlb

sum(0)]
2

C̈lb
sum(0)

. (A28)

Starting with the first derivative of (A27), we obtain

Ċlb
sum(snrav) =

κ1e
C1(

χsnrav
κ1

) d
dsnrav

C1(
χsnrav

κ1
)+κ2e

C2(
α̃χsnrav

κ2
) d

dsnrav
C2(

α̃χsnrav
κ2

)

κ1e
C1(

χsnrav
κ1

)
+κ2e

C2(
α̃χsnrav

κ2
)

, (A29)

which, using the fact that Ci(0) = 0 and recalling that κ1 + κ2 = 1, yields

Ċlb
sum(0) = χ

(
Ċ1(0) + α̃Ċ2(0)

)
. (A30)

Now, as shown in [38,39] (see the proof of Theorem 3 therein), the asymptotic nor-
malized spectral efficiency Ci(snri), i = 1, 2 (cf. (5) and (9)), coincides with the Shannon
transform of the asymptotic empirical eigenvalue distribution of 1

d AiA†
i , whose density

reads ([38], Theorem 2) (see also [39])

ρ(λ, βi, d) = [1− βi]
+δ(λ) + βid

2π

√
[λ−λ−i ]+ [λ+

i −λ]+

λ(βid−λ)
, (A31)

where λ±i = (
√

α±√γi)
2, i = 1, 2, δ(λ) is a unit point mass at λ = 0 and [z]+ , max{0, z}.

Let F be a probability distribution defined on R+. The Shannon transform VF of F is
defined for x ∈ R+ as V(x) ,

∫
R+ log(1 + xλ)dF(λ) [30], Definition 3.2 (see also [29],

Definition 2.12). Hence, the derivative at zero Ċi(0), i = 1, 2, reads
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Ċi(0) = d
dsnrav

(
βid
2π

∫ λ+
i

λ−i

ln(1 + snravλ)

√
(λ−λ−i )(λ+

i −λ)

λ(βid−λ)
dλ

)∣∣∣∣∣
snrav=0

= βi . (A32)

Thus, we conclude, from (A30) and (21), that

Ċlb
sum(0) = χ(β1 + α̃β2) = β . (A33)

Turning to the second derivative, we have

C̈lb
sum(snrav) =

d
dsnrav

(
κ1e

C1(
χsnrav

κ1
) d

dsnrav
C1(

χsnrav
κ1

)

)

κ1e
C1(

χsnrav
κ1

)
+κ2e

C2(
α̃χsnrav

κ2
)

+

d
dsnrav

κ2e
C2(

α̃χsnrav
κ2

) d
dsnrav

C2(
α̃χsnrav

κ2
)


κ1e

C1(
χsnrav

κ1
)
+κ2e

C2(
α̃χsnrav

κ2
)

−

κ1e
C1(

χsnrav
κ1

) d
dsnrav

C1(
χsnrav

κ1
)+κ2e

C2(
α̃χsnrav

κ2
) d

dsnrav
C2(

α̃χsnrav
κ2

)

2

κ1e
C1(

χsnrav
κ1

)
+κ2e

C2(
α̃χsnrav

κ2
)

2 .

(A34)

Since the denominators of all three terms in (A34) approach unity as snrav → 0, we focus
on the numerators. Starting with the first term, note that

d
dsnrav

(
κ1e

C1(
χsnrav

κ1
) d

dsnrav
C1(

χsnrav
κ1

)

)
−−−−→
snrav→0

κ1

(
χ
κ1
Ċ1(0)

)2
+ κ1

(
χ
κ1

)2
C̈1(0)

= χ2

κ1

((
Ċ1(0)

)2
+ C̈1(0)

)
.

(A35)

Next, similarly to (A32), we obtain, for i = 1, 2,

C̈i(0) = d2

dsnr2
av

(
βid
2π

∫ λ+
i

λ−i

ln(1 + snravλ)

√
(λ−λ−i )(λ+

i −λ)

λ(βid−λ)
dλ

)∣∣∣∣∣
snrav=0

= − βi(d(1+βi)−1)
d ,

(A36)

yielding

d
dsnrav

(
κ1e

C1(
χsnrav

κ1
) d

dsnrav
C1(

χsnrav
κ1

)

)
−−−−→
snrav→0

− χ2

κ1
· β1(d−1)

d . (A37)

In a completely analogous manner, the numerator of the second term in (A34) takes
the following form as snrav → 0:

d
dsnrav

(
κ2eC2(

αχsnrav
κ2

) d
dsnrav

C2(
αχsnrav

κ2
)

)
−−−−→
snrav→0

− α̃2χ2

κ2
· β2(d−1)

d . (A38)

Substituting (A37) and (A38) back into (A34), while taking the limit snrav → 0, we fi-
nally obtain with the aid of (A33) and (21),

C̈lb
sum(0) = − χ2

κ1
· β1(d−1)

d − α̃2χ2

κ2
· β2(d−1)

d − β2

= −β2
(

1 + d−1
d(β1+α̃β2)2 ·

(
β1
κ1

+ α̃2β2
κ2

))
.

(A39)
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The proof of Proposition 4 is then completed by substituting (A33) and (A39) back into (A28).

Appendix D. Proof of Proposition 5

Following similar steps to the proof in Appendix C, while retaining the notation
therein, let Cub

sum(snrav) denote the sum-rate upper bound (28) in nats/channel use per dimen-
sion. Then,

Cub
sum(snrav) = ln

(
µ̄1µ̄2e

C1(
χsnrav

µ̄2
)+C2(

α̃χsnrav
µ̄1

) − µ1µ2e
C1(

χsnrav
µ1

)+C2(
α̃χsnrav

µ2
)
)
− ln µ̄12 . (A40)

It is important to note, at this point, that, in contrast to the sum-rate lower bound (27),
the sum-rate upper bound (A40) may exhibit a bowl-shaped form when plotted as a function
of Eb

N0
in dB (see, e.g., the discussion in ([56], p. 1341)). This behavior depends on the system

load parameters and the particular choice of the constants µ1 and µ2. That said, insights
on the low-SNR characteristics of this upper bound can still be obtained by deriving its
low-SNR parameters. One should only bear in mind that the value of Eb

N0
corresponding to

snrav → 0 does not necessarily represent the minimum Eb
N0

above which the upper bound is

positive. In fact, the latter may be attained at a lower Eb
N0

, as discussed in [56]. In such case,
the low-SNR slope turns out to be negative, as shall be made clear in the sequel.

The low-SNR parameters of Cub
sum(snrav) are given by(

Eb
N0

)ub

0
= β ln 2

Ċub
sum(0)

, (A41)

Sub
0 = − 2[Ċub

sum(0)]
2

C̈ub
sum(0)

, (A42)

with the subscript {·}0 in (A41) designating Eb
N0

that corresponds to snrav → 0. Hence, we
proceed by taking the first derivative of Cub

sum(snrav),

Ċub
sum(snrav) =

µ̄1µ̄2e
C1(

χsnrav
µ̄2

)+C2(
α̃χsnrav

µ̄1
)
(

d
dsnrav

C1(
χsnrav

µ̄2
)+ d

dsnrav
C2(

α̃χsnrav
µ̄1

)

)
µ̄1µ̄2e

C1(
χsnrav

µ̄2
)+C2(

α̃χsnrav
µ̄1

)
−µ1µ2e

C1(
χsnrav

µ1
)+C2(

α̃χsnrav
µ2

)

−
µ1µ2e

C1(
χsnrav

µ1
)+C2(

α̃χsnrav
µ2

)
(

d
dsnrav

C1(
χsnrav

µ1
)+ d

dsnrav
C2(

α̃χsnrav
µ2

)

)
µ̄1µ̄2e

C1(
χsnrav

µ̄2
)+C2(

α̃χsnrav
µ̄1

)
−µ1µ2e

C1(
χsnrav

µ1
)+C2(

α̃χsnrav
µ2

)

,

(A43)

which, letting snrav → 0 and using (A32), yields

Ċub
sum(0) =

µ̄1µ̄2

(
χ

µ̄2
Ċ1(0)+

α̃χ
µ̄1

Ċ2(0)
)
−µ1µ2

(
χ

µ1
Ċ1(0)+

α̃χ
µ2

Ċ2(0)
)

µ̄1µ̄2−µ1µ2
= χ(β1 + α̃β2) = β . (A44)

Therefore, it is concluded, from (A41), that, as snrav → 0 (implying Cub
sum(snrav)→ 0),

the corresponding Eb
N0

approaches (
Eb
N0

)ub

0
= ln 2 , (A45)

which, as said, does not necessarily correspond to the minimum Eb
N0

above which the sum-
rate upper bound is positive.

To derive the slope of the sum-rate upper bound at snrav → 0, we take the second
derivative of Cub

sum(snrav). From (A43), we obtain
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C̈ub
sum(snrav) =

d
dsnrav

µ̄1µ̄2e
C1(

χsnrav
µ̄2

)+C2(
α̃χsnrav

µ̄1
)
(

d
dsnrav

C1(
χsnrav

µ̄2
)+ d

dsnrav
C2(

α̃χsnrav
µ̄1

)

)
µ̄1µ̄2e

C1(
χsnrav

µ̄2
)+C2(

α̃χsnrav
µ̄1

)
−µ1µ2e

C1(
χsnrav

µ1
)+C2(

α̃χsnrav
µ2

)

−

d
dsnrav

µ1µ2e
C1(

χsnrav
µ1

)+C2(
α̃χsnrav

µ2
)
(

d
dsnrav

C1(
χsnrav

µ1
)+ d

dsnrav
C2(

α̃χsnrav
µ2

)

)
µ̄1µ̄2e

C1(
χsnrav

µ̄2
)+C2(

α̃χsnrav
µ̄1

)
−µ1µ2e

C1(
χsnrav

µ1
)+C2(

α̃χsnrav
µ2

)

−
(

µ̄1µ̄2e
C1(

χsnrav
µ̄2

)+C2(
α̃χsnrav

µ̄1
)
(

d
dsnrav

C1(
χsnrav

µ̄2
) + d

dsnrav
C2(

α̃χsnrav
µ̄1

)
)

−µ1µ2e
C1(

χsnrav
µ1

)+C2(
α̃χsnrav

µ2
)
(

d
dsnrav

C1(
χsnrav

µ1
) + d

dsnrav
C2(

α̃χsnrav
µ2

)
))2

·
(

µ̄1µ̄2e
C1(

χsnrav
µ̄2

)+C2(
α̃χsnrav

µ̄1
) − µ1µ2e

C1(
χsnrav

µ1
)+C2(

α̃χsnrav
µ2

)

)−2

.

(A46)

In view of (A44), the last term in (A46) converges to β2 as snrav → 0, while the de-
nominators of the first two terms converge to µ̄12. Therefore, it is left to calculate the limit
of the respective numerators at snrav → 0. Starting with the first term in (A46), we have

d
dsnrav

(
µ̄1µ̄2e

C1(
χsnrav

µ̄2
)+C2(

α̃χsnrav
µ̄1

)
(

d
dsnrav

C1(
χsnrav

µ̄2
) + d

dsnrav
C2(

α̃χsnrav
µ̄1

)
))

−−−−→
snrav→0

Aub ,
(A47)

where

Aub = µ̄1χ2

µ̄2

(
(Ċ1(0))2 + C̈1(0)

)
+ µ̄2α̃2χ2

µ̄1

(
(Ċ2(0))2 + C̈2(0)

)
+ 2α̃χ2Ċ1(0)Ċ2(0) . (A48)

Relying on (A32) and (A36), we then finally obtain (following some algebra)

Aub = − µ̄1χ2

µ̄2

β1(d−1)
d − µ̄2α̃2χ2

µ̄1

β2(d−1)
d + 2α̃χ2β1β2 . (A49)

Similarly, the numerator of the second term in (A46) reads

d
dsnrav

(
µ1µ2e

C1(
χsnrav

µ1
)+C2(

α̃χsnrav
µ2

)
(

d
dsnrav

C1(
χsnrav

µ1
) + d

dsnrav
C2(

α̃χsnrav
µ2

)
))

−−−−→
snrav→0

Bub ,
(A50)

where

Bub = µ2χ2

µ1

(
(Ċ1(0))2 + C̈1(0)

)
+ µ1α̃2χ2

µ2

(
(Ċ2(0))2 + C̈2(0)

)
+ 2α̃χ2Ċ1(0)Ċ2(0) . (A51)

Similarly to (A49), this yields

Bub = − µ2χ2

µ1

β1(d−1)
d − µ1α̃2χ2

µ2

β2(d−1)
d + 2α̃χ2β1β2 . (A52)
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Finally, substituting (A49) and (A52) into (A46) while taking snrav → 0, we obtain

C̈ub
sum(0) = Aub−Bub

µ̄12
− β2

= −β2
(

1 + (µ1−µ2)(d−1)
d(β1+α̃β2)2

(
β1

µ1µ̄2
− α̃2β2

µ2µ̄1

))
.

(A53)

Hence, we conclude, from (A42), that the low-SNR slope is given by

Sub
0 =

2

1 + (µ1−µ2)(d−1)
d(β1+α̃β2)2

(
β1

µ1µ̄2
− α̃2β2

µ2µ̄1

) . (A54)

Note that setting µ1 = µ2 yields Sub
0 = 2, which is the low-SNR slope of the single-

user AWGN channel, as well as the Cover–Wyner sum capacity. Furthermore, let D
denote the set

D ,
{

µ1, µ2 : µ1, µ2 ∈ (0, 1) , 1− µ1 − µ2 > 0 , (µ1 − µ2)
(

β1
µ1µ̄2
− α̃2β2

µ2µ̄1

)
> 0

}
. (A55)

Then, recalling that d ≥ 2 (see Section 2), the low-SNR slope (A54) is positive and lower
than 2 as long as (µ1, µ2) ∈ D . Hence, for the sum-rate upper bound (28) to be useful,
the parameters µ1, µ2 should be restricted in the low-SNR regime only to the set D . The fact
that the low-SNR slope is positive over D immediately implies that (A45) is indeed the min-
imum Eb

N0
over which the upper bound is positive in this setting. This completes the proof

of Proposition 5. We further note that, for (µ1µ2) /∈ D , the low-SNR slope may turn out
negative and it may exhibit discontinuity if µ1 and µ2 are chosen so that

1 + (µ1−µ2)(d−1)
d(β1+α̃β2)2

(
β1

µ1µ̄2
− α̃2β2

µ2µ̄1

)
= 0 . (A56)

The bound is obviously not useful in this regime.

Appendix E. Proof of Proposition 6

Let R(snrav) denote an achievable rate in bit/sec/Hz expressed as a function of snrav.
Let us recall that the high-SNR approximation of R(snrav) reads

R(snrav) ≈ S∞(log snrav −L∞) , snrav � 1 , (A57)

where S∞ denotes the high-SNR slope andL∞ denotes the high-SNR power offset. Then, for
any constant a > 0, R(a · snrav) can be characterized for snrav � 1 as

R(a · snrav) ≈ S∞(log(a · snrav)−L∞) = S∞(log snrav − (L∞ − log a)) . (A58)

Hence, any scaling of snrav by a factor a > 0 corresponds to a shift in the high-SNR power
offset by (− log a).

Rewriting the lower bound on the achievable sum rate (27), we obtain

Clb
sum(snrav) = C2(

α̃χsnrav
κ̄ ) + log

(
1 + κ

(
2C1(

χsnrav
κ )−C2(

α̃χsnrav
κ̄ ) − 1

))
, (A59)

where we use the identities κ1 = κ and κ2 = κ̄ = 1 − κ. Let S∞,i and L∞,i, i = 1, 2,
denote the high-SNR parameters characterizing Ci(·) as in ([38], Proposition 5; see also [39],
Proposition 4). Specifically, for i = 1, 2,

S∞,i = min(βi, 1) , (A60)
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and L∞,i is given in (62). Then, the term outside the logarithm in (A59) can be approximated
for snrav → ∞ as

C2(
α̃χsnrav

κ̄ ) = S∞,2

(
log snrav −

(
L∞,2 − log

(
α̃χ
κ̄

)))
+ o(1) . (A61)

Therefore, it is left to examine the different term in the exponent inside the logarithm
in (A59), which we denote as

∆(snrav) , C1
( χsnrav

κ

)
− C2(

α̃χsnrav
κ̄ ) . (A62)

Note that, accordingly, the sum-rate lower-bound (A59) can be compactly rewritten as

Clb
sum(snrav) = C2(

α̃χsnrav
κ̄ ) + log

(
1 + κ

(
2∆(snrav) − 1

))
. (A63)

We thus proceed with the analysis of (A63), while distinguishing among three possible
cases and relying on the observations made in Appendix H.

Appendix E.1. Case I: β1, β2 > 1

Using (A133), we obtain, for snrav → ∞,

C1(
χsnrav

κ ) = log snrav + log
( χ

κ

)
−L∞,1 +

κ(β1d−1) log e
β1d(β1−1)χ

1
snrav

+ o( 1
snrav

) , (A64)

where L∞,1 should be interpreted here as the corresponding expression in (62) for β1 > 1.
Similarly, we obtain

C2(
α̃χsnrav

κ̄ ) = log snrav + log
(

α̃χ
κ̄

)
−L∞,2 +

κ̄(β2d−1) log e
β2d(β2−1)α̃χ

1
snrav

+ o( 1
snrav

) . (A65)

The substitution back into (A62) then yields

∆(snrav) = log
(

κ̄
α̃κ

)
+ L∞,2 −L∞,1 + C1 log e · 1

snrav
+ o( 1

snrav
) , (A66)

where

C1 ,
(

κ(β1d−1)
β1d(β1−1) −

κ̄(β2d−1)
β2d(β2−1)α̃

)
· 1

χ . (A67)

Hence, for snrav → ∞, it can be shown (following some algebra) that

2∆(snrav) = κ̄
α̃κ 2L∞,2−L∞,1

(
1 + C1

1
snrav

+ o( 1
snrav

)
)

, (A68)

log
(

1 + κ
(

2∆(snrav) − 1
))

= log k1 +
κ̄

α̃k1
2L∞,2−L∞,1C1 log e · 1

snrav
+ o( 1

snrav
) , (A69)

where

k1 , 1 + κ̄
α̃ 2L∞,2−L∞,1 − κ = κ̄

(
1 + 1

α̃ 2L∞,2−L∞,1
)

, (A70)

and, finally (cf. (A63)),

Clb
sum(snrav) = log snrav + log

(
α̃χ
κ̄

)
−L∞,2 + log k1 + o(1) . (A71)

This lets us conclude that the high-SNR slope of the sum-rate lower bound reads

S lb
∞ = 1 , (A72)

and the respective high-SNR power offset satisfies

Llb
∞ = L∞,2 − log

(
α̃χ
κ̄

)
− log k1 . (A73)
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Using (A70), we finally conclude that

Llb
∞ = L∞,1 + L∞,2 − log

(
2L∞,1 + 1

α̃ 2L∞,2
)
− log(α̃χ) . (A74)

Appendix E.2. Case II: β1 > 1, β2 = 1

Using (A126), we obtain, for snrav → ∞,

C2(
α̃χsnrav

κ̄ ) = log snrav + log α̃χ
κ̄ −L∞,2 + 2

√
(d−1)κ̄

dα̃χ log e · 1√
snrav

+ o( 1√
snrav

) . (A75)

Combining (A75) with (A64) and substituting back into (A62), we obtain (while considering
only small terms of leading order)

∆(snrav) = log
(

κ̄
α̃κ

)
+ L∞,2 −L∞,1 + C2 log e · 1√

snrav
+ o( 1√

snrav
) , (A76)

where

C2 , −2

√
(d−1)κ̄

dα̃χ . (A77)

This yields, for snrav → ∞,

2∆(snrav) = κ̄
α̃κ 2L∞,2−L∞,1

(
1 + C2

1√
snrav

+ o( 1√
snrav)

)
, (A78)

log
(

1 + κ
(

2∆(snrav) − 1
))

= log k2 +
κ̄

α̃k2
2L∞,2−L∞,1C2 log e · 1√

snrav
+ o( 1√

snrav
) , (A79)

where

k2 , κ̄
(

1 + 1
α̃ 2L∞,2−L∞,1

)
, (A80)

and, finally,

Clb
sum(snrav) = log snrav + log

(
α̃χ
κ̄

)
−L∞,2 + log k2 + o(1) . (A81)

Note that, although k2 apparently takes the same form as k1 in (A70), these two constants are not
identical, since L∞,2 differs for β2 = 1 (cf. (62)); to emphasize this, we use a different notation.

Therefore, we conclude that the high-SNR slope of the sum-rate lower bound satisfies

S lb
∞ = 1 , (A82)

and the high-SNR power offset is given by

Llb
∞ = L∞,2 − log

(
α̃χ
κ̄

)
− log k2 . (A83)

Using (A80), we then obtain

Llb
∞ = Lopt

∞,1 + L
opt
∞,2 − log

(
2L∞,1 + 1

α̃ 2L∞,2
)
− log(α̃χ) . (A84)

Appendix E.3. Case III: β1 > 1, 2
d ≤ β2 < 1

For 2
d ≤ β2 < 1, we start from (A140) and obtain, for snrav → ∞,

Copt
2 ( α̃χsnrav

κ̄ ) = β2 log snrav + β2 log
(

α̃χ
κ̄

)
− β2L∞,2 +

κ̄β3
2(d−1) log e

d(1−β2)α̃χ
1

snrav
+ o
(

1
snrav

)
. (A85)

Using (A64) and substituting back into (A62), we then obtain
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∆(snrav) = (1− β2) log snrav + log
(

κ̄β2 χ1−β2

α̃β2 κ

)
+ β2L∞,2 −L∞,1

+ C3 log e · 1
snrav

+ o
(

1
snrav

)
,

(A86)

where

C3 ,
(

κ(β1d−1)
β1d(β1−1) −

κ̄β3
2(d−1)

d(1−β2)α̃

)
1
χ . (A87)

This yields

2∆(snrav) = snr
1−β2
av

(
κ̄β2 χ1−β2

α̃β2 κ

)
2β2L∞,2−L∞,1

(
1 + C3

1
snrav

+ o
(

1
snrav

))
, (A88)

log
(

1 + κ
(

2∆(snrav) − 1
))

= (1− β2) log snrav + β2L∞,2 −L∞,1 + log
(

χ1−β2 κ̄β2

α̃β2

)
+ o(1) ,

(A89)

hence,

Clb
sum(snrav) = log snrav −L∞,1 + log2 χ + o(1) . (A90)

We finally conclude that the high-SNR slope for β1 > 1 and 2
d ≤ β2 < 1 reads

S lb
∞ = 1 , (A91)

while the high-SNR power offset reads

Llb
∞ = L∞,1 − log χ . (A92)

Appendix F. Proof of Proposition 7

Starting from (28), we obtain, following some algebra,

Cub
sum(snrav) = C1(

χsnrav
µ̄2

) + C2(
α̃χsnrav

µ̄1
)

+ log

(
1− µ1µ2

µ̄12

(
2

C1(
χsnrav

µ1
)−C1(

χsnrav
µ̄2

)+C2(
α̃χsnrav

µ2
)−C2(

α̃χsnrav
µ̄1

) − 1

))
.

(A93)

Next, relying on (A58), (A60) and (62), we conclude that the terms outside the logarithm in
(A93) can be approximated, for snrav → ∞, as

C1(
χsnrav

µ̄2
) + C2(

α̃χsnrav
µ̄1

) = (S∞,1 + S∞,2) log snrav

− S∞,1(L∞,1 − log χ)− S∞,2(L∞,2 − log(α̃χ))

− S∞,1 log2 µ̄2 − S∞,2 log2 µ̄1 + o(1) .

(A94)

Our next step is to investigate the different terms in the exponent inside the logarithm in (A93),
which we compactly denote as

∆1(snrav) , C1(
χsnrav

µ1
)− C1(

χsnrav
µ̄2

) , (A95)

∆2(snrav) , C2(
α̃χsnrav

µ2
)− C2(

α̃χsnrav
µ̄1

) . (A96)

Focusing on β1, β2 > 1, we resort to Appendix H and obtain, from (A133), that, for snrav → ∞,

∆1(snrav)|β1>1 = log
(

µ̄2
µ1

)
+

(µ1−µ̄2)(β1d−1) log e
β1d(β1−1)χ

1
snrav

+ o( 1
snrav

) , (A97)

∆2(snrav)|β2>1 = log
(

µ̄1
µ2

)
+

(µ2−µ̄1)(β2d−1) log e
β2d(β2−1)α̃χ

1
snrav

+ o( 1
snrav

) . (A98)
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This yields

∆1(snrav) + ∆2(snrav) = log
(

µ̄1µ̄2
µ1µ2

)
−
(

β1d−1
β1(β1−1) +

β2d−1
β2(β2−1)α̃

)
µ̄12 log e

dχ
1

snrav
+ o( 1

snrav
) , (A99)

hence, for snrav → ∞,

2∆1(snrav)+∆2(snrav) =
µ̄1µ̄2
µ1µ2

(
1−K1 µ̄12

1
snrav

)
+ o( 1

snrav
) , (A100)

where we used the approximation ex ≈ 1 + x, x � 1 and

K1 ,
(

β1d−1
β1(β1−1) +

β2d−1
β2(β2−1)α̃

)
· 1

dχ . (A101)

Next, considering the log(·) term in (A93), it is concluded (following some algebra) that, for
snrav → ∞,

log
(

1− µ1µ2
µ̄12

(
2∆1(snrav)+∆2(snrav) − 1

))
= − log snrav + log(µ̄1µ̄2K1) + o(1) . (A102)

Combining (A102), (A94) and (A93), while recalling that S∞,1 = S∞,2 = 1 for β1, β2 > 1
(cf. (A60)), we obtain, for snrav → ∞,

Cub
sum(snrav) = 2 log snrav −

(
Lopt

∞,1 − log χ
)
−
(
Lopt

∞,2 − log(α̃χ)
)
− log(µ̄1µ̄2)

− log snrav + log(µ̄1µ̄2) + logK1 + o(1)

= log snrav − (L∞,1 − log χ)− (L∞,2 − log(α̃χ)) + logK1 + o(1) .

(A103)

Hence, for β1, β2 > 1, the high-SNR slope of the sum-rate upper bound (A93) (equivalently, (28))
reads

Sub
∞ = 1 , (A104)

while the high-SNR power offset satisfies

Lub
∞ = L∞,1 + L∞,2 − log(α̃χ2K1) . (A105)

Finally, noting that

α̃χ2K1 =
(
(β1d−1)α̃
β1(β1−1) +

β2d−1
β2(β2−1)

)
· χ

d , (A106)

we obtain (64), which completes the proof.

Appendix G. RS-CDMA: Achievable Region for Two User Classes

In this appendix, we derive the achievable region for RS-CDMA in the large-system limit
following the analysis in [41]. The system model for RS-CDMA can still be described via (1), where
we now assume that the entries of the signature matrices are i.i.d. random variables with zero mean,
unit variance and finite fourth moment. We also set d = N to comply with the setting considered in
[41]. Referring to (8) and starting with the individual rate constraints, we have, from ([41], Section
IV), that

1
N I(x1; y|x2, {Ai}i=1,2) −−−→

N→∞
CRS(β1, snr1) (A107)

1
N I(x2; y|x1, {Ai}i=1,2) −−−→

N→∞
CRS(β2, snr2) , (A108)

where

CRS(βi, snri) = βi log
(

1 + snri − 1
4F(snri, βi)

)
+ log

(
1 + βisnri − 1

4F(snri, βi)
)
− log e

4snri
F(snri, βi) , i = 1, 2,

(A109)

and F(·, ·) is defined in (6) [40].
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To proceed with the analysis of the sum-rate constraint in (8), we introduce the probability mass
function (pmf) as

p(g) =


β1

β1+β2
=

β1
β , g =

√
snr1
snrav

,
β2

β1+β2
=

β2
β , g =

√
snr2
snrav

,
(A110)

where, as in (19),

snrav , β1
β snr1 +

β2
β snr2 . (A111)

Then, in the large-system limit, while relying on the strong law of large numbers (SLLN), the
received signal in (1) is well represented by

y =
√

snrav
N ARSGx + z , (A112)

where the N × K matrix ARS = [A1 A2] has i.i.d. zero-mean entries with unit variance and finite
fourth moment, G = diag(g1, . . . , gK) is a diagonal random matrix with i.i.d. entries distributed
according to (A110), x ∼ CN (0, IK) denotes the input vector comprising both classes of users and
z ∼ CN (0, IN) denotes the AWGN. Next, by ([41], Theorem IV.1), we have

1
N I(x1, x2; y|{Ai}i=1,2) −−−→N→∞

Csum
RS , (A113)

where

Csum
RS = Cmmse

RS + log 1
ηRS

+ (ηRS − 1) log e , (A114)

Cmmse
RS = β1 log(1 + snr1ηRS) + β2 log(1 + snr2ηRS) , (A115)

and ηRS is the positive solution to

ηRS + β1
ηRSsnr1

1+ηRSsnr1
+ β2

ηRSsnr2
1+ηRSsnr2

= 1 . (A116)

The explicit dependence of Csum
RS , Cmmse

RS and ηRS on {βi, snri}i=1,2 was omitted here for notational
simplicity. Note that (A116) boils down to the 3rd order polynomial equation

a3η3
RS + a2η2

RS + a1ηRS + a0 = 0 , (A117)

where

a3 = snr1snr2 , (A118a)
a2 = snr1snr2(β1 + β2 − 1) + snr1 + snr2 , (A118b)
a1 = (β1 − 1)snr1 + (β2 − 1)snr2 + 1 , (A118c)
a0 = −1 . (A118d)

Combining (A107), (A108) and (A113), we finally conclude that the achievable rate region for
RS-CDMA in the large-system limit reads

RRS =
{
(R1, R2) : R1 ≤ CRS(β1, snr1),

R2 ≤ CRS(β2, snr2),

R1 + R2 ≤ Csum
RS

}
.

(A119)

Appendix H. The High-SNR Regime: Some Fundamental Observations

In this appendix, we pursue a somewhat refined high-SNR approximation of Copt(snr, β, d), as
given by (5) (we omit subscripts in the following since the analysis holds for either i = 1 or i = 2). The
observations made here serve as a fundamental tool for the high-SNR analysis of the sum-rate lower and
upper bounds of Propositions 1 and 2 (see Appendices E and F, respectively).
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Appendix H.1. β = 1

We start by considering the case where β = 1; hence, (cf. Theorem 1) α = γ, β̃ = 1 and ζ = d
α ,

yielding

Copt(snr, 1, d) = d
2 log

(
1 + 2αsnr− 1

4F(αsnr, 1)
)
− d−2

2 log
(

(1+d snr)2

G(αsnr, d
α ,1)

)
. (A120)

Note that

F(αsnr, 1) =
(√

4αsnr+ 1− 1
)2

= 2αsnr
(

2−
√

4αsnr+1
αsnr + 1

αsnr

)
, (A121)

while

G(αsnr, d
α , 1) =

(√
d(4αsnr+1)−

√
d−4α√

d−
√

d−4α

)2
= d(4αsnr+ 1)

(
1−

√
d−4α√

d(4αsnr+1)√
d−
√

d−4α

)2

. (A122)

Substituting (A121) back into the first logarithmic term in (A120) yields (following some algebra)

log
(

1 + 2αsnr− 1
4F(αsnr, 1)

)
= log snr+ log α + log

(
1 +

√
4αsnr+1
2αsnr − 1

2αsnr

)
+ log

1 + 1

αsnr

(
1+
√

4αsnr+1
2αsnr − 1

2αsnr

)


−−−−→
snr→∞

log snr+ log
(

1− 1
d

)
+
√

d log e√
d−1

1√
snr

+ o( 1√
snr

) ,

(A123)

where we use the following approximation:

log(1 + x) = log x + log(1 + 1
x )→ log x +

log e
x + o( 1

x ) , x � 1 . (A124)

Similarly, using (A122), we obtain, for the second logarithmic term in (A120),

log
(

(1+d snr)2

G(αsnr, d
α ,1)

)
= 2 log(1 + d snr)− log(4αsnr+ 1)− 2 log d + 2

− 2 log
(

1− d−2
d
√

(4αsnr+1)

)
−−−−→
snr→∞

log snr− log
(

1− 1
d

)
+

(d−2) log e√
d(d−1)

1√
snr

+ o( 1√
snr

) .

(A125)

Substituting the above high-SNR approximations back into (A120), we finally obtain

Copt(snr, 1, d) −−−−→
snr→∞

log snr+ (d− 1) log
(

1− 1
d

)
+

2
√

d−1 log e√
d

1√
snr

+ o( 1√
snr

) . (A126)

Appendix H.2. β > 1

For β > 1, we investigate Copt(snr, β, d) by directly considering its integral form (see [39], ([38],
Theorems 2 and 3), (A31) and the corresponding discussion and notation in Appendix C)

Copt(snr, β, d) =
∫ ∞

0
log(1 + snrλ)ρ(λ, β, d)dλ , (A127)

where

ρ(λ, β, d) = [1− β]+δ(λ) +
βd
2π

√
[λ−λ− ]+ [λ+−λ]+

λ(βd−λ)
. (A128)

Note that, for β > 1, the density ρ(λ, β, d) has a finite strictly positive support (λ−, λ+); hence,
Copt(snr, β, d) can be equivalently expressed as
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Copt(snr, β, d) =
∫ λ+

λ−
log(snrλ)ρ(λ, β, d)dλ +

∫ λ+

λ−
log(1 + 1

snrλ )ρ(λ, β, d)dλ

= log snr+
∫ λ+

λ−
log(λ)ρ(λ, β, d)dλ +

∫ λ+

λ−
log(1 + 1

snrλ )ρ(λ, β, d)dλ .

(A129)

Therefore, we approximate Copt(snr, β, d) in the high-SNR regime as

Copt(snr, β, d) = log snr+
∫ λ+

λ−
log(λ)ρ(λ, β, d)dλ +

log e
snr

∫ λ+

λ−
1
λ ρ(λ, β, d)dλ + o( 1

snr ) . (A130)

The two integrals in (A130) can be solved in closed form and read

∫ λ+

λ−
log(λ)ρ(λ, β, d)dλ = −(β− 1) log(β− 1) + β log β + (βd− 1) log

(
1− 1

βd

)
, (A131)

∫ λ+

λ−
1
λ ρ(λ, β, d)dλ =

βd−1
βd(β−1) . (A132)

Hence, we conclude that

Copt(snr, β, d) −−−−→
snr→∞

log snr− (β− 1) log(β− 1) + β log β + (βd− 1) log
(

1− 1
βd

)
+

(βd−1) log e
βd(β−1)

1
snr + o( 1

snr ) , β > 1 .
(A133)

Appendix H.3. 2
d ≤ β < 1

Using the subscript (·)u to designate quantities corresponding to an underloaded setting (β < 1)
, we start by noting that, in the underloaded regime, Copt

u (snr, β, d) can be shown to satisfy the relation

Copt
u (snr, β, d) = βCopt(βsnr, βol, dol) , (A134)

where we additionally define βol ,
1
β and dol , βd. Here, Copt(βsnr, βol, dol) specifies the achievable

throughput in an overloaded single-class setting with the corresponding parameters (see the discussion
in Section 3.1). Hence, Copt

u (snr, β, d) can be expressed in an integral form as

Copt
u (snr, β, d) = β

∫ ∞

0
log(1 + βsnrλol)ρ(λol, βol, dol)dλol , (A135)

where ρ(λol, βol, dol) is as in (A128) with the obvious change in parameters. Since βol > 1, the density
ρ(λol, βol, dol) has a finite strictly positive support and Copt

u (snr, β, d) can be equivalently rewritten as

Copt
u (snr, β, d) = β

∫ λ+
ol

λ−ol

log(snrβλol)ρ(λol, βol, dol)dλol

+ β
∫ λ+

ol

λ−ol

log(1 + 1
snrβλol

)ρ(λol, βol, dol)dλol

= β log snr+ β
∫ λ+

ol

λ−ol

log(βλol)ρ(λol, βol, dol)dλol

+ β
∫ λ+

ol

λ−ol

log(1 + 1
snrβλol

)ρ(λol, βol, dol)dλol .

(A136)

Hence, we approximate Copt
u (snr, β, d) in the high-SNR regime as

Copt
u (snr, β, d) = β log snr+ β

∫ λ+
ol

λ−ol

log(βλol)ρ(λol, βol, dol)dλol

+
β log e
snr

∫ λ+
ol

λ−ol

1
βλol

ρ(λol, βol, dol)dλol + o( 1
snr ) .

(A137)

The two integrals in (A137) can be solved in closed form, yielding

∫ λ+
ol

λ−ol

log(βλol)ρ(λol, βol, dol)dλol = (d− 1) log
(

1− 1
d

)
−
(

1
β − 1

)
log(1− β) , (A138)
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∫ λ+
ol

λ−ol

1
βolλol

ρ(λol, βol, dol)dλ =
β2(d−1)
d(1−β)

, (A139)

and the high-SNR approximation for Copt
u (snr, β, d) thus reads

Copt
u (snr, β, d) −−−−→

snr→∞
β
(

log snr+ (d− 1) log2

(
1− 1

d

)
−
(

1
β − 1

)
log(1− β)

)
+

β3(d−1) log e
d(1−β)

1
snr + o

(
1
snr

)
.

(A140)
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