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Abstract: In this paper, we deal with the critical problems in residue arithmetic. The reverse conver-
sion from a Residue Number System (RNS) to positional notation is a main non-modular operation,
and it constitutes a basis of other non-modular procedures used to implement various computational
algorithms. We present a novel approach to the parallel reverse conversion from the residue code into
a weighted number representation in the Mixed-Radix System (MRS). In our proposed method, the
calculation of mixed-radix digits reduces to a parallel summation of the small word-length residues
in the independent modular channels corresponding to the primary RNS moduli. The computational
complexity of the developed method concerning both required modular addition operations and
one-input lookup tables is estimated as O

(
k2/2

)
, where k equals the number of used moduli. The

time complexity is O(dlog2ke) modular clock cycles. In pipeline mode, the throughput rate of the
proposed algorithm is one reverse conversion in one modular clock cycle.

Keywords: Residue Number System; modular arithmetic; residue-to-binary conversion; Chinese
Remainder Theorem; mixed-radix representation

1. Introduction

Along with the improvement of computer technology, the development and imple-
mentation of new effective approaches to the organization and realization of computational
tasks are some of the main ways to increase the data processing speed. At present, high-
performance computing is developing extremely rapidly. These reasons lead to qualitatively
new requirements imposed on number-theoretic methods and computational algorithms.
Practically, all well-known approaches to high-performance computing use certain parallel
forms of data representation and processing. In recent decades, special consideration has
been given to the so-called modular computational structures. Their arithmetic foundation
is the Residue Number System (RNS), whose ideological roots go back to the classic topics
of number theory and abstract algebra. The RNS is a non-positional number system with
inherent parallelism and occupies a place of particular importance due to its carry-free
properties, which provide a high potential for accelerating arithmetic operations.

As is well known, the RNS has some advantages over a conventional Weighted Num-
ber System (WNS) in the design and implementation of high-performance computing
applications, devices, and systems. From its appearance in the mid-1950s to the present,
RNS arithmetic has attracted the constant attention of researchers in computer technol-
ogy [1,2], number-theoretic methods [3–5], digital signal and image processing [2,5–8],
communications systems [5,9], cryptography [2,8,10,11], and other fields [10].

The main advantage of RNS is its unique ability to decompose the large word-length
numbers into a set of smaller word-length residues, which are processed in parallel in
the independent modular channels. The inherent parallelism of RNS enables avoiding
the carry-overs obtained in addition, subtraction, and multiplication, which are usually

Entropy 2022, 24, 242. https://doi.org/10.3390/e24020242 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24020242
https://doi.org/10.3390/e24020242
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-5669-701X
https://orcid.org/0000-0002-7492-5394
https://doi.org/10.3390/e24020242
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24020242?type=check_update&version=2


Entropy 2022, 24, 242 2 of 14

time-consuming in the WNS. In this regard, the modularity and carry-free properties make
computation fast and efficient. Therefore, the RNS presents one of the most efficient means
for increasing data processing speed.

Due to its carry-free property, the residue arithmetic is exceptionally suitable for
a broad class of applications in which addition and multiplication are the dominant arith-
metic operations. In any case, it has excellent potential for many substantial applications
in such areas as digital signal processing, cryptography, distributed information and com-
munication systems, information security systems, fault tolerance, cloud computing, and
others. Moreover, these RNS applications may be effectively embedded in processor plat-
forms functioning according to the conventional information-processing approach [2,5,8].
For the reasons mentioned above, residue arithmetic represents an efficient mathematical
tool for the high-speed implementation of various computational tasks.

The reverse conversion and base extension are the most critical topics in residue
arithmetic. As opposed to conventional WNS, these operations, on a par with other central
non-modular procedures such as magnitude comparison, sign determination, overflow
detection, general division, scaling, etc., are relatively harder for implementation. They
are time consuming and costly due to their more complicated structure compared to
modular operations.

As is known, to perform non-modular operations, it is necessary to carry out the
binary reconstruction of the integer by its residue code, which in general is hampered by
the non-weighted nature of the RNS. This circumstance negates to a substantial extent the
main advantages of residue arithmetic.

Therefore, the development of novel approaches and methods for fast number recon-
struction by its residue code has significant importance in high-performance computing
based on parallel algorithmic structures of RNS, especially for high-speed implementing
digital signal processing applications and public-key cryptosystems. That should enable
the extensive use of residue arithmetic in many priority areas of science and technology.

In this paper, we present a novel approach to the parallel reverse conversion from the
residue code into the mixed-radix representation. In the proposed method, the calculation
of mixed-radix digits reduces to a parallel summation of the small word-length residues in
the independent modular channels corresponding to the primary RNS moduli.

The paper is structured as follows. Sections 2 and 3 discuss the basic theoretical
concepts of the research. Section 4 describes the mathematical background of the proposed
reverse conversion method. Sections 5 and 6 present a numerical example and an analysis of
the computational cost, respectively. Section 7 provides discussion, and Section 8 concludes
the paper.

2. The Basic Concepts of the Residue Arithmetic

The abstract algebra and number theory create the theoretical basis of the residue
arithmetic [12,13].

An RNS is defined by an ordered set {m1, m2, . . . , mk} of k pairwise relatively prime
moduli, where each modulus mi ≥ 2 (i = 1, 2, . . . , k), and the greatest common divisor of
mi and mj equals 1, i.e., gcd

(
mi, mj

)
= 1 for i 6= j. For convenience, we assume that the

default order of moduli is ascending, i.e., m1 < m2 < · · · < mk.
In the given RNS, it is possible to represent Mk integer numbers, where Mk is the

product of all moduli, Mk = ∏k
i=1 mk. Therefore, the set ZMk = {0, 1, . . . , Mk − 1} is usually

used as an RNS dynamic range.
Every number X ∈ ZMk has a unique representation in the form of a k-tuple of small

integers (χ1, χ2, . . . , χk), which is called a residue code, where χi is a least non-negative
remainder of a division of X by mi (i = 1, 2, . . . , k). We can notationally write this relation
as χi = |X|mi

, where χi ∈ Zmi = {0, 1, . . . , mi − 1}.
The main advantage of the residue arithmetic over conventional binary arithmetic

consists of parallel carrying out addition, subtraction, and multiplication at the level
of small word-length residues. The modular operations ◦ ∈ {+,−,×} on integers
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A = (α1, α2, . . . , αk) and B = (β1, β2, . . . , βk) are performed independently in each modular
channel in compliance with the computational rule:

A ◦ B = (α1, α2, . . . , αk) ◦ (β1, β2, . . . , βk) =

=
(
|α1 ◦ β1|m1

, |α2 ◦ β2|m2
, . . . , |αk ◦ βk|mk

)
, (1)

where αi = |A|mi
and βi = |B|mi

, i = 1, 2, . . . , k.
In other words, the arithmetic operations on long-word operands are decomposed

into modular channels with operands that are no larger than the corresponding modulus.
Moreover, all the modular channels are entirely independent of each other. The carry-
free nature of modular operations (1) is one of the most attractive features of residue
arithmetic [1,3,8].

Therefore, compared with the conventional WNS, the RNS simplifies and speeds up
the addition and multiplication operations. This fundamental advantage of the residue
arithmetic strongly appears in the case of implementing computational procedures, which
mainly contain long segments consisting of only sequences of modular arithmetic op-
erations. In this case, the primary moduli set is chosen so that the final results of the
computational procedure always belong to the used dynamic range for any allowed val-
ues of input operands. At the same time, the intermediate results can even exceed the
boundaries of the dynamic range.

Along with the carry-free modular operations, there are also the so-called non-modular
operations such as residue-to-binary conversion, base extension, magnitude comparison,
sign determination, overflow detection, general division, scaling, etc. These operations are
complicated and quite time consuming, and their significant computational complexity
limits the applications of the residue arithmetic and restricts its widespread usage for
high-speed computing.

To perform the non-modular operations, it is required to consider all residues in the
k-tuple (χ1, χ2, . . . , χk). Furthermore, it is necessary to determine the integer value of the
number by its residue code, which in general is hampered by the non-positional nature
of the RNS. The crucial problem of efficient implementation of non-modular operations is
constantly receiving considerable attention by modern researchers [2,5,8].

The applicability of residue arithmetic is mainly determined by the computational
complexity and feasibility of non-modular operations, which are used as a basis for imple-
menting more complex computational algorithms in RNS. At the same time, the funda-
mental problem in the residue arithmetic, which unfortunately up to now is yet completely
unresolved; it consists of reducing the computational complexity of non-modular oper-
ations. Due to a lack of efficient methods and algorithms for non-modular operations
implementation, the residue arithmetic is mainly suitable when the modular additions and
multiplications make up the bulk of required computations. In this case, the number of
used non-modular operations is relatively small. This circumstance bounds the widespread
use of the RNS to a narrow class of specific tasks.

3. Reverse Conversion of the Residue Code to Conventional Representation

The root problem of residue arithmetic is that the weighted value of the integer X de-
pends on all the residues χ1, χ2, . . . , χk. The reconstruction of an integer by its residue code,
i.e., the reverse conversion, is one of the most difficult non-modular operations in residue
arithmetic. Moreover, this operation underlies all the other non-modular procedures.

Despite the currently extensive studies on residue arithmetic and its applications,
there is a need to develop novel efficient approaches and methods of an integer number
reconstruction by its residue code. This should enable us the extensive use of residue
arithmetic for high-speed computing in many priority fields, first of all, in various digital
signal processing and cryptographic applications.

There are two canonical techniques of reverse conversion: the canonical method
based on the Chinese Remainder Theorem (CRT) and the residue code conversion to a
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weighted representation in the Mixed-Radix System (MRS) [1,2,5,8,14–18]. In general, all
other conversion methods represent different variants of these two methods.

Below, we describe the mathematical background of these methods.

3.1. CRT-Base Conversion Method

When the moduli m1, m2, . . . , mk are pairwise relatively prime, the integer number X
and its residue code (χ1, χ2, . . . , χk) are related by the equation:

X =

∣∣∣∣∣ k

∑
i=1

Mi,kχi,k

∣∣∣∣∣
Mk

, (2)

where Mi,k = Mk/mi, χi,k =
∣∣∣M−1

i,k χi

∣∣∣
mi

is a normalized residue modulo mi (i = 1, 2, . . . , k),∣∣Y−1
∣∣
m denotes the multiplicative inverse of an integer Y modulo m.

In essence, Equation (2) represents the CRT [10,19,20].
In the last decades, considerable efforts are directed to reducing the complexity of the

CRT implementation and the possibility of its application in high-speed
computing [2,5,8,21–23]. The main idea of these methods is to replace the inner multi-
plications and additions modulo Mk with simpler operations (see (2)).

Consider the CRT-number

Xk =
k

∑
i=1

Mi,kχi,k. (3)

As follows from (2), the difference Xk −X is a multiple of Mk. Therefore, the following
exact integer equality holds

X = Xk − ρk(X)Mk. (4)

The unique integer number ρk(X) is a normalized rank (or, briefly, rank) of the num-
ber X [3,4,7].

Equation (4) is called a rank form of the integer X. In essence, the rank ρk(X) is a
reconstruction coefficient that indicates how many times the dynamic range Mk is exceeded
when converting the residue code (χ1, χ2, . . . , χk) to the integer X.

In contrast to (2), Equation (4) does not contain a very time-consuming reduction
modulo Mk. Therefore, when we have the efficient method for the rank ρk(X) computation,
the reverse conversion algorithm constructed on the basis of (4) has a substantial lead over
the canonical CRT implementation (2).

3.2. MRS-Base Conversion Method

In the MRS defined by a set {m1, m2, . . . , mk} of pairwise relatively prime moduli,
the integer X ∈ ZMk is represented by the k-tuple (xk, xk−1, . . . , x1) of mixed-radix digits,
resulting in

X = x1 + x2M1 + x3M2 + · · ·+ xk Mk−1 =
k

∑
i=1

xi Mi−1, (5)

where xi ∈ Zmi (i = 1, 2, . . . , k) [1,2,8].
It is well known that the MRS surpasses the RNS when performing non-modular

operations such as magnitude comparison, sign determination, and overflow detection.
Therefore, the mixed-radix representation has received the widest appliance for the imple-
mentation of non-modular procedures along with the other generally accepted integral
characteristics of the residue code such as the rank of a number, core function, interval
index, parity function, diagonal, and quotient functions [3,4,7,24–33].

The RNS-to-MRS reverse conversion establishes an association between the residue
code (χ1, χ2, . . . , χk) of the number X and its mixed-radix representation (xk, xk−1, . . . , x1).
The mixed-radix digits xi (i = 1, 2, . . . , k) in (5) are computed according to the following
calculation relations [1]:
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x1 = χ1,

x2 =

∣∣∣∣(χ2 − x1)
∣∣∣m−1

1

∣∣∣
m2

∣∣∣∣
m2

,

x3 =

∣∣∣∣((χ3 − x1)
∣∣∣m−1

1

∣∣∣
m3
− x2

)∣∣∣m−1
2

∣∣∣
m3

∣∣∣∣
m3

,

. . .

xk =

∣∣∣∣(. . .
(
(χk − x1)

∣∣∣m−1
1

∣∣∣
mk
− x2

)∣∣∣m−1
2

∣∣∣
mk
− · · · − xk−1

)∣∣∣m−1
k−1

∣∣∣
mk

∣∣∣∣
mk

.

This sequential calculation procedure called a chained algorithm can be written in the
general form

xi =
∣∣∣X(i)

∣∣∣
mi

, (6)

where

X(i) =

{
X, if i = 1,(

X(i−1) − xi−1

)
m−1

i−1, if i = 2, 3, . . . , k.
(7)

From (6) and (7), it follows that the considered computational process requires two
modular operations: subtraction and multiplication by the multiplicative inverse. Thus,
the most crucial advantage of this algorithm is its high modularity. However, its strictly
sequential nature prevents general use for the construction of appropriate high-performance
parallel computing procedures.

4. A Novel CRT-Base RNS-to-MRS Reverse Conversion Method

Now, we describe a proposed new method for calculating mixed-radix digits x1, x2, . . . , xk
of the number X by its residue code (χ1, χ2, . . . , χk).

Consider the CRT-number Xk. According to (3), we have

Xk =
k−1

∑
i=1

Mi,k−1mkχi,k + Mk−1χk,k. (8)

By Euclid’s Division Lemma, the integer mkχi,k can be written as

mkχi,k = χi,k−1 +

⌊
mkχi,k

mi

⌋
mi, (9)

where

χi,k−1 =
∣∣mkχi,k

∣∣
mi

=

∣∣∣∣mk

∣∣∣M−1
i,k χi

∣∣∣
mi

∣∣∣∣
mi

=
∣∣∣mk M−1

i,k χi

∣∣∣
mi

=
∣∣∣M−1

i,k−1χi

∣∣∣
mi

,

bxc denotes the largest integer less than or equal to x.
Substituting (9) into (8), we obtain

Xk = Xk−1 + Mk−1Sk(X), (10)

where

Xk−1 =
k−1

∑
i=1

Mi,k−1χi,k−1, (11)
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Sk(X) =
k

∑
i=1

Ri,k(χi), (12)

Ri,k(χi) =

⌊
mkχi,k

mi

⌋
(i = 1, 2, . . . , k). (13)

Taking into account (9), we have

Ri,k(χi) =
mkχi,k − χi,k−1

mi
.

Since Ri,k(χi) ∈ Zmk , we can reduce the right side of equality modulo mk.
Hence, the residue Ri,k(χi) can be calculated as

Ri,k(χi) =

∣∣∣∣−χi,k−1

mi

∣∣∣∣
mk

=

∣∣∣∣∣∣∣−
∣∣∣M−1

i,k−1χi

∣∣∣
mi

mi

∣∣∣∣∣∣∣
mk

(i = 1, 2, . . . , k− 1). (14)

At the same time, from (13) it follows that

Rk,k(χk) = χk,k =
∣∣∣M−1

k,k χk

∣∣∣
mk

=
∣∣∣M−1

k−1χk

∣∣∣
mk

. (15)

Similarly, taking into account Equations (10)–(13), the numbers Xi (i = k− 1, k− 2, . . . , 1)
can be written by turns as

Xk−1 = Xk−2 + Mk−2Sk−1(X),

Xk−2 = Xk−3 + Mk−3Sk−2(X),

. . .

X2 = X1 + M1S2(X),

X1 = M0S1(X),

where M0 = 1, S1(X) = χ1, the integers Sl(X) (l = 2, 3, . . . , k) are calculated according
to (12)–(15) in the case when the index k is replaced by l.

Finally, substituting the above equations for Xl (l = k − 1, k − 2, . . . , 1) by turns
into (10), we obtain

Xk =
k

∑
i=1

Ml−1Sl(X). (16)

At the same time, according to Euclid’s Division Lemma, we have

Sl(X) = Rl(X) + mlQl(X), (17)

where Rl(X) = |Sl(X)|ml
and Ql(X) = bSl(X)/mic are the remainder and quotient of the

division Sl(X) by the modulus ml , respectively.
Therefore, taking into account (12), when the index k is replaced by l, the integers

Rl(X) and Ql(X) can be computed as

Rl(X) =

∣∣∣∣∣ l

∑
i=1

Ri,l(χi)

∣∣∣∣∣
ml

, (18)
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Ql(X) =

⌊
1

ml

l

∑
i=1

Ri,l(χi)

⌋
. (19)

From (19), it follows that Ql(X) equals the number of occurred overflows when calcu-
lating the sum Rl(X) of residues R1,l(χ1), R2,l(χ2), . . . , Rl,l(χl) modulo ml (l = 2, 3, . . . , k).

Note that R1(X) = χ1 and Q1(X) = 0 since S1(X) = χ1.
Substituting (17) into (16), we obtain

Xk = X(R)
k + X(Q)

k−1 + MkQk(X), (20)

where

X(R)
k =

k

∑
l=1

Ml−1Rl(X), (21)

X(Q)
k−1 =

k−1

∑
l=1

MlQl(X). (22)

Let us draw attention to Equations (21) and (22). It is evident that the number X(R)
k is

represented by the k-tuple
(

x(R)
k , x(R)

k−1, . . . , x(R)
1

)
of mixed-radix digits, where x(R)

l = Rl(X),

l = 1, 2, . . . , k (see Equation (5)). At the same time, x(R)
l ∈ Zml and X(R)

k ≤ Mk − 1.

Bearing in mind that Q1(X) = 0, the number X(Q)
k−1 can be written as

X(Q)
k−1 =

k−1

∑
l=1

Ml−1Q
′
l(X), (23)

where Q
′
1(X) = 0, Q

′
2(X) = Q1(X) = 0, and Q

′
l(X) = Ql−1(X) for l ≥ 3. Therefore, taking

into account (19), the integer Q
′
l(X) can be calculated as

Q
′
l(X) =

⌊
1

ml−1

l−1

∑
i=1

Ri,l−1(χi)

⌋
(l = 3, 4, . . . , k). (24)

Hence, Q
′
l(X) < l − 1 since Ri,l−1(χi) ≤ ml−1 − 1.

Thus, the integer X(Q)
k−1 (see Equations (23) and (5)) can be represented by a k-tuple(

x(Q)
k , x(Q)

k−1, . . . , x(Q)
1

)
of mixed-radix digits under the condition that x(Q)

l ∈ Zml (l = 1, 2, . . . , k),

where x(Q)
1 = x(Q)

2 = 0, x(Q)
l = Q

′
l(X) for l > 2. Consequently, that entails the fulfillment

of the condition Zl−1 ⊂ Zml , which leads to inequality

ml ≥ l − 1 (l = 1, 2, . . . , k). (25)

Thus, when the moduli set {m1, m2, . . . , mk}meets the conditions (25), we have that
X(Q)

k−1 < Mk.

Note that the integer X(Q)
k−1 is a multiple of the number M2 = m1m2 because of x(Q)

1 =

x(Q)
2 = 0 (see Equation (5)).

Now, let us return to Equation (20). According to Euclid’s Division Lemma, the sum
of two mixed-radix numbers X(R)

k and X(Q)
k−1 results in

X(R)
k + X(Q)

k−1 =
∣∣∣X(R)

k + X(Q)
k−1

∣∣∣
Mk

+ Mk

X(R)
k + X(Q)

k−1
Mk

. (26)
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Hence, substituting (26) into (20), we obtain

Xk =
∣∣∣X(R)

k + X(Q)
k−1

∣∣∣
Mk

+ Mk

Qk(X) +

X(R)
k + X(Q)

k−1
Mk

. (27)

Taking into account the rank form of the number X (4), from (27) we have

X =
∣∣∣X(R)

k + X(Q)
k−1

∣∣∣
Mk

. (28)

From (28), it follows that the mixed-radix representation of the number X, i.e., k-tuple
(xk, xk−1, . . . , x1), can be calculated as a result of the addition of two mixed-radix numbers
X(R)

k =
(

x(R)
k , x(R)

k−1, . . . , x(R)
1

)
and X(Q)

k−1 =
(

x(Q)
k , x(Q)

k−1, . . . , x(Q)
1

)
(see (21) and (23)) in the

basis {m1, m2, . . . , mk}. Note that x(R)
1 = χ1, x(Q)

1 = x(Q)
2 = 0. At the same time, the

digits x(R)
2 , x(R)

3 , . . . , x(R)
k and x(Q)

3 , x(Q)
4 , . . . , x(Q)

k are calculated as the sum of the residues
R1,l(χ1), R2,l(χ2), . . . , Rl,l(χl) modulo ml along with the counting of occurred overflows
according to (18) and (24) (l = 2, 3, . . . , k).

Therefore, the mixed-radix digits x(R)
l and x(Q)

l are computed as

x(R)
1 = χ1, x(R)

l =

∣∣∣∣∣ l

∑
i=1

Ri,l(χi)

∣∣∣∣∣
ml

(l = 2, 3, . . . , k), (29)

x(Q)
1 = x(Q)

2 = 0, x(Q)
l =

⌊
1

ml−1

l−1

∑
i=1

Ri,l−1(χi)

⌋
(l = 3, 4, . . . , k), (30)

where

Ri,l(χi) =

∣∣∣∣∣∣∣−
∣∣∣M−1

i,l−1χi

∣∣∣
mi

mi

∣∣∣∣∣∣∣
ml

(i 6= l), (31)

Rl,l(χl) =
∣∣∣M−1

l−1χl

∣∣∣
ml

(l = 2, 3, . . . , k). (32)

Furthermore, in the MRS with the bases m1, m2, . . . , mk, we calculate the sum of
two numbers X(R)

k and X(Q)
k−1. As a result, we obtain the mixed-radix representation

(xk, xk−1, . . . , x1) of the number X.
Table 1 given below presents the pre-calculation components (see Equations (31) and

(32)). It should be recalled that 〈R1,1(χ1)〉 = χ1. The abbreviation LUT means lookup table.
The bit-length of residues is bl = dlog2mle (l = 1, 2, . . . , k). Here, and further, dxe denotes
the smallest integer greater than or equal to x.

Table 1. The pre-calculation components.

Input Residue Number and Skope of LUTs Output Residue Set

χ1 k− 1, 2b1 × bl (l = 2, 3, . . . , k)
〈

R1,2(χ1), R1,3(χ1), . . . , R1,k(χ1)
〉

χ2 k− 1, 2b2 × bl (l = 2, 3, . . . , k)
〈

R2,2(χ2), R2,3(χ2), . . . , R2,k(χ2)
〉

. . . . . . . . .
χk−1 2, 2bk−1 × bl (l = k− 1, k)

〈
Rk−1,k−1(χk−1), Rk−1,k(χk−1)

〉
χk 1, 2bk × bk

〈
Rk,k(χk)

〉
Table 2 presents the results of calculations in the modular channels according to

Equations (29) and (30). It should be reminded that in the first modular channel cor-
responding to the modulus m1, the calculations are not carried out, so x(R)

1 = χ1 and

x(Q)
2 = 0.
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Table 2. The results of calculations in the modular channels.

Modular Channel Input Data Output Data

m2 〈R1,2(χ1), R2,2(χ2)〉 x(R)
2 , x(Q)

3

m3 〈R1,3(χ1), R2,3(χ2), R3,3(χ3)〉 x(R)
3 , x(Q)

4
. . . . . . . . .

mk−1
〈

R1,k−1(χ1), R2,k−1(χ2), . . . , Rk−1, k−1(χk−1)
〉

x(R)
k−1, x(Q)

k

mk
〈

R1,k(χ1), R2,k(χ2), . . . , Rk,k(χk)
〉

x(R)
k

The stated above allows us to formulate the following substantial theorem.

Theorem 1. (About RNS-to-MRS reverse conversion).
Let an arbitrary RNS be defined by an ascending-ordered set of k pairwise relatively prime mod-

uli m1, m2, . . . , mk (ml ≥ l − 1, l = 1, 2, . . . , k, k ≥ 2), and let the residue code (χ1, χ2, . . . , χk)
of the number X ∈ ZMk be given. Then, the mixed-radix representation (xk, xk−1, . . . , x1)
of the number X can be computed as a result of the summation of two mixed-radix numbers,
namely, the appropriate number X(R)

k =
(

x(R)
k , x(R)

k−1, . . . , x(R)
1

)
and the correction number

X(Q)
k−1 =

(
x(Q)

k , x(Q)
k−1, . . . , x(Q)

1

)
, where the digits x(R)

l and x(Q)
l (l = 1, 2, . . . , k) are calculated

according to (29) and (30), respectively, taking into account (31) and (32).

5. A Numerical Example of the Proposed Conversion Method

The main idea of the proposed approach to reverse conversion is illustrated below by
a simple numerical example. For convenience, we consider a four-moduli RNS.

Example 1. Let the RNS moduli-set be {m1, m2, m3, m4} = {5, 7, 9, 11}. Suppose that we wish to
calculate the digits of the mixed-radix representation (x4, x3, x2, x1) of the given number X by its
residue code (χ1, χ2, χ3, χ4) = (3, 6, 4, 2).

Step 1. The calculation of the primitive constants in a given RNS.
M4 = 3465, M3 = 315, M2 = 35, M1 = 5, M0 = 1,
M1,4 = 693, M2,4 = 495, M3,4 = 385, M4,4 = 315,∣∣∣M−1

1,4

∣∣∣
m1

= 2,
∣∣∣M−1

2,4

∣∣∣
m2

= 3,
∣∣∣M−1

3,4

∣∣∣
m3

= 4,
∣∣∣M−1

4,4

∣∣∣
m4

= 8,∣∣∣m−1
1

∣∣∣
m4

= 9,
∣∣∣m−1

2

∣∣∣
m4

= 8,
∣∣∣m−1

3

∣∣∣
m4

= 5,
∣∣∣M−1

3

∣∣∣
m4

= 8,

M1,3 = 63, M2,3 = 45, M3,3 = 35,∣∣∣M−1
1,3

∣∣∣
m1

= 2,
∣∣∣M−1

2,3

∣∣∣
m2

= 5,
∣∣∣M−1

3,3

∣∣∣
m3

= 8,∣∣∣m−1
1

∣∣∣
m3

= 2,
∣∣∣m−1

2

∣∣∣
m3

= 4,
∣∣∣M−1

2

∣∣∣
m3

= 8,

M1,2 = 7, M2,2 = 5,∣∣∣M−1
1,2

∣∣∣
m1

= 3,
∣∣∣M−1

2,2

∣∣∣
m2

= 3,∣∣∣m−1
1

∣∣∣
m2

= 3,
∣∣∣M−1

1

∣∣∣
m2

= 3.

Step 2. The calculation of the residue sets
〈

R1,l(χ1), R2,l(χ2), . . . , Rl,l(χl)
〉

according to (31)
and (32) (l = 1, 2, 3, 4).

We obtain
R1,1(χ1) = χ1 = 3,
R1,2(χ1) = |−|1 · 3|5 · 3|7 = 5,
R2,2(χ2) = |3 · 6|7 = 4,
R1,3(χ1) = |−|3 · 3|5 · 2|9 = 1,
R2,3(χ2) = |−|3 · 6|7 · 4|9 = 2,
R3,3(χ3) = |8 · 4|9 = 5,
R1,4(χ1) = |−|2 · 3|5 · 9|11 = 2,
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R2,4(χ2) = |−|5 · 6|7 · 8|11 = 6,
R3,4(χ3) = |−|8 · 4|9 · 5|11 = 8,
R4,4(χ4) = |8 · 2|11 = 5.
As a result, the following sets of residues occur
〈R1,1(χ1)〉 = 〈3〉,
〈R1,2(χ1), R2,2(χ2)〉 = 〈5, 4〉,
〈R1,3(χ1), R2,3(χ2), R3,3(χ3)〉 = 〈1, 2, 5〉,
〈R1,4(χ1), R2,4(χ2), R3,4(χ3), R4,4(χ4)〉 = 〈2, 6, 8, 5〉.
Step 3. The summation of the residues R1,l(χ1), R2,l(χ2), . . . , Rl,l(χl) modulo ml along

with the counting of occurring overflows according to (18) and (19), respectively (l = 2, 3, 4).
Recall that R1(X) = R1,1(χ1) = 3, and Q1(X) = 0. We have
R2(X) = |5 + 4|7 = |9|7 = 2,
R3(X) = |1 + 2 + 5|9 = |8|9 = 8,
R4(X) = |2 + 6 + 8 + 5|11 = |21|11 = 10,
Q2(X) = b(5 + 4)/7c = b9/7c = 1,
Q3(X) = b(1 + 2 + 5)/9c = b8/9c = 0,
Q4(X) = b(2 + 6 + 8 + 5)/11c = b21/11c = 1.
Therefore, the mixed-radix representations of the numbers X(R)

4 and X(Q)
3 (see (21) and (23))

are computed:(
x(R)

4 , x(R)
3 , x(R)

2 , x(R)
1

)
= (R4(X), R3(X), R2(X), R1(X)) = (10, 8, 2, 3),(

x(Q)
4 , x(Q)

3 , x(Q)
2 , x(Q)

1

)
= (Q3(X), Q2(X), 0, 0) = (0, 1, 0, 0).

Step 4. The calculation of the mixed-radix digits (x4, x3, x2, x1).
The addition of two numbers X(R)

4 = (10, 8, 2, 3) and X(Q)
3 = (0, 1, 0, 0) according to (28)

gives the mixed-radix representation (0, 0, 2, 3) of the number X.
Let us now verify the obtained result. According to (5), we have

X = (0, 0, 2, 3) = 0 · 315 + 0 · 35 + 2 · 5 + 3 = 13.

This result holds because the residue code of the integer number X = 13 is 3, 6, 4, 2, since
|13|5 = 3, |13|7 = 6, |13|9 = 4, |13|11 = 2. Thus, this result coincides with the condition of
the example.

6. The Computational Cost of the Reverse Conversion Method

As it follows from the results mentioned above, the calculation of the mixed-radix
digits x1, x2, . . ., xk reduces to the independent and parallel summation of small residues
R1,l(χ1), R2,l(χ2), . . ., Rl,l(χl) modulo ml in lth modular channel (l = 1, 2, . . . , k), taking
into account the number of the overflows occuring during the modular addition operations
(see (29)–(32)).

Let us evaluate the time required to perform the parallel reverse conversion.
First, we consider the calculation of mixed-radix digits of the numbers X(R)

k =(
x(R)

k , x(R)
k−1, . . . , x(R)

1

)
and X(Q)

k−1 =
(

x(Q)
k , x(Q)

k−1, . . . , x(Q)
1

)
(see (29) and (30)). As can be

seen, there are no modular addition operations in the first modular channel corresponding
to the modulus m1. In the second channel, we have only one addition operation modulo m2.
Furthermore, two additions modulo m3 are performed in the third channel and so on. Thus,
in the lth modular channel, we have l − 1 additions modulo ml (l = 2, 3, . . . , k). These
calculations are easily parallelized and pipelined. Therefore, the required computation
time for calculating digits x(R)

l and x(Q)
l is Tl = dlog2lemodular clock cycles.

Thus, the time for obtaining the mixed-radix representations of the numbers X(R)
k

and X(Q)
k−1 is determined by the time in the kth modular channel and equals Tk = dlog2ke

modular clock cycles.
The summation of X(R)

k and X(Q)
k−1 on the bases {m1, m2, . . . , mk} involves two ad-

ditional modular clock cycles taking into account the inter-digit carries. Therefore, the



Entropy 2022, 24, 242 11 of 14

execution time of the reverse conversion equals Tconv = Tk + 2 modular clock cycles. Thus,
the overall time is tconv = Tconvtmod, where tmod denotes the modular clock cycle time. At
the same time, when pipelined, the throughput rate of the proposed conversion method is
one conversion in one modular clock cycle.

Consider now the evaluation of the required computational cost. Due to the small
word-length of residues in the k-tuple (χ1, χ2, . . . , χk), the pre-computation and lookup
table techniques are suitable for reverse conversion implementation. So, we can use one-
input lookup tables depending on the residues word-length in each modular channel.

At the beginning stage of the reverse conversion, in the lth channel correspond-
ing to the modulus ml , the number of lookup tables required to store the residue set〈

R1,l(χ1), R2,l(χ2), . . . , Rl,l(χl)
〉

equals Nlut(l) = l. At the same time, the word length
of recorded residues is bl = dlog2mle bits (l = 2, 3, . . . , k). In the first modular channel,
Nlut(1) = 0 since S1(X) = χ1.

Then, the overall number of one-input lookup tables in all modular channels is
equal to

Nlut =
k

∑
l=2

Nlut(l) =
k2 + k− 2

2
.

The summation of the residues R1,l(χ1), R2,l(χ2), . . . , Rl,l(χl) modulo ml requires
Nadd(l) = l − 1 modular addition operations (l = 2, 3, . . . , k). At the same time, all in-
dependent calculations are realized in parallel in corresponding modular channels.

Taking into account that x(Q)
1 = x(Q)

2 = 0, the summation of two numbers X(R)
k =(

x(R)
k , x(R)

k−1, . . . , x(R)
1

)
and X(Q)

k−1 =
(

x(Q)
k , x(Q)

k−1, . . . , x(Q)
1

)
on the final stage of the reverse

conversion requires 2(k− 2) modular addition operations.
Hence, the overall number of modular addition operations in all modular channels is

equal to

Nadd =
k

∑
l=2

Nadd(l) + 2(k− 2) =
k2 + 3k− 8

2
.

When pipelined, the throughput rate of the proposed method is one reverse conversion
in one modular clock cycle.

7. Discussion

As it follows from [1], the calculation of the mixed-radix digits x1, x2, . . . , xk (see (6)
and (7)) requires k− 1 both addition and multiplication operations; in this case, the overall
conversion time is k(k− 1)/2 · (tadd + tmul), where tadd and tmul denote an execution time
of addition/subtraction and multiplication, respectively. The computational cost of the
pipelined implementation of this algorithm is k(k− 1)/2, both multiplication and addition
operations, while the conversion time is (k− 1)(tadd + tmul). The main drawback of this
method is its strictly sequential nature.

The parallel conversion method circumscribed in [16] uses the additional lookup
tables. At the same time, k(k + 1)/2 lookup tables and k(k + 1)/2 adders are required. The
conversion time is tlut + (k− 1)tadd due to the need to generate the inter-digit carries when
performing addition operations. As noted in [34], the method proposed in [16] does not
allow obtaining the claimed depth of O(log2k) in terms of RNS processing elements. In
this regard, an improved method was proposed by adding extra k(k + 1)/2 multipliers to
hardware resources used in [16]. The implementation time is tlut + tmul + (2log2k + 1)tadd.
Hence, the time complexity of this conversion algorithm is O(log2k).

In [15], the mixed-radix conversion is realized by the cascaded scheme of lookup tables
and adders. The computational cost for the sequential implementation is k(k− 2)/4 double-
size lookup tables and k(k− 2)/4 adders, while the conversion time equals
(k/2)· (tlut + tadd). When pipelined, the throughput rate is determined by the time equals
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tlut + tadd. This method works well when the used moduli do not have a very large word-
length, since the size of lookup tables increases significantly with a word-length growth.

The paper [17] presents the parallel reverse conversion method, which uses the lookup
table technique and requires no arithmetic or logical units. As reported, this algorithm is
better than the ones presented in [15,16]. It is based on solving k(k− 1)/2 linear Diophan-
tine Equations and requires k(k− 1)/2 lookup tables of size mi ×mj, while a conversion
time is (k− 1)tlut. When pipelined, its effective conversion rate is one conversion per
tlut. So, this method is attractive for DSP implementation. However, it is not suitable for
implementing cryptographic applications because of the enormous size of the required
lookup tables, especially when processing large numbers.

In the paper [9], the reverse conversion method is based on modular reduction by
a modified canonic CRT algorithm. This enables minimizing the bit-width of intermediate
data processing. The lookup tables translate the bi-bit input residues (i = 1, 2, . . . , k) into
bout-bit output integers, where bi = dlog2mie, bout =

⌈
1
2 log2

(
∑k

i=1 bi

)⌉
, and k is the number

of RNS moduli. As a result, the modular reduction of the modified k-tuple of bout-bits
integers is carried out over a ring of size 2bout such that only the bout least significant bits
of the binary representation are maintained. In this case, all the bout-bit outputs in the
modified k-tuple are added together by adder tree without regard to overflow, propagating
the bout least significant bits to the output. The reverse conversion requires k lookup tables
and k− 1 adders. The scope of used lookup tables is 2b × 2bout , b ∈ {b1, b2, . . . , bk}. The
overall conversion time is tlut + dlog2ke tadd.

Some reverse conversion methods use the special moduli sets with a limited number
of moduli, such as m = 2n + d (d ∈ {−1, 0, 1}) [2,8,35–40]. Their main drawback consists
in a small number of the selected moduli, typically from three to five. These moduli
sets are suitable for the efficient implementations of DSP algorithms but completely not
applicable for large numbers processing widely used in cryptography. For example, to
represent 1024-bit word-length cryptographic numbers using four RNS moduli, each
modular channel must have residues of 256-bit length, which is not qualified for high-
performance computing.

Table 3 compares the results across multiple techniques of the reverse conversion. Here,
we use the following abbreviations: LUT—lookup table, ADD–adder, MUL—multiplier.
The bit length b ∈ {b1, b2, . . . , bk}, bl = dlog2mle (l = 1, 2, . . . , k).

Table 3. RNS-to-MRS reverse conversion methods.

Method Number and Scope of LUTs ADD MUL Conversion Time

[1],
sequential – k− 1 k− 1 k(k−1)

2 (tmul + tadd)

[1],
sequential,
pipelined k(k−1)

2 ; 2(b+1) × b k(k−1)
2 – (k− 1)(tlut + tadd)

[16],
parallel k(k+1)

2 ; 2b × b k(k+1)
2 – tlut + (k− 1)tadd

[34],
parallel k(k+1)

2 ; 2b × b k(k+1)
2

k(k+1)
2 tlut + tmul + (2log2k + 1)tadd

[15],
sequential k(k−2)

4 ; 22b × 2b k(k−1)
4 – k

2 (tlut + tadd)

[15],
parallel k(k−2)

4 + k− 1; 22b × 2b k(k+2)
4 − 3 – tlut +

k
2 tadd

[17],
parallel k(k−1)

2 ; 22b × b – – (k− 1)tlut

[9] k; 2b × 2d
1
2 log2(k b)e k− 1 – tlut + (dlog2ke)tadd

Our method,
parallel k2+k−2

2 ; 2b × b k2+3k−8
2 – (dlog2ke+ 2)tmod
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As seen from above, the proposed parallel reverse conversion method has time com-
plexity of the order O(dlog2ke). In pipelined mode, it enables the high throughput rate and
has one reverse conversion in one modular clock cycle. At the same time, the computational
complexity is of the order of O(k2/2) in terms of the number of both required arithmetic
operations and one-input lookup tables.

8. Conclusions

In this paper, a novel approach to parallel reverse conversion of the residue code
(χ1, χ2, . . . , χk) of the number X to mixed-radix representation (xk, xk−1, . . . , x1) is described.

The calculation of the mixed-radix digits (xk, xk−1, . . . , x1) is reduced to a parallel
summation of the small word-length residues R1,l(χ1), R2,l(χ2), . . ., Rl,l(χl) modulo ml
in lth modular channel (l = 1, 2, . . . , k), taking into account the number of the overflows
occuring during the modular addition operations. These modular operations are performed
fast and independently in each modular channel and easily pipelined.

The computational cost of the proposed reverse conversion method is presented. In
all modular channels, the general number of modular addition operations is equal to
Nadd =

(
k2 + 3k− 8

)
/2 . At the same time, the summary number of reqiured one-input

lookup tables makes up Nlut =
(
k2 + k− 2

)
/2.

The execution time of the reverse conversion equals Tconv = dlog2ke+ 2 modular clock
cycles. At the same time, when pipelined, the throughput rate of the proposed conversion
method is one conversion in one modular clock cycle.

The proposed parallel reverse conversion method coincides with the development
vector of modern high-performance computing using residue arithmetic. It can find a
widespread application for implementing a broad class of tasks in various areas of science
and technology, first of all, in digital signal processing and cryptography.
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