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Abstract: Handling missing values in matrix data is an important step in data analysis. To date,
many methods to estimate missing values based on data pattern similarity have been proposed. Most
previously proposed methods perform missing value imputation based on data trends over the entire
feature space. However, individual missing values are likely to show similarity to data patterns in
local feature space. In addition, most existing methods focus on single class data, while multiclass
analysis is frequently required in various fields. Missing value imputation for multiclass data must
consider the characteristics of each class. In this paper, we propose two methods based on closed
itemsets, CIimpute and ICIimpute, to achieve missing value imputation using local feature space for
multiclass matrix data. CIimpute estimates missing values using closed itemsets extracted from each
class. ICIimpute is an improved method of CIimpute in which an attribute reduction process is introduced.
Experimental results demonstrate that attribute reduction considerably reduces computational time and
improves imputation accuracy. Furthermore, it is shown that, compared to existing methods, ICIimpute
provides superior imputation accuracy but requires more computational time.

Keywords: missing value imputation; multiclass matrix data; closed itemset; local feature space

1. Introduction

In data analysis, when there are missing values in the data, many analysis methods do
not provide accurate results [1–4]. Therefore, handling missing values is a very important
issue in data analysis [5–7].

There are two main approaches to handling missing values. First, if there is a small
number of instances that contain missing values (e.g., samples or attributes in a matrix
data), such instances can be deleted [2,8]. However, if there is a significant number of such
instances, this approach should not be applied because it can result in the loss of important
information. The second approach involves imputing the values of missing data based
on their similarity to data patterns of other instances [9,10]. Data imputation facilitates
the application of analytical methods to complete datasets without changing the size of
the dataset. To date, many data imputation methods based on various algorithms, such
as k-nearest neighbor [11,12], the least squares principle [13], random forest [14], decision
tree [15], and naïve Bayes [16], have been proposed. Most previously proposed imputation
methods use trends across all instances, i.e., the entire feature space, to estimate missing
values. However, the feature space around each missing data item is likely to follow data
patterns in local feature space. Therefore, it is important to estimate missing values based
on local feature space.

Most existing approaches for dealing with missing values focus on single class datasets.
Handling missing values in multiclass datasets requires techniques that utilize characteristic
data patterns in each class.
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The motivation of this study is to provide a high-accuracy method for missing value
imputation using local feature space for multiclass matrix datasets. To this end, we propose
an innovative approach based on closed itemset mining. This paper describes two data
imputation methods, CIimpute and ICIimpute, based on closed itemsets that typically
occur in each class. Note that we assume that rows, columns, and elements in matrix data
correspond to samples, attributes, and data, respectively, and that each sample has a class
label. A closed itemset is a subset of attribute values that commonly occur in a subset of
samples in matrix data; thus, a closed itemset can be used to represent local features around
a missing value. CIimpute estimates missing values using closed itemsets occurring in each
class. However, closed itemset mining from matrix data is a combinatorial search problem
for samples and attributes; therefore, the computational cost increases exponentially as
the matrix data size increases. To address this problem, ICIimpute introduces an attribute
reduction process to CIimpute. The proposed methods are evaluated using four UCI
datasets [17] and compared with well-known existing methods.

The remainder of this paper is organized as follows. Section 2 describes closed itemsets.
Section 3 explains the procedures of the proposed methods. Experiments conducted to
evaluate the proposed methods are described in Section 4, and the experimental results and
some observations are presented and discussed in Section 5. Conclusions and suggestions
for future work are presented in Section 6.

2. Closed Itemset

A closed itemset is utilized to estimate missing values based on similarity of local
feature space in matrix data. This section defines a closed itemset and describes the LCM
algorithm applied to exhaustively enumerate closed itemsets.

2.1. Definition

Let I = {1, 2, . . . , n} be a set of items. A transaction database on I is defined as
T = {s1, s2, . . . , sm} such that each si is included in I. Each si is called a transaction. A set
P ⊆ I is called an itemset. A transaction including P is called an occurrence of P. The set of
occurrences of P is expressed as T(P). The size of a set of occurrences for P is referred to
as the frequency of P. An itemset P is called a closed itemset if no other itemset Q satisfies
T(P) = T(Q), P ⊆ Q. For a given minimum support constant (hereafter θ), P is frequent if
|T(P)| ≥ θ. A frequent and closed itemset is referred to as a frequent closed itemset.

In this study, a transaction database is represented by matrix data. In this matrix data,
rows, columns, and elements are considered as transactions (hereafter samples), attributes,
and items, respectively. Figure 1a shows a transaction database where each transaction
has five items. Figure 1b shows the frequent itemsets and the closed itemsets when θ = 3.
For example, {1, 4} and {4, 13} are frequent itemsets but are not closed itemsets because
both itemsets are subsets of {1, 4, 13}, i.e., the maximal itemsets (i.e., closed itemsets) in the
occurrence set {s1, s2, s3}.
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2.2. LCM Algorithm

Mining closed itemsets using a naive full search requires considerable computation
time because it involves a combinatorial search. In this study, we employ a fast and effi-
cient LCM algorithm [18,19] that, depending on the size of the database, can enumerate
frequent closed itemsets in linear time using a unique approach called prefix-preserving
closure extension. This extension generates a new frequent closed itemset from the previ-
ously obtained itemset without duplication by the depth-first search technique; therefore,
unnecessary non-closed frequent itemsets can be completely pruned.

3. Methods

In this section, we describe the proposed missing value imputation methods. Here, CI-
impute estimates missing values using closed itemsets occurring in each class in multiclass
matrix data, and ICIimpute introduces an attribute reduction process to CIimpute.

3.1. Preprocessing

Figure 2 shows the preprocessing procedure. The input data is a multiclass matrix
with class labels, as shown in Figure 2a. Each row and column represent a sample and an
attribute, respectively. Here, CL denotes the class label, and M represents a missing value.
First, the elements of attributes other than CL are normalized in the column direction using
z-score normalization. Next, the normalized matrix is transformed into a discretized matrix,
as shown in Figure 2b. The element values of attributes other than CL are discretized evenly
into k levels. In this study, k was set to 7 following the results reported in [20]. Finally,
the discretized matrix is transformed into an item matrix, as shown in Figure 2c. The item
matrix is constructed using the itemization table shown in Figure 2d. In the itemization
table, each class and each discretized value correspond to a unique number, i.e., an item.
Each class is assigned an item starting from 1, and each discretized value is assigned an
item in order starting from the number of classes + 1. The item matrix can be constructed
by the above procedure regardless of the number of divisions in discretization. We use the
item matrix as input data (transaction data) to extract closed itemsets.
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3.2. CIimpute: Closed Itemset-Based Imputation Method

Figure 3 shows the procedure of CIimpute. CIimpute comprises four steps: (1) item
masking, (2) closed itemset mining, (3) calculation of evaluation indices for the closed
itemset, and (4) missing value imputation. The steps correspond to Step 1, 2, 3, and 4 in
Figure 3, respectively.
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3.2.1. Step 1: Item Masking

A sample with missing values is referred to as a sample query. In Figure 3, sample s3
is a sample query. For each column, items between the sample query and the other samples
are compared, and items that differ from the sample query are deleted because closed item-
sets with such items cannot be used for missing value imputation. Item masking reduces
computational time because closed itemsets with masked items do not need to be searched.

3.2.2. Step 2: Closed Itemset Mining

After item masking, closed itemsets that include both the CL attribute and the at-
tribute with a missing value are mined from the matrix data. The CL attribute is used to
discriminate closed itemsets occurring in each class. In other words, the closed itemset
including CL is a closed itemset occurring in the class CL. In contrast, the closed itemset
without CL is a closed itemset occurring across multiple classes. The attribute including
the missing value is utilized to estimate the missing value.
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3.2.3. Step 3: Calculation of Evaluation Indices for Closed Itemset

For the closed itemsets obtained in Step 2, the following three indices are calculated.

support(X→ Y) =
|X∪ Y|
|D| , (1)

confidence(X→ Y) =
|X∪ Y|
|X| , (2)

lift(X→ Y) =
confidence(X→ Y)

|Y|
|D|

, (3)

where X is a set of items other than items of an attribute including the missing value, Y is
the item of an attribute including the missing value, and D is the number of samples in the
matrix data.

3.2.4. Step 4: Missing Value Imputation

For the closed itemset with the maximum score in each index calculated in Step 3, the
estimated value of the missing value, e(M), is computed as follows:

e(M) = norm_min(aM) + clo_disc(aM)× interval(aM), (4)

where aM is an attribute including the missing value M, norm_min(aM) is a function that
returns the minimum value in the column of aM in the normalized matrix, clo_disc(aM) is
a function that returns the discretized value corresponding to the item in the column of
aM of the closed itemset obtained in Step 3, and interval(aM) is a function that returns the
discrete interval of the column of aM in the normalized matrix.

3.3. ICIimpute: Improved Closed Itemset-Based Imputation Method

Closed itemset mining requires significant computation time due to the combinatorial
problem. The LCM algorithm is a fast and efficient algorithm for a sparse transaction
database (matrix data). In Section 3.2, sparse matrix data was generated by item masking
in the column direction to improve the computational efficiency of closed itemset mining.
However, the computational time required for closed itemset mining is also considerably
influenced by the number of attributes.

Here, we describe ICIimpute, which introduces the attribute reduction process. The
pseudocode of the attribute reduction process is provided in Figure 4. This process is
part of the preprocessing described in Section 3.1. Input data for the attribute reduction
process is a normalized matrix with CLs. The column vector of the attribute including
the missing value is called an attribute query. First, a similarity measurement, i.e., cosine
similarity, between the attribute query and the rest of the column vectors (hereafter attribute
vectors) is performed. Subsequently, the attribute vectors showing the top α% similarity
are extracted. The reduction rate is defined as (100 − α)%. Next, new matrix data is
generated by adding these attribute vectors to the attribute query. Finally, the new matrix
data is converted to an item matrix according to the procedure described in Section 3.1.
Subsequent missing value imputation is performed according to the procedure described
in Section 3.2. By executing the above process for all attribute queries, all missing values
can be imputed. The goal of the attribute reduction process is to eliminate column vectors
with low similarity to the attribute query. This process is expected to reduce the amount of
computation because it reduces the search process for closed itemsets that do not contribute
to missing value imputation.



Entropy 2022, 24, 286 6 of 15Entropy 2022, 24, 286 6 of 15 
 

 

 
Figure 4. Pseudocode of the attribute reduction process. 

4. Experiments 
4.1. Dataset 

Evaluation experiments were conducted using the UCI datasets listed in Table 1. 
Note, all four are multiclass matrix datasets. 

Table 1. UCI datasets used in the experiments. 

Dataset # of Attributes # of Samples Class Label 
# of Samples  
in Each Class 

Parkinson 23 197 
1 49 
2 148 

SPECTIF 44 80 
1 30 
2 50 

segmentation 19 210 

1 30 
2 30 
3 30 
4 30 
5 30 
6 30 
7 30 

acoustic 46 240 
1 121 
2 119 

4.2. Evaluation Method 
Both CIimpute and ICIimpute require a minimum support constant θ as a parameter 

in the closed itemset mining. θ is generally set to a value of 2 or more. By setting a smaller 
θ, more computational time is required, but more closed itemsets available for missing 
value imputation can be obtained. The result of preliminary experiments under θ = 2 and 
3 showed that θ = 3 provided almost the same number of closed itemsets in shorter com-
putational time compared to θ = 2. Hence, in this study, θ was set to 3 in both CIimpute 
and ICIimpute. 

The imputation accuracy and computation time of both proposed methods were 
evaluated experimentally by estimating randomly generated missing values. The impu-
tation accuracy was evaluated using the root mean square error (RMSE) metric, which is 
calculated as follows: 

RMSE = ∑ ( ) , (5)

where n is the number of missing values, x  is an actual value, and x  is an estimated 
value. The imputation accuracy improves as the RMSE value approaches zero. The RMSE 

Figure 4. Pseudocode of the attribute reduction process.

4. Experiments
4.1. Dataset

Evaluation experiments were conducted using the UCI datasets listed in Table 1. Note,
all four are multiclass matrix datasets.

Table 1. UCI datasets used in the experiments.

Dataset # of Attributes # of Samples Class Label # of Samples
in Each Class

Parkinson 23 197
1 49

2 148

SPECTIF 44 80
1 30

2 50

segmentation 19 210

1 30

2 30

3 30

4 30

5 30

6 30

7 30

acoustic 46 240
1 121

2 119

4.2. Evaluation Method

Both CIimpute and ICIimpute require a minimum support constant θ as a parameter
in the closed itemset mining. θ is generally set to a value of 2 or more. By setting a smaller
θ, more computational time is required, but more closed itemsets available for missing
value imputation can be obtained. The result of preliminary experiments under θ = 2
and 3 showed that θ = 3 provided almost the same number of closed itemsets in shorter
computational time compared to θ = 2. Hence, in this study, θ was set to 3 in both CIimpute
and ICIimpute.

The imputation accuracy and computation time of both proposed methods were
evaluated experimentally by estimating randomly generated missing values. The impu-
tation accuracy was evaluated using the root mean square error (RMSE) metric, which is
calculated as follows:

RMSE =

√
∑n

i=0
(
xi − x′i

)2

n
, (5)

where n is the number of missing values, xi is an actual value, and x′i is an estimated
value. The imputation accuracy improves as the RMSE value approaches zero. The RMSE



Entropy 2022, 24, 286 7 of 15

calculation and computational time measurement were performed on a workstation with
an Intel(R) Core™ i7-9700 3.00 GHz processor with 8.00 GB RAM.

We conducted experiments to evaluate the proposed methods and to compare their
performance to that of existing imputation methods, i.e., LSimpute [13], KNNimpute [11],
and RF [14]. LSimpute is based on the least squares principle and utilizes correlations be-
tween both samples and attributes. KNNimpute imputes missing values using a weighted
average of K other instances of a similar data pattern (nearest neighbors). RF is the random-
forest-based imputation method.

5. Results and Discussion
5.1. Evaluation Results with Different Attribute Reduction Rates

For both CIimpute and ICIimpute, the RMSE values and computational times with
different attribute reduction rates were evaluated. In this experiment, the average RMSE
and average computational time for various reduction rates were calculated using 20 matrix
data with 10% randomly generated missing values.

5.1.1. Imputation Accuracy

Figure 5 shows the RMSE for three evaluation indices, i.e., support, confidence, and
lift, for different reduction rates on four datasets. In Figure 5, a reduction rate of 0%
indicates CIimpute, and reduction rates of 10% or more indicate ICIimpute. Reduction
rates greater than 50% were excluded from the results because, in some cases, no closed
itemset that can be used for missing value imputation was extracted. As can be seen, the
confidence score showed the best accuracy for all datasets. Accuracy tended to improve
as the reduction rate increased. In particular, when comparing the RMSE of CIimpute
(without attribute reduction) and ICIimpute (with attribute reduction) with reduction rates
of 50%, statistically significant differences (p < 10−5) were observed in all data sets, which
indicates that attribute reduction improves imputation accuracy.
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5.1.2. Computational Time

Figure 6 shows the computational time for different reduction rates. For all datasets,
the computational time tended to decrease as the reduction rate increased. In particular,
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compared to CIimpute, when the reduction rate was 50%, the computational time was
dramatically reduced. As mentioned previously, the computational time incurred by
closed itemset mining is strongly dependent on the number of attributes; as the number
of attributes increases, the number of combinations of attributes to be checked increases
rapidly. Attribute reduction significantly reduces the search space; consequently, the
computational time is dramatically reduced.
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5.2. Evaluation Results with Different Missing Value Rates

The RMSE and the computational time with different missing value rates were de-
termined. Here, the reduction rate was fixed at 50%, and the evaluation index was the
confidence level. In this experiment, the average RMSE and average computational time
for different missing rates were calculated using 20 matrix data with randomly generated
missing values.

5.2.1. Imputation Accuracy

Figure 7 shows the RMSE values for CIimpute and ICIimpute with different missing
rates. Missing rates greater than 50% were excluded from the results because no closed
itemset that can be used for missing value imputation was extracted. ICIimpute showed
statistically significant better imputation accuracy (p < 10−6) than CIimpute for all datasets.
These results indicate that the attribute reduction process contributed to imputation accu-
racy regardless of the missing rate.

5.2.2. Computational Time

The computational times for CIimpute and ICIimpute with different missing rates are
shown in Figure 8. This figure indicates that ICIimpute had shorter computational time
than CIimpute regardless of missing rates. This is because the attribute reduction process
drastically reduced the closed itemset mining search space. The results demonstrate that
attribute reduction contributed to the reduction of computational time regardless of the
missing rate.
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5.3. Comparison with Existing Methods

The results presented in Sections 5.1 and 5.2, demonstrate that, in terms of imputation
accuracy and computational time, ICIimpute is superior to CIimpute. To further evaluate
ICIimpute, we compared the average RMSE and average computational time of ICIimpute
to KNNimpute, LSimpute, and RF. In ICIimpute, the reduction rate was fixed at 50%, and
the evaluation index was the confidence level.

5.3.1. Comparison of Imputation Accuracy

Figure 9 shows the RMSEs when missing rates vary from 10% to 50%. The results for
LSimpute with the segmentation dataset are not shown because the program terminated
before completion. Overall, ICIimpute showed better imputation accuracy regardless of the
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missing rates compared to the other three methods. In particular, with the segmentation
dataset, a statistically significant difference (p < 10−5) in the imputation accuracy was
observed between ICIimpute and the other two methods. Furthermore, ICIimpute exhibited
robust accuracy to the variations in the missing rates compared to the other methods.
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5.3.2. Comparison of Computational Time

Table 2 shows the computational times for ICIimpute, KNNimpute, LSimpute, and
RF when the missing rate was fixed at 30%. As mentioned previously, the results for
LSimpute with the segmentation dataset are not available because the program terminated
before completion. For all datasets, ICIimpute required more computational time because
it employs closed itemset mining, which includes a combinatorial search of attributes and
samples in matrix data. Although data are not provided, similar results were observed
with other missing rates.

Table 2. Computational times for ICIimpute and three existing methods.

Methods Parkinson SPECTIF Segmentation Acoustic

Method2 3628 6537 11,384 16,827
KNNimpute 11 9 11 10

LSimpute 18 14 N/A 22
RF 67 68 64 261

5.4. Discussion

In high-dimensional spaces, it is difficult to obtain reasonable results because the
distance between individual instances (samples or attributes) tends to be large due to the
curse of dimensionality. In terms of missing value imputation, using the entire feature space
in large matrix data may not always yield adequate estimates. However, our proposed
closed itemset-based methods use local feature space, i.e., only the attribute set associated
with the attribute containing the missing value. Therefore, the influence of most other
attributes that are likely to become noise can be eliminated. CIimpute required significant
computational time for a large-scale matrix. Thus, an attribute reduction process was
introduced in ICIimpute. This process reduces the search space of the closed itemsets
and focuses only on attributes that show similar data patterns to the attributes containing
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the missing values. Consequently, ICIimpute showed improved imputation accuracy and
reduced computational time.

Here, through an application to the Parkinson dataset, we discuss the difference
between CIimpute and ICIimpute from the perspective of the characteristics of the closed
itemsets used for missing value imputation. Figure 10 shows the box plots of the number
of items included in the closed itemsets used for missing value imputation of CIimpute
and ICIimpute. As can be seen, the number of items included in the closed itemsets used in
ICIimpute tends to be fewer than that of CIimpute. This is because the number of available
attributes decreased by the attribute reduction process. Figure 11 shows the box plots of the
support values of the closed itemsets used for missing value imputation of CIimpute and
ICIimpute. From this figure, we can see that the support values of the closed itemsets used
in ICIimpute tend to be significantly larger than those of CIimpute. This means that closed
itemsets covering more samples contribute to better missing value imputation. Although
we have discussed here the number of items and the support values of the closed itemsets,
in future, it will be necessary to investigate other characteristics of the closed itemsets, such
as the composition of items and class specificity. We expect that these investigations will
contribute to further improvement in imputation accuracy.
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In the experiment, RMSE was used to compare the imputation accuracy of the two
proposed methods. However, although RMSE allows relative comparison of the imputation
accuracy, it does not always guarantee unbiased imputation. Further, such bias may be
affected by datasets used for missing value imputation. Here, we discuss the bias of
estimated values by 5-fold cross validation using the Parkinson dataset. Figures 12 and 13
show the scatter plots of the actual values and the estimated values in CIimpute and
ICIimpute, respectively. As you can see, ICIimpute can provide better estimated values that
are closer to the actual values than CIimpute. However, in both methods there exist many
estimated values that differ substantially from the actual values. In order to realize more
accurate estimation of missing value, it is necessary to improve the calculation method of
estimated value, i.e., Equation (4), and investigate the characteristics of closed itemsets that
are effective for missing value imputation.
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Jin et al. [21] compared the performance of seven state-of-the-art missing value im-
putation methods using a large-scale benchmark dataset and immune cell dataset. The



Entropy 2022, 24, 286 13 of 15

results showed that the random forest-based method (RF) showed the best imputation
accuracy. In the result in Section 5.3.1, ICIimpute demonstrated imputation accuracy higher
than or comparable to that of RF. In particular, in the segmentation dataset, the difference
in the accuracy between ICIimpute and RF was significantly large. The segmentation
dataset consisted of a large number of classes (seven classes) compared to the other datasets
(two classes). RF has not supported missing value imputations for multiclass datasets. In
contrast, our approach performed missing value imputation using closed itemsets that
occurred in each class. Consequently, we consider that the effect of our approach became
more prominent in the segmentation dataset for which the number of classes was large.
On the other hand, compared to existing methods, the proposed methods incur significant
computational costs. This is a serious disadvantage when applying the proposed methods to
large-scale real-world data. However, we believe that the search for closed itemsets can be
made more efficient by introducing pruning techniques. For example, a previous study [22]
implemented a pruning technique for the LCM algorithm, which rapidly searches for closed
itemsets that appear only in each class. Such efficient and fast pruning techniques will be an
effective way to address the disadvantages of the proposed methods.

Missing value is generally divided into three mechanisms, missing completely at ran-
dom (MCAR), missing at random (MAR), and missing not at random (MNAR). MCAR is a
situation that the probability of an observation being missing is independent of observed
or unobserved measurements. MAR is a situation that the probability of an observation
being missing depends only on observed measurements. MNAR is a situation that the
probability of an observation being missing depends on unobserved measurements. In
this study, we assumed the MCAR situation and that estimated missing values were gener-
ated completely at random. However, MCAR is the most unrealistic assumption among
the three mechanisms. To show realistic availability, in future, we will conduct missing
value imputation experiments under MAR and MNAR situations, for example, using the
datasets in the literature [21] or [23]. However, we need some important modifications
in the proposed method to address MAR and MNAR situations. The proposed methods
performed missing value imputation using an only attribute containing the missing value
in the closed itemset. In order to address the mechanisms of MAR and MNAR, it will be
necessary to use the data distribution of the other attributes in the closed itemset as well
as the attribute containing the missing value. In addition, to obtain more accurate and
unbiased estimated values, we need to introduce processes for correcting imputed values,
such as the bias-corrected estimator proposed in [24].

The advantages of the proposed methods are as follows.

• It is possible to estimate missing values using local feature space for multiclass matrix datasets.
• It is possible to provide more accurate estimated values that are robust to variation of

missing rate compared to the existing methods.

The limitations of the proposed methods are as follows.

• It requires more computational time compared to the existing methods.
• It requires further modifications to apply to MAR and MNAR.

6. Conclusions

In this paper, we have presented two missing value imputation methods, CIimpute
and ICIimpute, based on closed itemsets for multiclass matrix data. The proposed methods
enable us to estimate missing values based on data patterns of local feature space in matrix
data. CIimpute estimated missing values using closed itemsets extracted from each class.
ICIimpute introduced attribute reduction to CIimpute. We applied the proposed methods
to four USI datasets and evaluated their imputation accuracy and computational time.

First, we compared CIimpute and ICIimpute, with various reduction rates and missing
rates, and found that ICIimpute showed superior performance for both the imputation
accuracy and computational time, which indicates that attribute reduction was effective.
Second, we compared ICIimpute to three existing methods, KNNimpute, LSimpute, and
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RF. The results revealed that ICIimpute provided better imputation accuracy; however, it
required more computational time. This result suggests that ICIimpute requires further
improvement to reduce the computational time.

In future, we will extend the proposed method to apply to MAR and MNAR. In
addition, following the literature [22], we will implement a pruning method to closed
itemset mining to reduce the computational cost. Furthermore, we will apply the proposed
methods to real data, such as image, audio, and gene expression data.
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