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Abstract: Relatedness is a key concept in economic complexity, since the assessment of the similarity
between industrial sectors enables policymakers to design optimal development strategies. However,
among the different ways to quantify relatedness, a measure that takes explicitly into account the time
correlation structure of exports is still lacking. In this paper, we introduce an asymmetric definition
of relatedness by using statistically significant partial correlations between the exports of economic
sectors and we apply it to a recently introduced database that integrates the export of physical
goods with the export of services. Our asymmetric relatedness is obtained by generalising a recently
introduced correlation-filtering algorithm, the partial correlation planar graph, in order to allow its
application on multi-sample and multi-variate datasets, and in particular, bipartite temporal networks.
The result is a network of economic activities whose links represent the respective influence in terms
of temporal correlations; we also compute the statistical confidence of the edges in the network via
an adapted bootstrapping procedure. We find that the underlying influence structure of the system
leads to the formation of intuitively-related clusters of economic sectors in the network, and to a
relatively strong assortative mixing of sectors according to their complexity. Moreover, hub nodes
tend to form more robust connections than those in the periphery.

Keywords: complex systems; economic complexity; relatedness; products and services; planar graph;
partial correlation

1. Introduction

In the past few years, the use of bipartite networks for the representation of real-
world complex systems has become widespread in a variety of fields and applications.
These networks are usually constructed using multi-sample, multi-variate structured data
used to model complex systems such as biological networks (enzymes and reactions [1],
genes and diseases [2], plants and pollinators [3]), movies and actors [4,5], authors and
papers [5,6], board of directors members and companies [7,8], companies and technologies
they patent [9], members of peer-to-peer networks and data provided [10], international
NGO branches and cities hosting them [11], supreme court judges and their votes [12],
and legislators and bills they sponsor [13].

A prominent example is the bipartite network formed by countries and the products
they export. This type of data has been used extensively in the field of economic complexity
(EC) [14,15] to assess various quantities of interest for the modelling of the economic devel-
opment of countries. The first one is the competitiveness of countries and the sophistication
of products [16–20], and the relatedness between products, countries, or between countries
and products [21,22]. With respect to the datasets implemented in the literature up to now,
the dataset we use in this paper adds the inclusion of services to the set of tangible products
traditionally considered in the EC literature [23,24].
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An agreed definition of relatedness still does not exist, despite the vast number of appli-
cations of this concept, that ranges from forecasting industrial upgrading [25] to its use as an
explanatory variable in a number of different contexts (see [26] and references therein). In most
cases, one computes a projection of the bipartite network (e.g., country-product) onto one of
the two sets of nodes to obtain a monopartite network (e.g., product-product) [21,22,27]; the
relatedness between the nodes of the target layer is given by the weights of the corre-
sponding links. Since the information content of the projected network is always smaller
than that in the bipartite network, the choice of the method employed to achieve this is
highly non-trivial. The resulting network should be a meaningful representation of the
bipartite network for the specific problem being tackled while minimising the information
loss due to the projection. There are several methods available in the literature to carry
out this task (see [26,28]); however, to the best of our knowledge, no one takes explicitly
into account the temporal structure, with the possible exception of the time-delayed co-
occurrences approach described in [23,29] which, however, does not take into account
the correlation between the different time series involved. This is a key element, since a
comprehensive unveiling of the complex interactions between industrial sectors clearly
requires a dynamical perspective.

In this paper, we tackle this issue by quantifying the average influence between
industrial sectors in terms of partial correlation. To do so we introduce a framework that
generalises a network generation method based on correlation-filtering called the partial
correlation planar graph (PCPG) algorithm [30] in order to allow for its use with multi-
sample multi-variate datasets. Since this methodology is particularly suitable for bipartite
networks such as the ones usually studied in EC, we have called our framework biPCPG.
The PCPG is an adaptation of the Planar Maximally Filtered Graph (PMFG) [31] which
is in turn a further step from the Minimum Spanning Tree (MST) [32]. Fruitfully applied
to financial market dynamics [33], these methods are able to capture the heterogeneity of
similarities usually found at different scales of correlation in complex systems thanks to
them employing a hierarchical clustering approach rather than a thresholding approach.
The advantage of the PMFG over the MST is that, due to its relaxed constraints, its output
network contains loops and a larger amount of information than the MST by preserving all
the hierarchical properties of the MST [31].

The PCPG [30] adapts the PMFG in order to capture asymmetric interactions among
variables in the system, thus producing a directed network. The PCPG achieves this by
employing an edge-weighting scheme based on partial correlations, which are a measure of
how the correlation of two variables is affected by a third variable. More specifically, the so-
called influence (the difference between correlation and partial correlation) is employed to
measure the similarities in the system and is used as a metric to select the edges included in
the network. In our case, this formulation of relatedness allows asymmetries to be detected
in the system.

As a result, the PCPG network is a weighted, connected, directed network that includes
the MST as a subgraph as well as allowing for other substructures such as loops and
cliques of three and four elements which add to the information content of the graph [31].
The fact that the links present in the PCPG are mostly those which correspond to the
largest correlations in the system ensures the statistical robustness of the network to a high
extent [34].

The PCPG was originally developed for its use on multi-variate datasets of only one
sample: the time series of different stocks. In our case we have the export time series,
so not only many variables (the different products) but also many samples, one of each
country. In this paper we propose an extension of the PCPG, that we call biPCPG, to allow
its application on multi-sample and multi-variate datasets, e.g., the export time series,
by product, of many countries.

Our proposed extension to the PCPG method involves the preparation of the multi-
sample dataset in order to apply the PCPG algorithm. This is achieved by structuring
the dataset into a set of correlation matrices among the time series of products exported
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by countries, averaging these, and applying the existing PCPG procedure. Following
similar principles, we also adapt an existing bootstrapping procedure (see [34]) in order to
determine the statistical reliability of the links present in the resulting network.

The contribution of this paper is many fold. Firstly, the biPCPG framework opens
the possibility of the application of the PCPG algorithm to a wide variety of datasets
with a multi-sample and multi-variate structure, including, but not limiting to, the ones
usually analysed using the EC framework. Furthermore, the data-processing methodology
introduced here could be utilised to apply other correlation-filtering algorithms for network
generation (e.g., [31,33]).

Secondly, this paper introduces a network which describes the asymmetric relatedness
among physical products (manufacturing) and services. This is an addition with respect to
the networks usually present in the literature, such as the product space [21] and product
taxonomy network [22], which are constituted only by products.

Thirdly, this paper introduces an adapted bootstrapping procedure to asses the re-
liability of the edges present in a network generated from multi-sample multi-variate
datasets. Similarly to the network-generating framework, this bootstrapping procedure
can be utilised to asses the reliability of edges in networks generated using alternative
correlation-filtering methods with datasets with this structure.

Fourthly, in order to assess the information content of the biPCPG network we calcu-
late two assortativity measures and run a community detection procedure, finding that
meaningful clusters and connections emerge, as well as a relevant complexity-related assor-
tativity. In summary, the biPCPG analysis unveils the average influence between industrial
and service sectors, efficiently encapsulating the information about the correlation structure
of the system.

Finally, we provide a Python package named “biPCPG” [35] with its documentation
hosted in [36]. The 0.1.0 version of this package was used to perform all the calculations
done in this paper, including the data-handling, biPCPG network generation, bootstrapping
procedure and calculations done on the biPCPG network. It is worth noting that the package
has a modular structure such that the data-handling and the generation of the biPCPG
network are computed independently of each other. This allows the user to, for example,
utilise the data-handling module to prepare a multi-sample multi-variate dataset for an
alternative correlation-filtering method, or to implement the PCPG algorithm on a dataset of
her choice, without the need for the dataset to have a multi-sample multi-variate structure.
To the best of our knowledge, the PCPG module in the biPCPG package is the first publicly
available Python implementation of the PCPG algorithm.

The rest of this paper is organised as follows. In Section 2, we describe the dataset used
in this investigation and the cleaning procedure performed on it. In Section 3, we describe
the set of methods to generate the biPCPG network and comment on the resulting network.
In the result sections we describe the assortativity calculations and community detection
procedure done on the biPCPG network and show the results obtained. Section 5 concludes.

2. Data Description and Preprocessing

The dataset used in this research project is an integration of the United Nations Com-
modity Trade Statistics Database (UN-COMTRADE—https://comtrade.un.org, accessed
on 13 February 2019) and the International Monetary Fund’s Balance of Payments data
(BPM6) [37], relative to physical goods and service exports respectively. This integrated
dataset was introduced in a World Bank working paper [23]. The UN-COMTRADE data
consists of the amount of exports from each country per category of products (in USD).
The categorisation of products is given by the World Customs Organization’s (WCO)
Harmonized System 2007 edition (HS2007) [38], which classifies products by using a hier-
archical six-digit code depending on the category of the product. The IMF BPM6 dataset
consists of the amount (in USD) of services provided abroad by each country and is col-
lected according to the 6th edition of its manual, provided by the International Monetary

https://comtrade.un.org
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Fund (IMF). Henceforth, we will globally refer to the collection of products in COMTRADE
and services in BPM6 as sectors.

The hierarchical structure of the HS classification allows for an aggregation from the
most granular six-digit level, consisting in about 5000 different products, into a coarser two-
digit level. A further aggregation of a few small (in terms of export quantities) two-digit
sectors into a single two-digit sector was also performed in this dataset, leaving a total of 78,
roughly homogeneous aggregated product sectors at the two-digit level. From the BPM6
part of the dataset, there are a further 22 service sectors at a comparable level of aggregation.

The aggregated dataset used in our study is therefore comprised of 78 + 22 = 100
sectors of products and services, these are listed in Table A1 in Appendix D. The data span
a total of 22 years, from 1995 to 2016. As there are missing data points in some years for
several countries, we apply a sanitation procedure where only countries with complete
data for all sectors throughout the 22 years are kept. This reduces the dataset to from
129 countries to 99 countries. The analysed dataset has a total 99× 100 = 9900 time series
of length 22, with no missing values, representing the amount of product exports or service
provisions in USD for each country.

In order to perform specific calculations (see Section 4.2), the 100 sectors in the dataset
must be aggregated one level further. The product sectors can be further aggregated using
what the WCO refers to as sections. The WCO provides a total of 21 sections which are
available at [38]. In this case, services sectors can be aggregated into a single “section”.
Thus, in our aggregated dataset we have a total of 22 sections of sectors—21 product
sections arising from the HS2007 classification, and one additional section containing the
service sectors from the BPM6 dataset.

Revealed Comparative Advantage Matrices

The raw data used to construct in this paper are the amount of exports Ey
c,p (in USD)

of a sector p (product or service) by a country c in year y. We compute the Revealed
Comparative Advantage (RCA) [39] as

RCAy
c,p =

ratio of c’s exports of p to the total exports of c in year y
ratio of the world’s exports of p to the total world’s exports of all sectors in year y

=

Ey
c,p

/
∑

p′∈P
Ey

c,p′

∑
c′∈C

Ey
c′ ,p

/
∑

c′∈C,p′∈P
Ey

c′ ,p′

(1)

where P and C are the sets of unique sectors and unique countries in the dataset dis-
cussed above.

The use RCA is ubiquitous in the EC literature, because removes trivial dependencies
from the sectors’ and countries’ size. When the RCAy

c,p is above 1, the country is said to
have a revealed comparative advantage in exporting a given sector in that year. Conversely,
when RCAy

c,p is below 1 the country can be thought of as not being very competitive in that
particular sector. Finally, when RCAy

c,p is equal to 1 the country has the expected (average)
share of the world’s exports in the given sector and year.

Therefore, the dataset on which we perform the following calculations consists of time
series RCAc,p = (RCAy

c,p : y ∈ Y) for 99 countries and 100 sectors, where Y is the index set
of years [1995, 2016]. The data is then shaped into a set of 22 matrices RCAy, one for each
year, where each row represents a country, each column represents a sector and each entry
is the corresponding RCAy

c,p value.
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3. Methods: The biPCPG Framework
3.1. Methodology Description

Before discussing the detailed implementation of the biPCPG methodology, here we
provide a summarised description of our procedure; a visual representation can be found
in Figure 1.

Given the multi-sample nature of the dataset analysed, a series of data-preprocessing
steps are needed before the application of PCPG. The PCPG algorithm takes a single correlation
matrix as an input and outputs a network (see Section 3.5). In order to obtain our biPCPG
network, along with reliability values for its edges from a multi-sample dataset, we need two
main procedures, a “Network generating procedure” and a “Bootstrapping procedure”.

The “Network generating procedure” is shown in the black box in Figure 1 and deals
with the data handling necessary to obtain a PCPG network from a dataset with a multi-
sample structure. In our case, we are interested in obtaining a biPCPG network where nodes
are sectors, therefore the input matrix should describe the correlations between sectors.

To find this input correlation matrix, the initial step is to shape the dataset such that,
for each country, we have a matrix where the columns are the relevant time series of each
sector. We then compute a correlation matrix for each of these time series matrices. Finally,
we average these correlation matrices over countries to obtain an average correlation matrix
which serves as the input to the PCPG algorithm, i.e., the last step in the biPCPG framework.
The output of the biPCPG algorithm is the network we refer to as G, as well as the weights
of the edges in contains, i.e., the average influence between sectors.

Figure 1. Flowchart of procedures and methods involved in obtaining the final biPCPG network.

The “Bootstrapping procedure” of our framework, shown in the grey box in Figure 1,
deals with the bootstrapping procedure necessary to asses the reliability of the edges in
the biPCPG network obtained. This starts from the country time series matrices, which are
bootstrapped R times, obtaining a “batch” of replicates each time. Each of these batches
contains C matrices, one for each country, where the rows have been drawn coherently from
their corresponding original country matrices. This is done in order to randomise the time
dimension while preserving the correlation structure across countries (see Section 3.6). We
then replicate the “Network generating procedure” described above by treating each batch
of replicates as a new dataset of country time series matrices and follow the steps to obtain
a replicate biPCPG network. This means that, for each batch, we calculate a correlation
matrix for every time series matrix, we then average across these correlation matrices and
use the average correlation matrix as an input to the PCPG algorithm. Repeating this
procedure for all R batches we obtain R replicate networks. We find the fraction of times
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each edge in G appears in the replicate networks, which is a measure of the reliability of
the edge.

3.2. Partial Correlations and Average Influence: Definitions

As described in the original PCPG paper (see [30]), the starting point of our analysis
is the partial correlation, which measures the effect that a random variable Z has on the
correlation between two other random variables, X and Y. The partial correlation ρ(X, Y :
Z) is defined in terms of the Pearson correlations ρ(·, ·) between the three variables, formally

ρ(X, Y : Z) =
ρ(X, Y)− ρ(X, Z)ρ(Y, Z)√
[1− ρ2(X, Z)][1− ρ2(Y, Z)]

. (2)

A small value of ρ(X, Y : Z) may be ambiguous, as this could be due to the correlations
among the three variables being small; or due to variable Z having a strong effect on
the correlation between X and Y, which is generally the interesting case. In order to
discriminate between these two cases the correlation influence or influence of variable Z on
the pair of elements X and Y is used. This is defined as

d(X, Y : Z) ≡ ρ(X, Y)− ρ(X, Y : Z). (3)

We define the average influence of variable Z on the correlations between X and all other
variables in the system as follows:

d(X : Z) = 〈d(X, Y : Z)〉Y 6=X . (4)

We anticipate that the average influence will be the input of the network building algorithm
also described in [30].

Note that, potentially, there could be certain values of measured correlations ρ(X, Y),
ρ(X, Z) and ρ(Y, Z) that lead to a measured partial correlation ρ(X, Y : Z), to be out of its
defined range [−1, 1]. In our analysis, this occurred in 0.02% of the partial correlations com-
puted. In these cases, partial correlations were set to be undefined (NaN in programming
terms) which in turn makes the influence values based on these partial correlations also
undefined. Similarly to the undefined correlation values described above, these undefined
influences are not included in calculation of average influence d(X : Z).

Some of the values obtained for ρ(X, Y), ρ(X, Y : Z), d(X, Y : Z) and d(X : Z) in
our dataset and their interpretation are discussed in Section 3.4. An important point
is that, in general, d(X : Z) 6= d(Z : X): the influence is asymmetric, and the largest
among these two quantities indicates the main direction of influence between X and Z.
For example, in our dataset when X = Glass and Z = Furniture, the average influence
of Furniture on Glass d(X : Z) = 0.03 while the corresponding reverse average influence
of Glass on Furniture d(Z : X) = 0.29, suggesting that the direction of influence is from
Glass to Furniture and not vice-versa. This, however, is an example of a clear-cut case,
where difference between the two average influence values is not small. In general, these
differences tend to be much smaller. This can be an effect of the complex relationship and
mutual interaction between the economic sectors, or a consequence of the noise present in
the data. This makes a bootstrapping procedure necessary in order to asses the statistical
confidence in the overall direction of influence, as well as the average influence values
themselves. We will discuss the bootstrapping procedure in Section 3.6.

3.3. Average Correlation Matrix

The input to the PCPG algorithm is a correlation matrix [30]. In our procedure,
to allow its use on our multi-sample dataset, this correlation matrix is replaced by an
average correlation matrix over countries. In order to obtain this average correlation matrix,
we reshape the 22 RCAy matrices into a total of C = 99 matrices, one for each country,
each consisting of T = 22 rows and P = 100 columns. We denote these TSc, c ∈ 1, . . . , C.



Entropy 2022, 24, 365 7 of 22

In this way, the columns of each matrix TSc are the RCAc,p time series of the given country
c, where each column represents a sector p in the dataset.

In order to obtain the input matrix to the PCPG algorithm, we first find C correlation
matrices denoted Kc, c ∈ 1, . . . , C from the pair correlations between the columns of each
matrix TSc. Thus the entries of the country correlation matrix Kc are given by

(
Kc

)
p,p′

= ρ

((
TSc

)
∗,p

,
(

TSc

)
∗,p′

)
= ρ

(
RCAc,p , RCAc,p′

)
(5)

where ρ is the Pearson correlation, the subscript ∗, p denotes the column p of the matrix
and RCAc,p is the RCA time series for country c and sector p.

For each correlation value we obtain p-value via a two-sided T-test procedure [40].
Given we are performing multiple tests, we apply a False Discovery Rate (FDR) correction
to obtain adjusted p-values via the Benjamini–Hochberg (BH) procedure [41]. We choose the
BH procedure since it ultimately allows the inclusion of more information in the biPCPG
network than a more restrictive correction procedure such as the Bonferroni correction [42].
Note that the FDR correction has been extensively used in the literature for the statistical
validation of networks and, in particular, it has been previously used to validate networks
representing bipartite complex systems [43].

We reject non-statistically significant correlation samples when the adjusted p-value is
above a critical value of 0.01. In these cases, the corresponding entries to the Kc matrix are
marked as undefined. The same procedure for obtaining country correlation matrices was
also performed without the FDR correction for the 0.01 and alternative critical values. This
produced networks which have the same main features as the network presented below,
including the main hub nodes, clusters of sectors and communities detected.

Once the country correlation matrices Kc are found, we then compute the element-wise
mean of these matrices, obtaining the average correlation matrix K̄ with entries

K̄p,p′ =
1
C

C

∑
c=1

(
Kc

)
p,p′

, (6)

where row and column indices p and p′ denote economic sectors. Any undefined correlation
is discarded during the averaging process.

Note that, using this notation, the correlations ρ(·, ·) mentioned in Section 3.2, are
replaced by the average correlations K̄p,p′ described here. This leads to an equivalent
expression for the partial correlation

ρ(p, p′ : p′′) =
K̄p,p′ − K̄p,p′′ K̄p′ ,p′′√[

1−
(
K̄p,p′′

)2
][

1−
(
K̄p′ ,p′′

)2
] . (7)

3.4. Partial Correlation and Average Influence: Empirical Analysis

In order to clarify the meaning of the intermediate quantities that are used to build the
biPCPG network, we devote this subsection to the discussion of some empirical features.

Bearing in mind how the influence of a variable on the correlation of two other
variables is defined (see Equation (3)), we explore four examples of the results obtained
from these computations. Note that, in the description below, the variables X, Y and Z used
in the definition of Equation (3), are replaced by sectors of our system. Thus, the partial
correlation column in Table 1 describes the average correlation, K̄p,p′ , between sectors p
and p′ accounting for the effect of a third sector p′′, and similarly for the influence column.
We therefore denote these quantities ρ(p, p′ : p′′) and d(p, p′ : p′′), respectively.

Example 1 shown in Table 1 is an example of the case described in Section 3.2, which
shows a very small partial correlation due to all correlations among the three variables
being small. By definition, this makes the resultant influence value is small, which reduces
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the average influence of the sector “Other textile” on the sector “Cereals”, making the
appearance of this edge in the network less probable.

Example 2 also shows a case where the partial correlation between p and p′, accounting
for the effect of p′′, is small. However, contrary to the case in Example 1, this is due to
p′′ strongly affecting the correlation between p and p′, i.e., ρ(p, p′) ∼ ρ(p, p′′)ρ(p′, p′′).
Therefore, the resulting influence is relatively high, which increases the probability of an
edge from “Cultural” to “Audiovisual” being present in the biPCPG network. In addition,
note that the probability of an edge from “Cultural” to “Audiovisual” also increases under
these results, due to the symmetry between the p and p′ variables.

In Example 3, we have a case where the correlation between p and p′ is relatively strong
and variable p′′ has a small effect on it. This is due to the similar values of the correlation
ρ(p, p′) and the partial correlation ρ(p, p′ : p′′). Therefore, the resulting influence of
“Knitted clothing” on the correlation between the “Pigments” and “Aluminium” sectors is
close to zero.

Finally, Example 4 shows a seemingly counter-intuitive case where the correlation
between p and p′ is small while their partial correlation given p′′ is negative, yielding a
high influence. A negative partial correlation occurs when the correlation between p and
p′ is small but both p and p′ have a high correlation with p′′. In this case, the influence of
“Plastics” can be interpreted as preventing the correlation ρ(p, p′) between “Vehicles” and
“Earths and stone” from being lower, or being negative.

Table 1. Examples of values used in the computations of influence d(p, p′ : p′′).

Variable & Sector Corr. Corr. Corr. Partial Corr. Influence
K̄p,p′ K̄p,p′′ K̄p′ ,p′′ ρ(p, p′ : p′′) d(p, p′ : p′′)

Ex. 1

p Cereals

0.024388 −0.017268 0.028770 0.024899 −0.000511p′ Telecommunication

p′′ Other textile

Ex. 2

p Audiovisual

0.283807 0.772049 0.368241 −0.000834 0.284641p′ Sea Transport

p′′ Cultural

Ex. 3

p Pigments

0.602575 0.064069 0.040062 0.601727 0.000848p′ Aluminium

p′′ Knitted clothing

Ex. 4

p Vehicles

0.025574 0.781281 0.542898 −0.760384 0.785958p′ Earths and stone

p′′ Plastics

It is important to note that the average influence values among sector pairs determine
the structure of any PCPG network (see Section 3.5). Figure 2 displays a scatter plot that
shows the correlation ρ(·, ·) and average influence d(·, ·) among all N(N − 1) = 9900 pairs
of sectors in our biPCPG network. Note that this includes data points for both d(p : p′′)
and d(p′′ : p) influences at the same horizontal coordinate as the correlation between p and
p′′ is symmetric.

This plot shows that the average influence between a pair of sectors is highly correlated
with the correlation between the same pair of sectors, showing a very narrow 95% confi-
dence interval (barely visible as it is only slightly wider than the fit line). See Appendix B
for details on the calculation of the confidence and prediction intervals shown in Figure 2.

This is not surprising given how the average influence is calculated; however, the rel-
atively high coefficient of determination R2 = 0.58 indicates that, generally, the partial
correlation values obtained are relatively small. This may be due to there actually not being
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large influences between the sectors, or due to limitations of the dataset. For example,
hidden influences between the sectors could potentially be detected in datasets with longer
time series.

In Figure 2, we can observe that most of the correlations (around 80%) are positive.
Around 10.7% of the pairs of sectors with positive correlations have an average influence
below zero. This quantity is over an order of magnitude larger than its counterpart,
the percentage of pairs of sectors with negative correlation but a positive average influence,
which is around 0.47%.

Figure 2. Plot showing correlation and average influence values among all 9900 pairs of sectors in the
system. A line of best fit among the points is shown in red along with the coefficient of determination
R2 = 0.58, with the 95% confidence interval limits in light blue and the 95% prediction interval limits
in dashed grey lines. Note the confidence interval is so narrow it is only visible at the edges of the red
best fit line upon close inspection.

3.5. Network Construction

The construction algorithm of a PCPG network starts with a list of the N(N − 1)
average influence values in decreasing order and an empty graph of N nodes and no edges,
where N is the number of variables in the system. In our case, we have N = 100 economic
sectors. We then cycle through the sorted list, starting with the largest average influence
value found, e.g., d(p : p′′), where p and p′′ are a given pair of products. The edge p′′ → p
is included in the network if and only if the resulting network is still planar and the edge
p → p′′ has not been included already. We stop adding edges if adding the next edge in
the list would break the planarity of the graph. This procedure ensures two things: (i) only
the largest among d(p : p′′) and d(p′′ : p) will be included in the network, and (ii) the final
network has 3(N− 2) edges. It is important to note that for a given input correlation matrix
of size N × N the PCPG network will always have 3(N − 2) edges and that the identity of
these edges solely depends on the correlation values in the input matrix.
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The final result of this procedure is what we refer to as the biPCPG network, G.
Naturally, we also obtain the average influence d associated to each edge in G, as well as
the network’s adjacency matrix A defined as

Ap,p′′ =

{
1 if edge p→ p′′ ∈ G,
0 otherwise.

(8)

3.6. biPCPG Bootstrapping

To assess the reliability of the links in the biPCPG network, we adapt a bootstrapping
procedure originally introduced in [34]. The aim is to obtain a bootstrap value for each link
which is proportional to the reliability of the link.

We build R batches, where the matrices to be bootstrapped in each batch are the time
series matrices of all countries TSc ∀ c ∈ 1, . . . , C. From each matrix TSc, a replicate time
series matrix TSr

c ∀ r ∈ 1, . . . , R is obtained, where R = 1000 is the total number of batches.
An important feature of our procedure is how the null model, i.e., the replicate time series
matrices, is generated. For each batch, the bootstrapping of the time series matrices is done
coherently across countries. This means rows are drawn with repetition from each of the
country matrices jointly—the same row indices are selected across the matrices. In addition,
the new locations of the selected rows in their corresponding replicate matrices are exactly
the same. This way, in the replicate time series matrices, TSr

c, the time structure of the time
series is destroyed while preserving the country-level correlations.

Take, for example, the first batch, r = 1. In order to obtain the first batch of replicate
matrices TS1

c ∀ c ∈ 1, . . . , C, we randomly select a sequence of T = 22 row indices, allowing
repetitions. These row indices denote which rows from the original matrices TSc are
included in the corresponding replicates TS1

c in this batch, as well as their order. This way,
any row of a replicate matrix in this first batch will contain data points corresponding to
the same year as rows of the same index in all the other replicate matrices in the batch.

After all the replicate matrices are obtained for all countries and batches, we calculate
a replicate correlation matrix Kr

c for each of them, rejecting non-statistically significant
samples as described in Section 3.3. We then find the element-wise mean of the replicate
correlation matrices in each batch r, obtaining R replicate average correlation matrices
K̄r where

K̄r
p,p′ =

1
C

C

∑
c=1

(
Kr

c

)
p,p′

. (9)

Note that, similarly to the replicate time series matrices, in these replicate correlations
matrices the time structure of the time series is destroyed while preserving the country-
level correlations due to the way the bootstrapping has been performed.

We then apply the PCPG algorithm described in Section 3.5 to each matrix K̄r, obtain-
ing R replicate adjacency matrices, Ar ∀ r ∈ 1, . . . , R.

To compute the bootstrap value, bp,p′′ , for each link p→ p′′, we evaluate the number of
time the link appears in the replicate adjacency matrices Ar, and normalise by the number
of replicates R, formally

bp,p′′ =
∑R

r=1 Ar
p,p′′

R
(10)

Each bootstrap value is therefore some number in the interval [0-1] and is proportional to
the reliability of the link.

4. Results
4.1. Descriptive Analysis of the biPCPG Network

The network G resulting from the application of the biPCPG method to our dataset
is shown in Figure 3. This network displays some interesting results with a few distinct
hub nodes. The most noticeable of these nodes are “Plastics”, “Pigments” and “Vegetables”
nodes. Hub nodes in the network also tend to have high average influence on other nodes
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in the network, this being displayed by the width of the edges stemming out of them.
The colour of the edge represents its bootstrap value. We note that the hub nodes are
also the source of most of the darker edges in the network, i.e., the most reliable edges,
especially the “Plastics” node, whose edges bootstrap values are very high.

Figure 3. The biPCPG network. The widths of the edges are proportional to the average influence
value, d(p, p′′) they represent. The colours of the edges are proportional to their bootstrap value,
bp,p′′ . The darker the edge, the more reliable it is. Node colours represent the sector section each
product and service belong to. Node sizes are proportional to out-degree. The node layout was found
using the ForceAtlas2 algorithm [44].

The resulting network also displays distinct clusters of intuitively related economic
sectors. For example, the most recognisable “food and plant” cluster can be found at
the bottom-right of the network, surrounding the “Vegetables” hub node. At the top-
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left of the network, we can observe another distinct cluster containing several sectors
related to chemicals or raw materials. Finally, on the top-right of the network, surrounding
the “Plastics” and “Pigments” nodes, one can find a “macro-cluster” formed mostly by
industrial and manufacturing sectors.

It is worth noting that, while most edges connect intuitively related sectors, the are
several cases of less-intuitive connections spread around the network. This causes the
inclusion of some of these seemingly unrelated sectors in some of the clusters mentioned
above. This is partially due the original construction of the PCPG algorithm, which ensures
a fixed number of edges to be included in the network. Therefore, edges representing
small influences among sectors could be forced to be included in the network. In our case,
the biPCPG network obtained contains around 5% of edges representing Average influence
values of 0.05 or smaller.

4.2. Assortativity Analysis

As described in Section 2, the 100 sectors in our dataset can be grouped into 22 groups
of sectors called sections. Furthermore, a key metric within the field of economic complexity
is the complexity of a product or service, which measures the capabilities needed by a
country to produce it (see Appendix A). In order to better understand the structure of this
network, and by extension the information contained in it, one can then investigate its
homophily or assortativity according to these characteristics. Roughly speaking, this is the
tendency for nodes belonging to the same group to be connected to each other. In this paper,
we make use of two different assortativity metrics which we describe below. The motivation
behind this analysis is to assess if our framework generates a meaningful network which is
able to synthesise information about the system.

4.2.1. Assortativity by Unordered Characteristics

This quantity is used to measure the assortativity between, for example, nodes with
an associated qualitative characteristic such as, in our case, sector sections, s (see Section 2).
The assortativity coefficient is defined as [45]

ss =
TrF−

∥∥F2
∥∥

1− ‖F2‖ (11)

where entries of the matrix F are the fractions of edges in the network that connect a
vertex of section s to one of section s′, and ||X|| is the sum of all elements of a matrix
X [45]. Therefore the numerator is a quantity that measures the fraction of the edges in
the network that connect vertices of the same type (i.e., within-section edges) minus the
expected value of the same quantity in a network with the same community divisions
but random connections between the vertices. The denominator is one minus the same
expected value.

This formula gives ss = 0 when there is no assortative mixing and ss = 1 when there
is perfect assortative mixing. For a perfectly disassortative network, the value is in the
range −1 ≤ ss < 0 (see [45] for its interpretation). We evaluate this metric for the section of
sectors described in Section 2, denoting this by the subscript s.

4.2.2. Assortativity by Scalar Characteristics

A measure of assortativity for numeric quantities associated with nodes can also be
defined [45]. First, note that the entries of the matrix F are the fraction of all edges in a
network that connect nodes with associated scalar values q and q′. Note that the values
q and q′ are discrete—in our case these are the Complexity rank [17] of sectors—computed
by taking average complexity value of each product (across the available years in our
dataset) and ranking these averages from highest to smallest. The complexity of a product
or service is a well-known quantity in the economic complexity literature that describes
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the capabilities needed by a country to produce it, see Appendix A for its definition.
The numeric assortativity coefficient is defined as

sq =

∑
q,q′

qq′
(

Fq,q′ − aqbq′
)

σaσb
(12)

where aq = ∑q′ Fq,q′ , bq′ = ∑q Fq,q′ and σa and σb are the standard deviations of the distri-
butions of aq and bq′ , respectively. The value of sq is in the range −1 ≤ sq ≤ 1 with sq = 1
indicating perfect assortativity and sq = −1 indicating perfect disassortativity. Typically,
assortativity values in the range 0.3–0.7 are considered to indicate a significant community
structure in social networks (higher values are rare) [46,47].

4.2.3. Assortativity Results

The results for the two assortativity metrics defined above are as follows:

• assortativity by sector section = ss = 0.08 (0.15 without FDR correction);
• assortativity by sector mean complexity rank = sq = 0.19 (0.31 without FDR correction).

These results indicate that the structure of the resulting biPCPG network encodes
information efficiently. Firstly, the Assortativity by sector section, ss = 0.15, is positive, this
means that sectors that belong to the same section (see Section 2) tend to be connected in the
network, i.e., they influence each other. The section of each sector is reflected in Figure 3 by
the colour of the node. The most evident clustering of sectors within the same section is
found at the top of the plot where a highly connected cluster of service sectors is found.

Furthermore, the moderately high Assortativity by sector mean complexity rank, sq = 0.19,
indicates that sectors around the same level of complexity tend to influence each other.
This makes sense intuitively since, according to the economic complexity literature, these
tend to be connected in other networks that describe the relationship among products (e.g.,
product space network, product taxonomy network [21,22]).

4.3. Community Detection on the biPCPG Network

We apply a well-known community detection algorithm for directed networks based
on spectral optimisation [48]. The modularity, or quality function, to be maximised is

Qdir =
1
m ∑

p,p′′

(
Ap,p′′ −

kout
p kin

p′′

m

)
δ
(

νp, νp′′
)

(13)

where A is the adjacency matrix, kin
p and kout

p are the weighted in-degree and out-degree
of node p, m is the total edge weight in the network, νp is the community of node p and

δ
(

νp, νp′′
)
= 1 if νp = νp′′ and 0 otherwise. This method does not require any parameter

choices relating to community size or number of communities; however, adaptations of this
method that allow for these choices are available in the literature. It is worth pointing out
that, for the analysis carried out in this paper, edge-weights are all set to 1. In Equation (13),
this makes the weighted in-degree and out-degree simply the in- and out-degree as well as
fixing m = 294, the total number of edges in the network.

Since there is no universal definition for communities in directed networks, we also
apply the same community detection algorithm for the undirected version of the biPCPG
network Gund. In this case, the modularity to be maximised is given by

Qund =
1

2m ∑
p,p′′

(
Aund

p,p′′ −
kpkp′′

2m

)
δ
(

νp, νp′′
)

(14)
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where Aund is the undirected adjacency matrix which defines the undirected network Gund.
This can be obtained from the adjacency matrix, A, which defines the directed biPCPG
network G as follows

Aund
p,p′′ =

{
1 if Ap,p′′ = 1 or Ap′′ ,p = 1,
0 otherwise.

(15)

This allows us to qualitatively assess if the structure of the biPCPG network is sufficient
for reasonable communities to be detected, without the bias of the information contained
in the average influence or bootstrap values associated to edges. We implement this
algorithm via the leidenalg Python package (version 0.8.4) [49], an implementation of the
leiden algorithm for modularity optimisation.

Note that optimising modularity is an NP-hard problem [50], and therefore heuristics
have to be implemented for algorithms to be efficient. One of the steps in the leiden
algorithm used here involves selecting a random community for a node to be added to.
However, this randomness can be controlled via a seed to the random number generator.
This makes the process deterministic such that the same communities are selected every
time the algorithm is run on a given network using the same seed value. In our analysis,
we tested several seed values finding that the detected communities varied only for a few
nodes, with many seed values returning the exact same partitions. The results shown in
Section 4.3 were found using 1 as the seed, as well as for many other seed values tested.

Furthermore, we compare the the communities obtained for the directed and undi-
rected versions of the network for seed values 1, . . . , 1000 via the Adjusted Mutual In-
formation [51]. Take, for example, our set of P of N sectors and consider two partitions
of P, namely U = {U1, U2, . . . , UJ} with J pairwise-disjoint clusters found by maximis-
ing Qund for the undirected version of the network, and V = {V1, V2, . . . , VD} with D
pairwise-disjoint clusters found by maximising Qdir for the directed version of the network.
The AMI between the two partitions is then defined as

AMI(U, V) =
MI(U, V)− E{MI(U, V)}

max{H(U), H(V)} − E{MI(U, V)} (16)

where MI(U, V) is the mutual information between two partitions, E{MI(U, V)} is the
expected mutual information and H(U) and H(V) are the entropy values associated to
partitions U and V respectively. The AMI equals 1 when two partitions are exactly the
same and 0 when the MI between them equals its expected value and therefore serves as
a similarity measure for the two partitions, for further details on its calculation see [51].
In Section 4.3, we give the result for the average AMI obtained for the 1000 seed values
tested using the scikit-learn 0.23 Python package.

Community Detection Results

The community detection procedure described above yielded 5 distinct communities
when applied on the undirected biPCPG network, Gund, which we denote communities
ν = 1, . . . , 5. These communities have 31, 22, 21, 13 and 13 sectors contained in each of
them, respectively.

The detected communities in the network can be seen highlighted in Figure 4. When
comparing with Figure 3, which shows the network highlighting the section of each sector,
one can see that the detected communities partition the network into groups that contain
intuitively related sectors. For example, communities 2, 3 and 5 contain mostly nodes
related to industrial and chemical sectors, while community 1 captures the “food and plant”
cluster described above as well as some service sectors. Finally, for community 4, it is
slightly more difficult to find a common theme. However, it is worth noting that over half
of the sectors it contains are service sectors.
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Figure 4. biPCPG network, G, resulting from the application of the PCPG algorithm on the mean
correlation matrix K̄ between sectors’ RCA time series. Nodes are grouped by their community, ν,
found by maximising modularity in the network. The node layout was found using the ForceAtlas2
algorithm [44].

The information structure these communities contain can be seen when sorting rows
and columns of the average correlation matrix K̄ and average influence matrix by com-
munity index as seen in Figures A2 and A3 in Appendix C. We can observe, for example,
that brighter colours, meaning higher values, are generally found close the diagonal of
the matrices (i.e., among sectors within the same community). This is especially notice-
able for communities 1 and 2. We can also identify which rows and columns represent
service sectors, as these tend to have a lower correlation and average influence values with
non-service sectors (depicted in dark blue) and higher values among themselves.

The average adjusted mutual information obtained for the 1000 seed values tested is
0.90. This is a very high value which tells us that, on average, the partitions obtained for
the directed and undirected versions of the network were very similar. This suggests that
the community detection procedure is weakly dependent on the version of the network
(directed vs. undirected) as well as the seed value used.
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5. Discussion

In this paper we have introduced the biPCPG framework, a generalisation of the
PCPG [30] algorithm to datasets with a multi-sample and multi-variable structure that
allows a statistical significant and robust analysis, mainly by generating confidence bounds
via an adapted bootstrapping procedure. We have then applied this new procedure to a
recently introduced dataset that integrates the export of physical goods and services data.
The proposed procedure allows the generation of a network of these economic sectors
whose links represent the average influence in terms of temporal correlation. This can
be seen as an an asymmetric formulation of relatedness [26,52]. The resulting network
contains several hub nodes with high degree (namely Plastics, Pigments, Iron and steel
articles, Preparations of cereals and milk and Aluminium) as well as distinct clusters of
intuitively-related economic sectors (such as a food and plant cluster, a services cluster and
manufacturing cluster). We find that, in this network, economic sectors display a relatively
high assortativity according to their complexity rank and, to a lesser extent, their category.

6. Conclusions

In this work, we have introduced an asymmetric definition for relatedness by extend-
ing the PCPG methodology introduced in [30] for its use on bipartite datasets, which we
call biPCPG. We apply this approach to a recently introduced dataset containing the exports
of countries regarding both manufactured products and intangible services. We show that
the biPCPG methodology is able to generate a statistically robust network of economic
sectors which captures the underlying influence structure int erms of temporal correlations.

This work can be extended in a number of possible directions. First of all, the biPCPG
framework can be applied to any temporal bipartite network, such as those of common
use in economic complexity, such as the company-technology [9] or the country-scientific
field network [29]. Moreover, the adapted bootstrapping procedure can be used to other
network-generating techniques based on correlation-filtering to datasets with a multi-
sample and multi-variable structure. These techniques include those based on threshold
methods [53], the Minimum Spanning Tree [33] and the aforementioned PMFG [31], as well
as more recent techniques based on a null-model approach [54]. This would be possi-
ble by replacing the last step in our procedure, the original PCPG algorithm, with the
correlation-filtering technique of interest. Finally, it would also be particularly interesting
to apply our procedure to datasets with the same structure but longer time series, such as
financial datasets containing, for example, asset prices at the different exchanges where
they are traded.
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Abbreviations
The following abbreviations are used in this manuscript:

AMI Adjusted Mutual Information
BH Benjamini–Hochberg
biPCPG Bipartite Partial Correlation Planar Graph
BPM International Monetary Fund’s Balance of Payments data
EC Economic Complexity
FDR False Discovery Rate
HS Harmonized System
IMF International Monetary Fund
MST Minimum Spanning Tree
PCPG Partial Correlation Planar Graph
PMFG Planar Maximally Filtered Graph
RCA Revealed Comparative Advantage
UN-COMTRADE United Nations Commodity Trade Statistics Database
USD United States Dollar
WCO World Customs Organization

Appendix A. Fitness and Complexity of Economic sectors

From the matrices containing RCAc,p time series, described in Section 3.3 we can
derive the My matrix which has entries given by

My
c,p =

{
1 if RCAy

c,p ≥ 1,
0 otherwise

(A1)

where c represents a country, p represents a product (or service), and y represents a
given year.

This matrix therefore summarises the countries having a comparative advantage at
exporting the different products or services in a given year, or not. Two key quantities
from the economic complexity literature are defined using this matrix, namely the fitness of
countries and the complexity of products (or services) [17,55]. The intuition behind these
quantities is that the higher the fitness of a country the higher its capability of exporting
products of high complexity. It is therefore natural for the fitness to be proportional to
the weighted sum of the products of which it is a competitive exporter. The definition of
the complexity of a product is more subtle. In general terms, the complexity of a product
should be inversely proportional to the number of countries exporting it. We should
also note that more economically developed countries tend to have a highly diversified
export basket, while less economically developed countries tend to have a much more
limited diversification in their exports, and focused on low complexity products. Therefore,
the upper bound of a product’s complexity should be determined by the fitness of the
countries’ exporting it, with a strong bias towards lower fitness countries: if a product
is exported by lower fitness countries, its complexity can not be high. The fitness Fc of a
country and the complexity Qp of a product (or service) are therefore defined using the
following set of coupled iterative equations

F̃(n)
c = ∑p McpQ(n−1)

p

Q̃(n)
p =

1

∑c Mcp
1

F(n−1)
c

→


F(n)

c =
F̃(n)

c〈
F̃(n)

c

〉
c

Q(n)
p =

Q̃(n)
p〈

Q̃(n)
p

〉
p

(A2)

which are iterated until a fixed point is reached [56]. This fixed point has been shown to
be stable and not dependent on the initial conditions, which are set to Q̃(0)

p = 1∀p and
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F̃(0)
c = 1∀c [17]. We use the complexity of products and services in our dataset to calculate

an assortativity metric on the network G as described in Section 4.2.
It is worth noting that the dataset analysed and similar datasets explored in the

economic complexity literature exhibit a nested structure [56]. This nested structure is
manifested as a triangular structure in the My matrices when countries (rows) and sectors
(columns) are sorted by their fitness and complexity rank, respectively. This can be seen in
Figure A1, which is the My matrix for the year y = 2005.

Figure A1. Binary matrix M2005 displaying high RCAc,p values for the year 2005. Blue indicates an
entry of one and yellow an entry of zero. The triangular structure of the matrix implies a nestedness
in the data.

Appendix B. Confidence and Prediction interval calculations

The 95% confidence interval around a linear fit µ̂y|x0
done on n data points (xi, yi) n =

1, . . . , n contains the mean response of new values µy|x0
at a given value x0 with a 95%

probability. This is given by

∣∣∣µ̂y|x0
− µy|x0

∣∣∣ ≤ T.975
n−2σ̂

√√√√ 1
n
+

(x0 − x̄)2

∑n
i=1(xi − x̄)2 (A3)

where µ̂y|x0
= a + bx0 is computed from the linear fit, T.975

n−2 is the 97.5th percentile of the
Student’s t-distribution with n− 2 degrees of freedom and σ̂ is the standard deviation of
the residuals in the linear fit given by

σ̂ =

√√√√ n

∑
i=1

(yi − ŷ)2

n− 2
. (A4)

The 95% prediction interval around a linear fit ŷ0 is the interval within which a new
observation, y0, at a given value, x0, is found, with 95% probability. This is given by

|ŷ0 − y0| ≤ T.975
n−2σ̂

√√√√1 +
1
n
+

(x0 − x̄)2

∑n
i=1(xi − x̄)2 (A5)
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where ŷ0 = a + bx0 is computed from the linear fit. See [57] for a more detailed description.

Appendix C. Avg. Correlation and Avg. Influence Matrices Sorted by Community

Figure A2. Average correlation matrix K̄ sorted by communities ν found by maximising modularity.

Figure A3. Matrix showing average influence values between products d(p : p′′) sorted by commu-
nities ν found by maximising modularity. Entries in white indicate that the average influence of a
sector on itself is undefined.
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Appendix D. Sector List

Table A1. List of product (HS2007) and service (IMF BP6) sector codes in the analysed dataset.

Sector Code Sector Name Sector Code Sector Name

01 Live animals 61 Knitted clothing
02 Meat 62 Not knitted clothing
03 Fish 63 Other textile
04 Edible products of animal origin 64 Footwear
05 Other animal products 67 Feathers
06 Plants 68 Articles of stone and plaster
07 Vegetables 69 Ceramic
08 Fruits 70 Glass
09 Coffee and tea 71 Jewellery
10 Cereals 72 Iron and steel
11 Products of milling 73 Iron and steel articles
12 Seeds and medicinal plants 74 Copper
13 Vegetable extracts 76 Aluminium
14 Other vegetables 78 Lead
15 Animal or vegetable fats 79 Zinc
16 Preparations of meat or fish 81 Other base metals
17 Sugar 83 Miscellaneous articles of base metal
18 Cocoa 84 Machinery and nuclear reactors
19 Preparations of cereals and milk 85 Electrical machinery
20 Preparations of plants 86 Railway
21 Other edible preparations 87 Vehicles
22 Beverages 88 Aircraft and spacecraft
23 Residues of food industries 89 Ships and boats
24 Tobacco 90 Instruments
25 Earths and stone 93 Arms and ammunition
26 Ores 94 Furniture
27 Mineral fuels 96 Miscellaneous manuf. articles
28 Inorganic chemicals 97 Art and antiques
29 Organic chemicals BXSM_BP6_USD Manufacturing Services
30 Pharmaceutical BXSOCN_BP6_USD Construction
31 Fertilizers BXSOFIEX_BP6_USD Financial Services
32 Pigments XSOFIFISM_BP6_USD FISIM
33 Cosmetics BXSOGGS_BP6_USD Government
34 Soaps BXSOIN_BP6_USD Insurance and pension
35 Glues BXSOOBPM_BP6_USD Consulting
36 Explosives BXSOOBRD_BP6_USD R&D
37 Photo and cinema goods BXSOOBTT_BP6_USD Technical Business
38 Other Chemicals BXSOPCRAU_BP6_USD Audiovisual
39 Plastics BXSOPCRO_BP6_USD Cultural
40 Rubber BXSORL_BP6_USD Intellectual Property
41 Skins and leather BXSOTCMC_BP6_USD Computer Services
44 Wood and Cork BXSOTCMM_BP6_USD Information
46 Straw manuf. BXSOTCMT_BP6_USD Telecommunication
47 Paper BXSR_BP6_USD Maintenance
51 Wool BXSTRA_BP6_USD Air Transport
52 Cotton BXSTROT_BP6_USD Other Transport
53 Other vegetables fibres BXSTRPC_BP6_USD Postal
54 Filaments BXSTRS_BP6_USD Sea Transport
56 Felt, ropes, wadding BXSTVB_BP6_USD Business Travel
59 Textile for industries BXSTVP_BP6_USD Personal Travel
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