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Abstract: The mechanism of cerebral blood flow autoregulation can be of great importance in
diagnosing and controlling a diversity of cerebrovascular pathologies such as vascular dementia,
brain injury, and neurodegenerative diseases. To assess it, there are several methods that use
changing postures, such as sit-stand or squat-stand maneuvers. However, the evaluation of the
dynamic cerebral blood flow autoregulation (dCA) in these postures has not been adequately studied
using more complex models, such as non-linear ones. Moreover, dCA can be considered part
of a more complex mechanism called cerebral hemodynamics, where others (CO2 reactivity and
neurovascular-coupling) that affect cerebral blood flow (BF) are included. In this work, we analyzed
postural influences using non-linear machine learning models of dCA and studied characteristics
of cerebral hemodynamics under statistical complexity using eighteen young adult subjects, aged
27 ± 6.29 years, who took the systemic or arterial blood pressure (BP) and cerebral blood flow
velocity (BFV) for five minutes in three different postures: stand, sit, and lay. With models of a
Support Vector Machine (SVM) through time, we used an AutoRegulatory Index (ARI) to compare
the dCA in different postures. Using wavelet entropy, we estimated the statistical complexity of
BFV for three postures. Repeated measures ANOVA showed that only the complexity of lay-sit had
significant differences.

Keywords: cerebral hemodynamics; statistic complexity; machine learning models; postural effects

1. Introduction

Currently, three mechanisms are recognized in cerebral hemodynamics, namely: dy-
namic Cerebral Autoregulation of blood flow (dCA), the cerebral blood flow reactivity to
CO2 and cerebral neurovascular-coupling (NVC).

dCA is a cerebral homeostatic mechanism that maintains relatively constant cerebral
blood flow (BF) despite the changes that may be produced by arterial blood pressure (BP).
One way to measure dAC is to determine the transcranial flow output (capturing with
Transcranial Doppler, TCD) in response to a negative BP step [1,2].

The classic method for producing a BP drop was proposed by Tiecks et al. [3], induced
by the sudden release of compressed bilateral thigh cuffs. A number of other maneuvers
have been proposed to induce changes in BP, to provoke a corresponding response in
BFV [4–6]. However, the most interesting are those that imitate natural body movements,
such as posture changes. For these, there are a considerable number of studies that use
them [7–16]. One significant advantage is that they are simple to use in the elderly and
pregnant women. Through their use, some studies prove that changes in posture do not
affect the calculation of the dCA [17–21], but they all use indices and linear models. Of note
is the work of Mahdi et al. [21] where they test four different indices to obtain dCA and
two different linear models to calculate it.
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However, there is a clear question regarding the linearity of dCA [22–24], which has
led to the emergence of non-linear methods to assess dCA [25–32]. From the point of
view of hemodynamics, dCA is not an isolated mechanism; on the contrary, there are
complex interactions that include mechanisms of reactivity and neurovascular coupling.
The experiments [26,27,32] proved the non-linear interaction between reactivity and dCA.
This generates the necessity to evaluate the behavior of this system, in terms of the different
postures, in a more comprehensive way, considering its complexity and interaction.

Through nonlinear modeling of dCA using SVM and the study of complexity based on
wavelet entropy, applied to the same set of experimental data, we believe that it is possible
to describe the multiple interactions and differences produced in cerebral hemodynamics
when making usual body posture changes in healthy humans.

2. Materials and Methods
2.1. Subjects and Measurement

Eighteen young adult volunteers were recruited at Universidad de Santiago de Chile,
without a history of diseases or cardiovascular problems, hypertension or diseases of the
nervous system, with average age of 27.00 ± 6.29 years (range 22 to 44, approved by the
ethics committee of the University, 22 January 2016). The BFV was monitored in the middle
cerebral artery using a transcranial Doppler-Box brand DWL, with two ultrasonic transduc-
ers of 2 MHz, to obtain the arterial BFV in both cerebral hemispheres. The arterial blood
pressure was monitored with a non-invasive continuous pressure monitor, Finapres finome-
ter MIDI, in the middle finger of the non-skillful hand. Each signal was sampled at 100 Hz
and stored directly on a computer using the Doppler-Box system’s management software.

After setting the ultrasonic transducer and the Finapres, the subject was maintained at
rest for five minutes. Then, the order of the postures to be evaluated was chosen randomly
(stand, sit, lay). Each posture was held for five minutes with an interval of three minutes to
change posture and stabilize.

The manual repair of significant pieces of signal (greater than 4 samples) using cubic
spline to interpolate these values was required. Then, automatic preprocessing software
removed noise with two different filters. The Hampel filter was used to eliminate outliers
(this filter works over median values). The Butterwort low-pass filters are of the eighth
order and have a cutoff frequency of 20 Hz. This filter was applied using two filters of
fourth order in push–pull to achieve phase zero. Then, heartbeat detection was performed
(locating the upstroke, max, and min points in BP). With these values on each beat, the
average values of the BP and BFV signals were calculated. These were interpolated and
samples were taken at a constant rate of 0.4 samples per second.

Finally, the normalization of the signal was carried out using the min–max feature
scaling method (with a range of [−1, 1]) shown in Equation (1), to be used in the calculation
of the ARIs indices and the non-linear models with the SVM.

xnorm(n) = 2
x(n)− xmin
xmax − xmin

− 1 (1)

where, xnorm denotes normalized value of x, xmin and xmax are, respectively, the minimum
and maximum value of the signal.

2.2. Methods
2.2.1. Machine Learning Models of dCA

Support Vector Machines have been used to obtain non-linear models of the BP–BFV
dynamic relationship and the foundations of SVM are presented in extended form in our
work [32]. Once these models are trained, it is possible to use a step-change in BP as an
input and then obtain the BFV response as an output, from which estimates of ARI can be
derived, following the procedure described in Appendix A.

SVMs are static models that relate an input vector to an output real value. To capture
the temporal relationship of two or more signals, it is necessary to add external delays or
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recurrences. Specifically, we used ν-SVR [33] to develop dynamic univariate models with
BP as input and BFV as an output of two types: non-linear Finite Impulse Response (NFIR)
models and non-linear Autoregressive with eXogenous input (NARX) models. To obtain
linear models, it is enough to transform the nonlinear function f into a linear combination
of its arguments to obtain models FIR and ARX. The static SVM solves an optimization
problem that is presented in [33], and its objective function is included in Equation (2).

minimize θ
(→

w, ξ
)
=

1
2
‖→w‖

2
+ C

(
lνε+

l

∑
i=1
ξi

)
(2)

where ‖→w‖ stands for the Gaussian kernel function shown in Equation (3).

‖→w‖ = K
(→

x i,
→
x j

)
= exp

(
−‖→x i −

→
x j‖2

2σ2

)
(3)

where C, ν and ε correspond to SVM hyper-parameters.
To implement the dynamic model of the SVM on the BP signals (p(n)) and predicted

BFV (vˆ(n)) Equations (4) and (5) are used, where n, np is the delay in the BP signal, nv
corresponds to BFV recurrences, and f represents a non-linear function. Estimates for
kernel radial basis function of SVM shown in Equation (3).

vˆ(n) = f (p(n), p(n − 1), . . . , p(n − np)) (4)

vˆ(n) = f (vˆ(n − 1), vˆ(n − 2), . . . vˆ(n − nv), p(n), p(n − 1), . . . , p(n − np)) (5)

Each pair of signals, i.e., simultaneous recordings of spontaneous fluctuations of BP
and BFV, were separated into two sections: the training segment, consisting of the first
two and a half minutes of the signals, and the validation segment, with the last two and a
half minutes. All models were trained with the former section using the one-step-ahead
prediction strategy, and validated with the latter fragment following the model predictive
output strategy, in which the model predicts the complete BFV validation segment for the
unseen validation BP segment, resulting in balanced cross-validation [34]. The search for
delays in both the BP signal (np) and the BFV recurrences (nv) was conducted empirically.
The hyper-parameters of non-linear ν-SVR (i.e., C, v, ε and σ) were bounded by grid search.

The efficiency of a model was determined by Pearson’s correlation coefficient (CC)
between the real BFV (v) signal and the BFV (vˆ) estimated by the model. The best model
for each subject is the one with the highest CC in the validation segment. However, high
correlation is not enough to guarantee that a model’s response has physiological plausibility.
To solve this problem, we implemented a computational routine based on the indications
suggested by Ramos et al. [35], where the physiological quality is evaluated according to the
response of the BFV to negative BP step, using three simple criteria: (i) the response should
be reduced to at least 40% of the original level from the BFV signal’s mean level; (ii) the
response return must be between the minimum and average value plus 10%; and (iii) the
BFV return must be between 3 and 6 s after the pressure drop. That automatically discards
models that generate non-physiological responses. Training and validating subroutines
were implemented using the R environment [36] and libsvm [37] in package e1071 [38].

2.2.2. Statistic Complexity of Hemodynamics

The Wavelet transform, like the Fourier transform, uses an orthogonal basis to decom-
pose the signal in a unique and invertible way. Bases such as Biorthogonal, Daubechies,
Haar, and Symlets, among others [39], correspond to the oscillating basis of fast and
smooth extinction.

For the calculation of the wavelet entropy, we used the implementation presented by
Rosso [40]. Using discrete time functions ψj,k(n), which decompose the signal into different
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dilation (j) and translation (k) scales representing different frequency levels, both expressed
in powers of two. As shown in Equation (6), they allow decomposing of the BFV signal
(v(n)) into a linear combination of these functions and coefficients Cj(k), similar to the
Fourier series.

v(n) =
−1

∑
j=−N

∑
k

Cj(k)ψj,k(n) (6)

Wavelet distribution. This discrete transform represents the signal v(n) in its coeffi-
cients Cj(k). Since the ψ functions turn out to be an orthogonal basis, the energy of each
scale j, the sum of the squared coefficients, at the different frequency levels j = 1 . . . N
results in the energy for each resolution level j, Equation (7).

Ej = ∑
k

∣∣CJ(k)
∣∣2 (7)

The total energy is obtained by summing over all scales. An adequate approximation
of the probability distribution of the signal can be obtained by calculating the ratio between
the energy of each scale, over the total energy, obtaining

{
pj
}

.
In this way, entropy characterizes a phenomenon that represents the signal in time

and frequency (or scale).
Entropy and complexity. The total entropy of the signal will correspond to the classical

definition given by Shannon et al. [41], which is obtained in this case from the relative
wavelet energy. A measure of the information contained in the signal, Rosso et al. [40]
Equation (8):

H = −
m

∑
j=1

pjln
(

pj
)

(8)

For statistical complexity, we used Lopez-Ruiz’s definition, based on the disequilib-
rium (Q) of the system [42–45]. This is obtained as the distance between the uniform distri-
bution Pe (maximum entropy) and the distribution of the signal at issue Ps, Equation (9).

Q = Q0D(Pe, Ps) (9)

where D corresponds to Euclidean distance or Wooters’ distance defined as:

Q = Q0cos−1

{
m

∑
j=1

[
pj
]1/2

[
1
m

]1/2
}

(10)

with Q0 = m/(m− 1) for Euclidean distance and Q0 = 1/cos−1
{
[1/m]1/2

}
to Wooters’

distance [46].
In this way, statistical complexity is defined as the product of entropy and disequilibrium.

C = HxQ (11)

Blood flow velocity analysis. Many times, the value of the complexity represented
by the different states is enough to apply the statistical tests directly to the complexities
of the analysis. However, Equation (11) shows a compound characteristic that considers
entropy, but its dependence is not direct since the imbalance is added as a product.

We will use complexity to perform the statistics, but we will rely on a graphical
representation called the entropy complexity plane [47], where the normalized entropy (in
the interval [0–1]) is shown on the abscissa axis in an increasing way and the complexity on
the ordinate axis.

This plane is of great interest not only because it contributes an additional dimension,
but also because in the case of biological systems. Substantial evidence shows there is
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a decrease in complexity [48] in the presence of disease or aging, which can be better
appreciated on this representation.

2.3. Statistical Analysis

Data normality was tested using Shapiro and Wilk’s statistics. Paired comparisons
for cerebral hemispheres were made with the Student’s t-test in normality and with the
Wilcoxon test when normality was rejected. When differences in hemispheres didn’t exist,
indices or complexities were averaged.

We use repeated measures ANOVA analysis for comparison indices and complexi-
ties [49]. The discriminatory ability of the different approaches was compared in terms
of the area under the ROC curve (AUC). ROC curves were obtained from autoregulation
index values by using numbers in [0–9] for the SVM models and complexity analysis.
AUC values are achieved by each method [50]. In all cases, p < 0.05 was considered
statistically significant.

3. Results

One subject was discarded since the BFV of one position was unrecoverable. Four of
the remaining BFVs required manual spline repair. The rest of the BFV and BP signals were
easily fixed by using Hampel and Butterwort filters.

After applying the normality tests, there were no significant differences between
both cerebral hemispheres for any subject. The results of the separate processes of each
hemisphere also occurred without significant differences. Therefore, complexity and ARIs’
values were always averaged as a single value for each subject.

The average values for the eighteen subjects are shown in Table 1.

Table 1. Mean ± SD of BP in mm [Hg] and BFV in [cm/s] for hemisphere and average in
three postures.

Posture Lay Stand Sit

Signal BFV BP BFV BP BFV BP

Side Right Left Mean - Right Left Mean - Right Left Mean -

Mean 58.52 60.02 59.27 74.96 54.36 52.65 53.50 84.81 53.69 52.07 52.88 81.45

Std 13.48 14.23 13.68 9.03 11.47 10.31 10.79 10.93 13.50 11.22 12.26 11.87

CoV 0.23 0.24 0.23 0.12 0.21 0.20 0.20 0.13 0.25 0.22 0.23 0.15

Of the signals in all three postures, only the signal in the lying position had a slightly
higher amplitude, while the others had similar characteristics in amplitude and frequency.
The three BFV signals for a typical subject are presented in Figure 1.
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3.1. SVM Models

The parameters and results for the four models (FIR, NFIR, ARX and NARX) are
shown in Table 2. The ranges for the input and output signal delays and hyperparameters
of the SVM are shown. Correlation values are also displayed in the evaluation segment.

Table 2. Hyperparameters and fit indices for SVM models.

Model np nv C v σ CC Lay CC Stand CC Sit

FIR linear [1–10] - [−2, 14 einf] [0, 1–0, 9] [−1, 5] 0.611 0.721 0.626

FIR non-linear [1–10] - [−2, 14 einf] [0, 1–0, 9] [−1, 5] 0.655 0.742 0.682

AR linear [1–8] [1–6] [−2, 14 einf] [0, 1–0, 9] [−1, 5] 0.553 * 0.706 0.599

AR non-linear [1–8] [1–6] [−2, 14 einf] [0, 1–0, 9] [−1, 5] 0.749 0.809 * 0.761

* Most statistically significant differences p-value = 0.005.

With the BFV step response, it is possible to apply the method of Appendix A (classic
ARI index) to obtain a dCA index for each subject. The average values for each model
and posture are presented in Table 3. Non-significant differences exist in three positions in
any model.

Table 3. The results of the application of the repeated measures ANOVA methods on the ARIs’ values,
for the four models.

Model Lay Sit Stand p-Values
ANOVA

FIR ARI 4.69 ± 2.51 3.6 ± 2.15 4.76 ± 2.23 0.2522

NFIR ARI 4.41 ± 1.94 4.12 ± 2.58 4.97 ± 2.03 0.3201

ARX ARI 4.41 ± 2.57 4.25 ± 1.72 4.42 ± 1.92 0.9683

NARX ARI 4.92 ± 2.31 3.84 ± 2.28 4.51 ± 2.77 0.6991

3.2. Statistic Entropy and Complexity

The Shapiro and Wilk’s test of the complexities turned out to be normal, and the paired
tests of the cerebral hemispheres did not present significant differences.

The ANOVA test is p = 0.0059 (F statistic = 5.9807, DF = 2) and Tukey’s post hoc test
shows that the differences between Sit and Lay are 0.0023, this is 22 times less, than the limit
(p < 0.05) set as statistically significant for biological studies. The obtained p-values for the
differences between Lay and Stand and Sit and Stand were 0.1418 and 0.2406, respectively.

As a way to quantify the classifying power of the methods, we calculated the ROC
curves and their area under the curve (AUC). Figure 2a shows the ROC curves for the
best model in terms of fit (NARX, correlation) for the comparison between the three
postures: sit–stand, lay–sit, and lay–stand. For its part, Figure 2b shows the ROCs for the
same comparisons among complexities. The largest AUC in the area corresponds to the
differences between the lying and sitting postures in Figure 2b.

Finally, as an aid for the results analysis and to better quantify both the complexity
and the entropy of the postures, we show the distribution of the subjects in the complexity–
entropy plane (Figure 3), the only comparison that turned out to be significantly different.



Entropy 2022, 24, 428 7 of 12

Entropy 2022, 24, x FOR PEER REVIEW 7 of 12 
 

 

best model in terms of fit (NARX, correlation) for the comparison between the three 
postures: sit–stand, lay–sit, and lay–stand. For its part, Figure 2b shows the ROCs for the 
same comparisons among complexities. The largest AUC in the area corresponds to the 
differences between the lying and sitting postures in Figure 2b. 

  
(a) (b) 

Figure 2. ROC curves to classify paired comparisons of the three postures. (a) Among the 
SVM-NARX model postures’ dCA values. (b) Among the BFV postures’ complexities. 

Finally, as an aid for the results analysis and to better quantify both the complexity 
and the entropy of the postures, we show the distribution of the subjects in the complex-
ity–entropy plane (Figure 3), the only comparison that turned out to be significantly dif-
ferent. 

 
Figure 3. Complexity–entropy plane for lay–sit comparison. Subjects represented by circles corre-
spond to the sitting posture, and subjects represented by triangles represent the lying posture. 

4. Discussion 
We chose to use SVM methods over time, due to their determinism to train them, 

versatility, and power to analyze multiple variables [32], which allows explaining the 
interaction with reactivity in great detail. It also allowed us to easily turn it into a linear 
model. 

These models allowed for the estimation of autoregulation via the BFV’s responses 
to changes in BP (Figure 4). By performing an ANOVA analysis for both linear and 
non-linear models, the values of the autoregulation response were not significantly dif-
ferent from the responses of the BFV for posture. 

Figure 2. ROC curves to classify paired comparisons of the three postures. (a) Among the SVM-NARX
model postures’ dCA values. (b) Among the BFV postures’ complexities.

Entropy 2022, 24, x FOR PEER REVIEW 7 of 12 
 

 

best model in terms of fit (NARX, correlation) for the comparison between the three 
postures: sit–stand, lay–sit, and lay–stand. For its part, Figure 2b shows the ROCs for the 
same comparisons among complexities. The largest AUC in the area corresponds to the 
differences between the lying and sitting postures in Figure 2b. 

  
(a) (b) 

Figure 2. ROC curves to classify paired comparisons of the three postures. (a) Among the 
SVM-NARX model postures’ dCA values. (b) Among the BFV postures’ complexities. 

Finally, as an aid for the results analysis and to better quantify both the complexity 
and the entropy of the postures, we show the distribution of the subjects in the complex-
ity–entropy plane (Figure 3), the only comparison that turned out to be significantly dif-
ferent. 

 
Figure 3. Complexity–entropy plane for lay–sit comparison. Subjects represented by circles corre-
spond to the sitting posture, and subjects represented by triangles represent the lying posture. 

4. Discussion 
We chose to use SVM methods over time, due to their determinism to train them, 

versatility, and power to analyze multiple variables [32], which allows explaining the 
interaction with reactivity in great detail. It also allowed us to easily turn it into a linear 
model. 

These models allowed for the estimation of autoregulation via the BFV’s responses 
to changes in BP (Figure 4). By performing an ANOVA analysis for both linear and 
non-linear models, the values of the autoregulation response were not significantly dif-
ferent from the responses of the BFV for posture. 
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4. Discussion

We chose to use SVM methods over time, due to their determinism to train them, versa-
tility, and power to analyze multiple variables [32], which allows explaining the interaction
with reactivity in great detail. It also allowed us to easily turn it into a linear model.

These models allowed for the estimation of autoregulation via the BFV’s responses to
changes in BP (Figure 4). By performing an ANOVA analysis for both linear and non-linear
models, the values of the autoregulation response were not significantly different from the
responses of the BFV for posture.

Current evidence from studies that attempted to link postures to dCA [17–19,21]
indicates that there are no differences in autoregulation based on posture. It should also be
noted that these works were implemented using a linear perspective.

In the literature, the work that presents a reasonable doubt is [20] where the squat-
to-stand maneuver is studied. The results show that, when considering the direction of
the maneuvers (that is, squat-to-stand and stand-to-squat), the results are not the same,
and these effects are explained by concomitant changes in the BFV and pulse pressure.
However, it is not possible to establish a significant difference in autoregulation when the
maneuvers are performed repeatedly. This also proves the relationship of non-linearity,
since the asymmetry in directionality is proof of it.
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Like this, this work coincides with our findings. Although the phenomenon has
non-linear characteristics, the postures do not affect the calculation of the dCA, whether it
is carried out linearly or not. Despite the previous coincidence, suspicions rose in [20] re-
garding the incidence of other physiological conditions or effects of age, sex, or pathologies,
which remain completely valid.

To obtain an answer, an experimental design that includes these variables or effects
and uses a non-linear technique such as multivariate SVMs could be proposed.

Our solution was to use a tool that not only considers the nonlinearity of the phe-
nomenon, but also its complexity with the same data from this experiment, and that can
detect other characteristics in the BFV, such as variance over time or discover more sensitive
aspects such as co-variables, which do not necessarily have to be explicitly identified.

The verification of these differences is shown through the analysis of repeated mea-
sures ANOVA, for the complexities of the 3 postures, which presents a p-value of 0.0059,
and their differences are observed in Figure 5. However, the post-hoc analysis of Tukey only
shows significant differences between complexities for lying and sitting, with a p-value
of 0.0023. These findings are significant in comparison to the current literature [18,19,21]
because none of these studies show significant differences in cerebral autoregulation in
changes of posture.

Entropy 2022, 24, x FOR PEER REVIEW 9 of 12 
 

 

 
Figure 5. The graph shows the universal confidence interval of the means for each posture. 

An interesting graphic representation that can shed light on our findings is the 
so-called complexity–entropy plane [51]. Although the cases of the lying posture seem to 
cross the entire section of the plane where the two maneuvers are deployed, starting from 
high complexity and low entropy, to low complexity and higher entropy, in fact, a ma-
jority of these cases have a higher complexity. In contrast, sitting cases can be more 
clearly identified with the lower right quadrant, which represents a lower complexity 
and greater disorder. 

When analyzing BFV, a hemodynamic phenomenon should be considered rather 
than just dCA, although the dCA component should be the majority since the factors are 
relatively constant, such as neurovascular coupling or CO2 variation. 

We think that the significant differences in complexity are due to a more intrinsic 
cause of the system. The results show that the state of rest leads to an increase in com-
plexity. From a system utilization point of view, this state could represent a lower met-
abolic demand, not having to control posture as it would be in the other two cases. 

The question to be elucidated here is whether a higher metabolic demand decreases 
the complexity. The work of Zarjam et al. [52] shows (with the same wavelet entropy 
calculated in this work) that it is possible to associate low entropy states as the mathe-
matical tasks become more complicated. Furthermore, in our work [53], we calculated the 
complexity (using multi-scale entropy) in the case of hearing sounds with emotional 
content, such that the state of lower complexity is the state when listening to music with 
strong positive emotional content for the subject. We associated this with a greater de-
mand on the cerebrovascular system. 

From a more general perspective, complexity measurement is certainly a much more 
general mechanism for assessing brain function than the non-linear modeling of dCA. 

Clearly, complexity is constituted as a powerful biomarker for differences, not only 
between pathologies but also between mental states or different conditions, whether 
these are pathological or different states of health, such as ageing [48]. 

These findings can also be seen in a recently published work [54], which studies a 
large number of subjects with epilepsy (100) and their control cases, but manages to 
classify the subjects according to different health conditions, such as metabolic disorders 
and others, which were not considered as the initial underlying pathology. 

The limitations of this study are the same as any other using a sensitive diagnostic 
tool for a wide spectrum of alterations, its lack of specificity. This is despite the fact that 
we have a clear hypothesis to explain the increase in complexity found in the lay posture. 

Figure 5. The graph shows the universal confidence interval of the means for each posture.



Entropy 2022, 24, 428 9 of 12

An interesting graphic representation that can shed light on our findings is the so-
called complexity–entropy plane [51]. Although the cases of the lying posture seem to cross
the entire section of the plane where the two maneuvers are deployed, starting from high
complexity and low entropy, to low complexity and higher entropy, in fact, a majority of
these cases have a higher complexity. In contrast, sitting cases can be more clearly identified
with the lower right quadrant, which represents a lower complexity and greater disorder.

When analyzing BFV, a hemodynamic phenomenon should be considered rather
than just dCA, although the dCA component should be the majority since the factors are
relatively constant, such as neurovascular coupling or CO2 variation.

We think that the significant differences in complexity are due to a more intrinsic cause
of the system. The results show that the state of rest leads to an increase in complexity. From
a system utilization point of view, this state could represent a lower metabolic demand, not
having to control posture as it would be in the other two cases.

The question to be elucidated here is whether a higher metabolic demand decreases
the complexity. The work of Zarjam et al. [52] shows (with the same wavelet entropy
calculated in this work) that it is possible to associate low entropy states as the mathe-
matical tasks become more complicated. Furthermore, in our work [53], we calculated
the complexity (using multi-scale entropy) in the case of hearing sounds with emotional
content, such that the state of lower complexity is the state when listening to music with
strong positive emotional content for the subject. We associated this with a greater demand
on the cerebrovascular system.

From a more general perspective, complexity measurement is certainly a much more
general mechanism for assessing brain function than the non-linear modeling of dCA.

Clearly, complexity is constituted as a powerful biomarker for differences, not only
between pathologies but also between mental states or different conditions, whether these
are pathological or different states of health, such as ageing [48].

These findings can also be seen in a recently published work [54], which studies a large
number of subjects with epilepsy (100) and their control cases, but manages to classify the
subjects according to different health conditions, such as metabolic disorders and others,
which were not considered as the initial underlying pathology.

The limitations of this study are the same as any other using a sensitive diagnostic
tool for a wide spectrum of alterations, its lack of specificity. This is despite the fact that we
have a clear hypothesis to explain the increase in complexity found in the lay posture. To
appropriately explain the differences found in complexity, using a non-linear model where
the neurological control of posture could be measured would be a definitive test.

5. Conclusions

We have shown that the different postures of the human body do not affect the calcu-
lations of brain blood flow autoregulation, even when this system has non-linear behavior.
However, we have also been able to observe that, when considering the cerebral hemody-
namic system from a more comprehensive perspective (beyond the BP–BFV relationship),
it is possible to see that the postures do affect this system. Differences were found thanks to
the application of statistical complexity, using a highly sensitive dynamic systems analysis
tool. However, the specificity of this technique still requires further study.
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Appendix A. Classic Dynamic Autoregulation Index

The Aaslid and Tiecks’ ARI index [1, 3] is the most widespread linear method in the
autoregulation literature, which evaluates the changes in the BFV in response to the changes
introduced in the BP by the sudden release of the cuffs of the inflated bilateral thighs.

The ARI index classifies subjects on a scale from 0 to 9, corresponding to 10 different
ARI values (quality of autoregulation), where 0 represents the complete absence of autoreg-
ulation and 9 is considered good autoregulation. This method estimates the BFV using a
second-order linear differential equation that uses two state variables, x1 and x2, as shown
in the equations in Equation (A1).

NP(t) = p(t)
1−CCP ;

x1(t) = x1(t− 1) + NP(t−1)−x2(t−1)
f×T

x2(t) = x2(t− 1) + x1(t−1)−2×D×x2(t−1)
f×T ;

v̂(t) = 1 + dP(t)− K× x2(t)

(A1)

where f is the sampling frequency and CrCp refers to the Critical Closing Pressure that
can be calculated from the initial BP and BFV. NP(t) corresponds to the change of the
normalized BP from a control value. The model parameters are given by K, D and T, where
K is a parameter that represents the autoregulating gain of the system, D is a damping
factor, and T is a time constant. The relationship established between parameters and ARI
values is shown in Table A1.

Table A1. Relationship between Equation (6) parameters and the ARI index.

T D K ARI

2.00 1.70 0.00 0
2.00 1.60 0.20 1
2.00 1.50 0.40 2
2.00 1.15 0.60 3
2.00 0.90 0.80 4
1.90 0.75 0.90 5
1.60 0.65 0.94 6
1.20 0.55 0.96 7
0.87 0.52 0.97 8
0.65 0.50 0.98 9

For each produced maneuver at p(t), a corresponding velocity vˆ(t) is predicted from
the model, which can be compared with the real speed v(t), and whose highest correlation
represents the model’s quality (lowest error).

The model predicts a corresponding velocity vˆ(t) for each produced maneuver at p(t),
which can be compared to the real speed v(t), and whose highest correlation represents the
model’s quality (lowest error).

To implement this method in the SVM model, we replace and maneuver the changes
introduced in the BP by the sudden release of the cuffs of the inflated bilateral thighs, for a
negative step response to the BP, as shown in Figure 2, which are adjusted by Equation (A1)
and the ARI value obtained by interpolation of the values (K, D and T) of the fitted equation
on Table A1.

References
1. Aaslid, R.; Lindegaard, K.F.; Sorteberg, W.; Nornes, H. Cerebral autoregulation dynamics in humans. Stroke 1989, 20, 45–52.

[CrossRef] [PubMed]
2. Paulson, O.B.; Strandgaard, S.; Edvinsson, L. Cerebral autoregulation. Cerebrovasc. Brain Metab. Rev. 1990, 2, 161–192. [PubMed]
3. Tiecks, F.P.; Lam, A.M.; Aaslid, R.; Newell, D.W. Comparison of static and dynamic cerebral autoregulation measurements. Stroke

1995, 26, 1014–1019. [CrossRef] [PubMed]

http://doi.org/10.1161/01.STR.20.1.45
http://www.ncbi.nlm.nih.gov/pubmed/2492126
http://www.ncbi.nlm.nih.gov/pubmed/2201348
http://doi.org/10.1161/01.STR.26.6.1014
http://www.ncbi.nlm.nih.gov/pubmed/7762016


Entropy 2022, 24, 428 11 of 12

4. Nogueira, R.C.; Bor-Seng-Shu, E.; Santos, M.R.; Negrão, C.E.; Teixeira, M.J.; Panerai, R.B. Dynamic cerebral autoregulation
changes during sub-maximal handgrip maneuver. PLoS ONE 2013, 8, e70821. [CrossRef] [PubMed]

5. Sato, K.; Fisher, J.P.; Seifert, T.; Overgaard, M.; Secher, N.H.; Ogoh, S. Blood flow in internal carotid and vertebral arteries during
orthostatic stress. Exp. Physiol. 2012, 97, 1272–1280. [CrossRef] [PubMed]

6. Romero, S.A.; Moralez, G.; Rickards, C.A.; Ryan, K.L.; Convertino, V.A.; Fogt, D.L.; Cooke, W.H. Control of cerebral blood velocity
with furosemide-induced hypovolemia and upright tilt. J. Appl. Physiol. 2011, 110, 492–498. [CrossRef] [PubMed]

7. Sorond, F.A.; Serrador, J.M.; Jones, R.N.; Shaffer, M.L.; Lipsitz, L.A. The sit-to-stand technique for the measurement of dynamic
cerebral autoregulation. Ultrasound Med. Biol. 2009, 35, 21–29. [CrossRef] [PubMed]

8. Claassen, J.A.H.R.; Levine, B.D.; Zhang, R. Dynamic cerebral autoregulation during repeated squat-stand maneuvers. J. Appl.
Physiol. 2009, 106, 153–160. [CrossRef] [PubMed]

9. Barnes, S.C.; Ball, N.; Panerai, R.B.; Robinson, T.G.; Haunton, V.J. Random squat/stand maneuvers: A novel approach for
assessment of dynamic cerebral autoregulation? J. Appl. Physiol. 2017, 123, 558–566. [CrossRef] [PubMed]

10. Barnes, S.C.; Ball, N.; Haunton, V.J.; Robinson, T.G.; Panerai, R.B. How many squat–stand manoeuvres to assess dynamic cerebral
autoregulation? Eur. J. Appl. Physiol. 2018, 118, 2377–2384. [CrossRef] [PubMed]

11. Batterham, A.P.; Panerai, R.B.; Robinson, T.G.; Haunton, V.J. Does depth of squat-stand maneuver affect estimates of dynamic
cerebral autoregulation? Physiol. Rep. 2020, 8, e14549. [CrossRef] [PubMed]

12. Corsini, C.; Cervi, E.; Migliavacca, F.; Schievano, S.; Hsia, T.Y.; Pennati, G. Mathematical modelling of the maternal cardiovascular
system in the three stages of pregnancy. Med. Eng. Phys. 2017, 47, 55–63. [CrossRef] [PubMed]

13. Favre, M.E.; Serrador, J.M. Sex differences in cerebral autoregulation are unaffected by menstrual cycle phase in young, healthy
women. Am. J. Physiol. Heart Circ. Physiol. 2019, 316, H920–H933. [CrossRef] [PubMed]

14. Deegan, B.M.; Sorond, F.A.; Galica, A.; Lipsitz, L.A.; O’Laighin, G.; Serrador, J.M. Elderly women regulate brain blood flow better
than men do. Stroke 2011, 42, 1988–1993. [CrossRef] [PubMed]

15. Van Beek, A.H.; Rikkert, M.G.O.; Pasman, J.W.; Hopman, M.T.; Claassen, J.A. Dynamic cerebral autoregulation in the old using a
repeated sit-stand maneuver. Ultrasound Med. Biol. 2010, 36, 192–201. [CrossRef] [PubMed]

16. Van Beek, A.H.; Claassen, J.A.; Rikkert, M.G.O.; Jansen, R.W. Cerebral autoregulation: An overview of current concepts and
methodology with special focus on the elderly. J. Cereb. Blood Flow Metab. 2008, 28, 1071–1085. [CrossRef] [PubMed]

17. Deegan, B.M.; Devine, E.R.; Geraghty, M.C.; Jones, E.; ÓLaighin, G.; Serrador, J.M. The relationship between cardiac output and
dynamic cerebral autoregulation in humans. J. Appl. Physiol. 2010, 109, 1424–1431. [CrossRef]

18. Garrett, Z.K.; Pearson, J.; Subudhi, A.W. Postural effects on cerebral blood flow and autoregulation. Physiol. Rep. 2017, 5, e13150.
[CrossRef] [PubMed]

19. Gelinas, J.C.; Marsden, K.R.; Tzeng, Y.C.; Smirl, J.D.; Smith, K.J.; Willie, C.K.; Ainslie, P.N. Influence of posture on the regulation
of cerebral perfusion. Aviat. Space Environ. Med. 2012, 83, 751–757. [CrossRef] [PubMed]

20. Panerai, R.B.; Barnes, S.C.; Nath, M.; Ball, N.; Robinson, T.G.; Haunton, V.J. Directional sensitivity of dynamic cerebral autoregula-
tion in squat-stand maneuvers. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 315, R730–R740. [CrossRef] [PubMed]

21. Mahdi, A.; Nikolic, D.; Birch, A.A.; Olufsen, M.S.; Panerai, R.B.; Simpson, D.M.; Payne, S.J. Increased blood pressure variability
upon standing up improves reproducibility of cerebral autoregulation indices. Med. Eng. Phys. 2017, 47, 151–158. [CrossRef]
[PubMed]

22. Giller, C.A.; Mueller, M. Linearity and non-linearity in cerebral hemodynamics. Med. Eng. Phys. 2003, 25, 633–646. [CrossRef]
23. Panerai, R.B.; Deverson, S.T.; Mahony, P.; Hayes, P.; Evans, D.H. Effect of CO2 on dynamic cerebral autoregulation measurement.

Physiol. Meas. 1999, 20, 265. [CrossRef]
24. Panerai, R.B. The critical closing pressure of the cerebral circulation. Med. Eng. Phys. 2003, 25, 621–632. [CrossRef]
25. Mitsis, G.D.; Zhang, R.; Levine, B.D.; Marmarelis, V.Z. Modeling of nonlinear physiological systems with fast and slow dynamics.

II. Application to cerebral autoregulation. Ann. Biomed. Eng. 2002, 30, 555–565. [CrossRef] [PubMed]
26. Mitsis, G.D.; Poulin, M.J.; Robbins, P.A.; Marmarelis, V.Z. Nonlinear modeling of the dynamic effects of arterial pressure and CO2

variations on cerebral blood flow in healthy humans. IEEE Trans. Biomed. Eng. 2004, 51, 1932–1943. [CrossRef]
27. Marmarelis, V.Z.; Shin, D.C.; Zhang, R. Linear and nonlinear modeling of cerebral flow autoregulation using principal dynamic

modes. Open Biomed. Eng. J. 2012, 6, 42. [CrossRef]
28. Hu, K.; Lo, M.T.; Peng, C.K.; Liu, Y.; Novak, V. A nonlinear dynamic approach reveals a long-term stroke effect on cerebral blood

flow regulation at multiple time scales. PLoS Comput. Biol. 2012, 8, e1002601. [CrossRef]
29. Hu, K.; Peng, C.K.; Czosnyka, M.; Zhao, P.; Novak, V. Nonlinear assessment of cerebral autoregulation from spontaneous blood

pressure and cerebral blood flow fluctuations. Cardiovasc. Eng. 2008, 8, 60–71. [CrossRef]
30. Panerai, R.B.; Chacon, M.; Pereira, R.; Evans, D.H. Neural network modelling of dynamic cerebral autoregulation: Assessment

and comparison with established methods. Med. Eng. Phys. 2004, 26, 43–52. [CrossRef]
31. Peng, T.; Rowley, A.B.; Ainslie, P.N.; Poulin, M.J.; Payne, S.J. Wavelet phase synchronization analysis of cerebral blood flow

autoregulation. IEEE Trans. Biomed. Eng. 2010, 57, 960–968. [CrossRef] [PubMed]
32. Chacon, M.; Araya, C.; Panerai, R.B. Non-linear multivariate modeling of cerebral hemodynamics with autoregressive Support

Vector Machines. Med. Eng. Phys. 2011, 33, 180–187. [CrossRef] [PubMed]
33. Schölkopf, B.; Smola, A.J.; Williamson, R.C.; Bartlett, P.L. New support vector algorithms. Neural Comput. 2000, 12, 1207–1245.

[CrossRef] [PubMed]

http://doi.org/10.1371/journal.pone.0070821
http://www.ncbi.nlm.nih.gov/pubmed/23967113
http://doi.org/10.1113/expphysiol.2012.064774
http://www.ncbi.nlm.nih.gov/pubmed/22689443
http://doi.org/10.1152/japplphysiol.01060.2010
http://www.ncbi.nlm.nih.gov/pubmed/21109596
http://doi.org/10.1016/j.ultrasmedbio.2008.08.001
http://www.ncbi.nlm.nih.gov/pubmed/18834658
http://doi.org/10.1152/japplphysiol.90822.2008
http://www.ncbi.nlm.nih.gov/pubmed/18974368
http://doi.org/10.1152/japplphysiol.00316.2017
http://www.ncbi.nlm.nih.gov/pubmed/28642293
http://doi.org/10.1007/s00421-018-3964-2
http://www.ncbi.nlm.nih.gov/pubmed/30128850
http://doi.org/10.14814/phy2.14549
http://www.ncbi.nlm.nih.gov/pubmed/32812372
http://doi.org/10.1016/j.medengphy.2017.06.025
http://www.ncbi.nlm.nih.gov/pubmed/28694109
http://doi.org/10.1152/ajpheart.00474.2018
http://www.ncbi.nlm.nih.gov/pubmed/30707610
http://doi.org/10.1161/STROKEAHA.110.605618
http://www.ncbi.nlm.nih.gov/pubmed/21566238
http://doi.org/10.1016/j.ultrasmedbio.2009.10.011
http://www.ncbi.nlm.nih.gov/pubmed/20045593
http://doi.org/10.1038/jcbfm.2008.13
http://www.ncbi.nlm.nih.gov/pubmed/18349877
http://doi.org/10.1152/japplphysiol.01262.2009
http://doi.org/10.14814/phy2.13150
http://www.ncbi.nlm.nih.gov/pubmed/28242827
http://doi.org/10.3357/ASEM.3269.2012
http://www.ncbi.nlm.nih.gov/pubmed/22872988
http://doi.org/10.1152/ajpregu.00010.2018
http://www.ncbi.nlm.nih.gov/pubmed/29975567
http://doi.org/10.1016/j.medengphy.2017.06.006
http://www.ncbi.nlm.nih.gov/pubmed/28694108
http://doi.org/10.1016/S1350-4533(03)00028-6
http://doi.org/10.1088/0967-3334/20/3/304
http://doi.org/10.1016/S1350-4533(03)00027-4
http://doi.org/10.1114/1.1477448
http://www.ncbi.nlm.nih.gov/pubmed/12086006
http://doi.org/10.1109/TBME.2004.834272
http://doi.org/10.2174/1874120701206010042
http://doi.org/10.1371/journal.pcbi.1002601
http://doi.org/10.1007/s10558-007-9045-5
http://doi.org/10.1016/j.medengphy.2003.08.001
http://doi.org/10.1109/TBME.2009.2024265
http://www.ncbi.nlm.nih.gov/pubmed/20142164
http://doi.org/10.1016/j.medengphy.2010.09.023
http://www.ncbi.nlm.nih.gov/pubmed/21051271
http://doi.org/10.1162/089976600300015565
http://www.ncbi.nlm.nih.gov/pubmed/10905814


Entropy 2022, 24, 428 12 of 12

34. McCarthy, P.J. The use of balanced half-sample replication in cross-validation studies. J. Am. Stat. Assoc. 1976, 71, 596–604.
[CrossRef]

35. Ramos, E.G.; Simpson, D.M.; Panerai, R.B.; Nadal, J.; Lopes, J.M.D.A.; Evans, D.H. Objective selection of signals for assessment of
cerebral blood flow autoregulation in neonates. Physiol. Meas. 2005, 27, 35. [CrossRef] [PubMed]

36. R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.
Available online: http://www.R-project.org/ (accessed on 20 December 2021).

37. Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [CrossRef]
38. Meyer, D.; Dimitriadou, E.; Hornik, K.; Weingessel, A.; Leisch, F.; Chang, C.C.; Lin, C. Misc Functions of the Department of Statistics

(e1071); Version, 1–6; TU Wien: Vienna, Austria, 2012.
39. Olkkonen, H. Discrete Wavelet Transforms: Biomedical Applications; BoD–Books on Demand: Norderstedt, Germany, 2011.
40. Rosso, O.A.; Blanco, S.; Yordanova, J.; Kolev, V.; Figliola, A.; Schürmann, M.; Başar, E. Wavelet entropy: A new tool for analysis of
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