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Abstract: Privacy-preserving techniques allow private information to be used without compromising
privacy. Most encryption algorithms, such as the Advanced Encryption Standard (AES) algorithm,
cannot perform computational operations on encrypted data without first applying the decryption
process. Homomorphic encryption algorithms provide innovative solutions to support computations
on encrypted data while preserving the content of private information. However, these algorithms
have some limitations, such as computational cost as well as the need for modifications for each case
study. In this paper, we present a comprehensive overview of various homomorphic encryption
tools for Big Data analysis and their applications. We also discuss a security framework for Big Data
analysis while preserving privacy using homomorphic encryption algorithms. We highlight the
fundamental features and tradeoffs that should be considered when choosing the right approach for
Big Data applications in practice. We then present a comparison of popular current homomorphic
encryption tools with respect to these identified characteristics. We examine the implementation
results of various homomorphic encryption toolkits and compare their performances. Finally, we
highlight some important issues and research opportunities. We aim to anticipate how homomorphic
encryption technology will be useful for secure Big Data processing, especially to improve the utility
and performance of privacy-preserving machine learning.

Keywords: big data; encryption algorithms; homomorphic encryption; privacy preserving;
machine learning

1. Introduction

A major challenge for large companies and enterprises today is ensuring data security
and privacy when processing large amounts of data. Most IT companies collect, transport,
store, and analyze large amounts of data and face significant data protection problems on a
daily basis. These problems make the realization of the “Society 5.0” project a tricky matter.
The issues of data privacy in transit and at rest have attracted much attention in recent
decades [1]. There are now cryptographically based security mechanisms that securely and
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effectively protect data sets of any size in transit over the network and in storage in the data
repository, such as homomorphic encryption and the use of blockchain technology [2,3].
However, the unresolved issue is how to effectively and securely protect the privacy of the
collected data during its processing.

Private preserving set intersection computing is a fundamental function in many big
data applications, e.g., medical and financial [4,5]. It is a high priority to preserve informa-
tion security and privacy protection in the area of cross-big data analytics applications. In
this case, datasets are mainly encrypted before uploading, transmission, and processing.
In this case, a user encrypts his data by using his secret key and sends the encrypted
ciphertext to the analytic service so that all the user data will be encrypted and stored on
the cloud servers. Herein, without decrypting the user’s data, statistical analysis could not
be computed without the need to exchange the user’s secret keys or information attached to
their data. Due to the confidential nature of some private information assets, only limited
authorized users, including the data owners, can access and use these information assets.
Yet, these private information assets can contribute to increasing the accuracy of the results
of any machine learning models and the precision of the analytics mechanisms [6]. In this
regard, scientists suggest that collaboration between cryptography and big data analysis
techniques will allow the safe and fair utilization of private information assets empowered
by machine learning techniques.

Previous studies have identified standardization challenges and implementation issues
as shortcomings of previous research implementing homomorphic encryption algorithms to
preserve the privacy of sensitive big data analysis [7,8]. Previous research has concentrated
principally on the improvement of innovative mechanisms, protocols, and proofs of concept
toward using homomorphic encryption algorithms with big data. Big data in real life can be
represented by heterogeneous datasets. This could create different challenges for complex
real-world big data applications. In this regard, homomorphic encryption is not only
used well in scientific computing, but is also utilized in privacy-protecting computing to
complete related data sets [9].

Homomorphic encryption technology is a game-changing new technique that pro-
vides private cloud storage and computing solutions, and numerous applications have
been detailed in the literature in recent years [10–12]. Homomorphic encryption algo-
rithms are currently being widely deployed with various applications to secure users’
data and their privacy, including in the medical, industrial, and financial sectors [4,5,12].
Figures 1 and 2 show the main concept of homomorphic encryption, which can perform
data operations over an encrypted domain. Indeed, homomorphic encryption has been
acknowledged as one of the most effective methods for protecting and processing data
through remote servers, including the cloud. However, before homomorphic encryption
can be widely used, it must be standardized, most likely by a number of standards groups
and government agencies. There is a comprehensive understanding of security levels that
is based on the distinct parameter sets as a fundamental element of standardization for the
homomorphic encryption algorithms [7,8]. Although the academic community has con-
ducted considerable study and benchmarking to lay the groundwork for this endeavor, it is
difficult to obtain all of the facts in one place along with guidelines for big data applications
and implementation.

Figure 1. Homomorphic encryption concept [13].
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Figure 2. Fully homomorphic encryption structure.

In this paper, we present a detailed overview of all the major homomorphic encryption
algorithms for big data analytics. We present a cutting-edge overview of homomorphic
encryption’s major tools and applications in big data analytics using machine learning and
statistical analysis. We discuss the capabilities and challenges of homomorphic encryption
in an industrial context, with a focus on privacy-preserving machine learning computation.
Herein, we intend to predict how homomorphic encryption technology will be useful for
the secure processing of big data, particularly in increasing the utility and performance of
privacy-preserving machine learning for big data analytics. Furthermore, we present the
results of the implementation of different homomorphic encryption libraries and compare
the execution time performances. Finally, we highlight some discussion and research
opportunities with regard to the future of homomorphic encryption algorithms. This
survey is designed to provide researchers and practitioners with a clear understanding and
basis for comprehending, applying, and expanding relevant state-of-the-art homomorphic
encryption algorithms for big data analytics.

The rest of this article is arranged as follows: In Section 2, characterizations of different
homomorphic encryption algorithms, including partial, somewhat, and fully homomorphic
encryption algorithms, are presented. In Section 3, we highlight some important points
with regard to homomorphic encryption security. Then, in Section 4, we discuss cases
of homomorphic encryption for large data, followed by Section 5, which examines the
implementations of available homomorphic encryption toolkits along with relevant results
and evaluation. Section 6 provides a discussion of the challenges of using homomorphic
encryption algorithms. Finally, the article is concluded in Section 7.

2. Preliminaries

In this section, we present some basic mathematical and cryptographic definitions
related to the homomorphic encryption algorithms, to which the interested reader should
refer to the references [14,15].

More generally, a homomorphic encryption algorithm ε is a tuple of algorithms
(KeyGenε(λ), Encε(pk, M), Decε(sk, Ψ), Evalε(pk, f , Ψ)), and f ∈ Fε belongs to the family
of admissible functions where

• KeyGenε(λ) is the key generation method that takes the security parameter lambda as
input and provides the couple (pk, sk), public key and private key, accordingly.

• Encepsilon(pk, M) is an encryption algorithm that uses the public key pk to encrypt
the plaintexts M = (m1, ..., mn) from the ring of plaintexts P and produces a set of
cyphertext Psi = (c1, ..., cn)

• Decε(sk, Ψ) is the decryption algorithm that collect cyphertexts Psi and returns a set
of plaintexts M using the secret key sk.

• Evalε(pk, f , Ψ) gather the public key and execute the evaluation of the function f on
Ψ. This algorithm returns a set of cyphertexts Ψ̄.
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Note it is possible to define an encryption algorithm as homomorphic over a math-
ematical process � which is defined on a ring of plaintexts P if: Encε(pk, m1 � m2) =
Encε(pk, m1) ◦ Encε(pk, m2)

for ◦ established on a ring of ciphertexts X. Moreover, it is fundamental:
m1 �m2 = Decε(sk, c1, c2)

2.1. Partially Homomorphic Cryptosystems

A cryptographic algorithm is defined as partially homomorphic if it can perform addi-
tive or multiplicative homomorphism but not both operations at the same time. Figure 3
shows the timeline of homomorphic encryption algorithms leading up to Gentry’s first fully
homomorphic encryption. Partially homomorphic encryption algorithms are, in general,
more efficient than fully and somewhat homomorphic encryption algorithms [16]. Herein,
RSA, ElGamal algorithms [17,18] with multiplicative homomorphism, and Paillier addi-
tive homomorphism [19], respectively, are well-known examples of partial homomorphic
algorithms. Many big data have been proposed in the last few years based on partial
homomorphic algorithms such as in healthcare [20], intelligent transportation systems [21],
and deep learning applications [2,22].

Figure 3. Timeline of homomorphic encryption algorithms leading up to Gentry’s first fully homo-
morphic encryption.

2.1.1. Multiplicative Partial Homomorphic Encryption: Unpadded RSA

In the case of RSA, if the encryption algorithms have a public key with modulus
nn and encryption exponent ee, then the encryption operates on a message mm which is
given mathematically by E(m) = me mod nE(m) = me mod n. The homomorphic prop-
erty is then

E(m1) · E(m2) = me
1me

2 mod n

= (m1m2)
e mod n

= E(m1 ·m2)

2.1.2. Additive Partial Homomorphic Encryption: Goldwasser–Micali

If this algorithm uses the public key with a modulus nn and quadratic non-residue xx,
thereafter, the encryption of bb is E(b) = xbr2 mod n, for some random r ∈ {0, . . . , n− 1}.
Accordingly, the homomorphic property is

E(b1) · E(b2) = xb1 r2
1xb2 r2

2 mod n

= xb1+b2(r1r2)
2 mod n

= E(b1 ⊕ b2).

where ⊕ is defined as addition modulus two. Table 1 lists well-known partially homomor-
phic encryption algorithms’ operations and properties.
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Table 1. Well-known partially homomorphic encryption algorithms’ properties

Scheme Homomorphic Operation

Add Mult

RSA (Rivest et al., 1978) X
El-Gamal (ElGamal 1985) X

Paillier (Paillier 1999) X
DJ (Damgård and Jurik 2001) X

Galbraith (Galbraith 2002) X
KTX (Kawachi et al., 2007) X

2.2. Fully Homomorphic Cryptosystems

A cryptographic algorithm is defined as fully homomorphic if it has both additive and
multiplicative homomorphism operations [23]. In theory, fully homomorphic encryption
is referred to as a class of encryption algorithms anticipated by Rivest in 1978 [18], and
the first full homomorphic system was developed by Craig Gentry in 2009 [23]. Gentry
scheme relies on a complicated mesh of ideal lattices to represent the pair of keys and
the ciphertext. Later, many researchers and industrial companies worked on Gentry’s
proposal, addressing the obstacles to having a more practical algorithm. Figure 4 shows
the fully homomorphic encryption categories after the breakthrough of innovative research
by Gentry. Until now, all efforts have been directed toward developing new efficient
and effective fully homomorphic algorithms that address the challenges of lattice-based
encryption algorithms [8,23–25].

Figure 4. Fully Homomorphic Encryption Timeline

Gentry proposed a bootstrapping approach to make the encryption fully homomorphic.
The bootstrapping part could be used for bootstrapable ciphertexts noise-based with a short
circuit measurement [23,26]. The maximum number of operations should be proportional
and equivalent to the depth of the circuit.

Gentry’s bootstrapping phase is only permitted for decryption operations with a low
depth. As a result, he utilized certain “tweaks” to lower the complexity of the decryption
methods. This technique is known as “squshing”. In fact, Gentry’s technique implies
selecting a collection of vectors whose sum matches the secret key’s multiplicative inverse.
When the ciphertext is multiplied by the set’s elements, the polynomial degree of the circuit
is lowered to a level that the algorithm can manage. Herein, the ciphertext should be
“bootstrappable”. Moreover, the difficulty of retrieving the private key is defined based
on the Sparse Subset Sum Problem (SSSP) [27], which illustrates the provable security of
the algorithm.

Bootstrapping is fundamentally a “decryption” technique that produces a “clear”
ciphertext from the noise-based encryption matching the original plaintext. If an algo-
rithm can assess its own decryption circuit, it is said to be bootstrappable [23]. First, the
ciphertext is converted into a bootstrapable ciphertext via a squashing algorithm. Then,
using the bootstrapping technique, a “clear” ciphertext is obtained. The following is how
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bootstrapping works: First, it is expected that two distinct pairs of public and secret keys
are produced. Herein, the client keeps the secret keys while the server shares the public
keys. The secret key is then encrypted and sent to the server, which already possesses the
encrypted plaintext (ciphertext). The noisy ciphertext is decrypted homomorphically since
the abovementioned relative encryption technique will evaluate and assess its possessed
decryption procedure homomorphically. The result is then encrypted with a second, differ-
ent public key. An adversary cannot distinguish between the encryption of the secret key
and the encryption of an arbitrary number, since the algorithm is considered semantically
secure [26]. The final ciphertext is decrypted using the client’s second private key, which
should be kept secret by the client. In summary, noisy ciphertext is homomorphically
decrypted to eliminate the noise, then the distinct homomorphic encryption creates ad-
ditional tiny noise in the ciphertext. The ciphertext is now just encrypted data. Further
homomorphic computations on this “clear” ciphertext can be calculated until a threshold
point is reached.

Fully homomorphic encryption algorithms can give a third party the means to fully
execute arbitrary computations on encrypted plaintext as needed and without learning any
part of the inputs or the computation results. While there are benefits to secure computation
using fully homomorphic encryption algorithms, they have some overhead disadvantages.
For example, Gentry’s bootstrapping approach significantly raises the computing cost and
becomes a key disadvantage for the feasibility of fully homomorphic encryption.

2.3. Somewhat Homomorphic Cyptosystems

There are a number of cryptosystems that have been defined as somewhat homomor-
phic and can support specific operations in a restricted number of applications. Somewhat
homomorphic schemes support simultaneous addition and multiplication where the high-
est number of permitted homomorphic operations are restricted [28,29].

Even though fully homomorphic encryption can be implemented and realized, most
practical deployments apply tiered or somewhat homomorphic encryption algorithms [30].
This is because somewhat homomorphic encryptions have restrictions on the multiplicative
depth of the circuits they can assess and dodge computationally exhaustive bootstrapping.

In the last few years, many fruitful somewhat homomorphic cryptosystems have been
presented and discussed in the literature [31–34]. Gentry’s [23] publication of the first
feasible fully homomorphic encryption algorithm marked a turning point for somewhat
homomorphic cryptosystems. In addition to the Gentry algorithm, there are some important
somewhat homomorphic cryptosystem versions that were also proposed [35,36]. Many
researchers rely on somewhat homomorphic algorithms rather than other techniques,
primarily because of problems with the performance of fully homomorphic encryption
schemes. In the following section, we focus largely on the primary schemes used as a step
toward the first practical scheme of homomorphic cryptosystems.

3. Homomorphic Encryption Security

A homomorphic encryption algorithm will provide a high level of data security to the
applications that use it, and standardization will increase its prevalence and usefulness. A
key component of this standardization process will be a consensus on the level of security
parameters in different implementations and systems. According to many references, a
homomorphic encryption algorithm has three security properties [37]:

1. No adversary can determine whether two different messages have been encrypted
from any given ciphertext. Here, the encryption is randomized to guarantee that the
same message cannot have the same encryption, and this guarantees semantic security.

2. Compactness: homomorphic encryption operates on ciphertext and does not extend
the length of the ciphertext.

3. Efficient decryption and operation on the ciphertexts. The runtime of restoring
the plaintext should be independent of the functions that were derived from the
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ciphertexts. As a result, the functions in the ciphertexts do not depend on the
decryption algorithm.

Furthermore, the homomorphic encryption algorithms have different parameters.
Overall, these settings and parameters demand four inputs:

• λ: a security level. For instance, 128-bit security (λ = 128) or 256-bit security. This is a
desired security level of the encryption algorithm where increasing the λ will increase
the level of security.

• A plaintext modulus P depends on the chosen homomorphic encryption algorithm.
This standard currently identifies two categories of parametrized plaintext spaces:
modular integers and extension fields/rings. The interested reader may refer to [37,38].

• A dimension K for the vectors that need to be encrypted.
• The auxiliary parameter B is used to control the complexity of the homomorphic

scheme that can be used to perform the encryption operation. Lower parameters
result in significant improvements that are ”smaller” or less expressive or require
minimally complex programs/circuits. Lower parameters generally mean that the
parameters of the entire system are smaller. As a result, ciphertexts are smaller and
evaluation procedures are more efficient. On the other hand, higher parameters
generally increase the size of the key, the size of the ciphertext, and the complexity of
the evaluation procedures. Higher parameters are obviously necessary to evaluate
more complex programs. In order to analyze more and more sophisticated programs,
higher parameters are always required [23,37].

These parameters are utilized to create the pairing key for encryption and decryption
(a public key and a secret key) and an evaluation key. Anyone can use the public key to
encrypt a message, while only authorized users can use the secret key for the decryption
process. The evaluation key should be sent to an authorized party to decrypt the data.

Recent research has shown that homomorphic encryption schemes are not secure
against a chosen-ciphertext attack (CCA) and that the existing homomorphic encryption
schemes achieve weaker indistinguishability under a chosen ciphertext attack (IND-CCA)
security condition [39,40]. The structure of a fully homomorphic encryption scheme is
not provably secure and contains implicit assumptions about the interplay between these
underlying primitives. Accordingly, it is an acceptable hypothesis to assert that a homomor-
phic encryption scheme alone cannot provide secure outsourced computation. Due to the
lack of CCA security, the system must guarantee that decryption is never performed with
incorrect ciphertexts. Allowing the attacker to submit erroneous ciphertexts for decryption
often leads to the disclosure of the secret key in modern homomorphic encryption methods.
Therefore, with homomorphic encryption methods, it is common to settle for CPA security
and rely on the system around the homomorphic encryption to provide the additional
protection that may be required for any application.

Recently, Li and Micciancio [41] discovered that approximate-number homomorphic
encryption systems are vulnerable to some known attackers. The commonly held notion of
CPA security may even be inadequate against passive attackers. The key difference is that
the attacker might learn something from the decryption results because the algorithm itself
introduces some errors. If the attacker discovers the error, he can obtain information about
the secret key. Li and Micciancio have developed a simple attack on the CKKS approach
using approximate values that reveals the secret key after only a few decryption results. The
attack shows that the usual definition of IND-CPA security (or indistinguishability against
selected plaintext attacks) produced by CKKS does not effectively include security against
passive attackers when applied to proximity encryption systems. The authors concluded
that a separate, stronger definition is needed to evaluate the security of such systems.

This attack approach is only suitable for scenarios where the adversary only has access
to a set of decryption results. For example, the HElib Library [42] suggests that to avoid an
attack that has access to the decryption results of D ciphertexts, the bit parameter should
generally be increased by a factor of D and the input precision parameter should be similarly
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increased. The HElib Library suggests that if the adversary has access to a significant
amount of information about decryption requests, the application must increase the bit
parameter from above. Further security assessments of the initial values are required, and
each industry organization should pay attention to the security level of each homomorphic
encryption library.

4. Use Cases of Homomorphic Encryption for Big Data Applications

To enrich this research, we present a practical scenario in which homomorphic en-
cryption is used for privacy-preserving machine learning algorithms for Big Data analytics.
Figure 5 shows the details of this scenario. For example, imagine an untrusted data analyzer
that has a trained model and perhaps computational capabilities to perform the analysis
tasks for various users’ data. Originally, the private prediction was introduced as a service
when the data owner outsourced the analysis or prediction of private encrypted data psi to
a third party.

Figure 5. Private prediction and private training services.

The main goal of various homomorphic encryption algorithms is to achieve uncon-
strained and practical encryption deployment. We focus on a complex, fully homomorphic
encryption implementation for real-world Big Data analytics. Unlike previous theoretical
methods, which are either proof-of-concept methods or restricted deployments and imple-
mentations, Gentry et al. have constructed a fully homomorphic encryption for the first time
to evaluate a circuit complicated enough for a practical real-world implementation. The
focus is on deploying database server and client security using the homomorphic encryp-
tion structure as described in the literature [3,43–45]. The fully homomorphic encryption
algorithm’s computing process is depicted in Figure 5.

The problem of privacy-preserving big data has been investigated for years [28,46,47].
Various privacy-preserving protocols have been proposed. Generally speaking, privacy-
preserving big data protocols can be classified into two categories: randomization-based
approaches and secure multiparty computation (SMC)-based approaches. Due to the
research target of our paper, we will only discuss secure multiparty computation via
homomorphic encryption. The interested reader may refer to [48,49]. The secure multiparty
computation-based approach is often used to develop ways in which participants can
collectively compute a function, using their information while maintaining privacy.

Two possibilities between the data owner and data analyzer are explored, as shown in
Figure 5. In this context, the first phase considers private prediction as a service, so that a
data owner can outsource the analysis of its encrypted data psi via a cloud or a third party.
As an example, consider an untrusted data analyzer that has a trained model and perhaps
the computational capacity to perform the prediction. The training service is considered as
the second phase, where the owner provides the ciphertext psi to the cloud to deliver an
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encryption-ready model wencr and then wencr to perform analysis on new ciphertexts. The
created model is ready for the analysis requests. In both cases, the encrypted results are
returned to the data owner for decryption. In the first situation, the data owner knows only
the result of the data prediction Pencr(psi). Nothing is known about the model w, which may
be a secret property for the untrusted data analyzer.

Gentry et al. [50] implemented an extension of the one proposed by Brakerski et al. [24]
proposed BGV algorithm. The authors performed this study using a leveled FHE with-
out bootstrapping from the BGV algorithm to homomorphically evaluate the AES circuit.
Gentry et al. [50] used a leveled full homomorphic encoding without bootstrapping and
a version of the algorithm presented by Brakerski et al. [24] to homomorphically score
the AES circuit. The main advantage of using AES is speed. A symmetric key method
consumes less processing resources and runs faster and more efficiently. In fact, the concept
of homomorphic evaluation of AES was first introduced in Naehrig et al. [38] with the
following situation explored. A client supplied the key AES by encrypting it with a full
holomorphic encryption method, abbreviated FHE in this context. The client then transmits
the data while encrypting it using only AES, and AESK (m). If the cloud decides to assess
the data in a homomorphic manner, it could perform FHE (AESK (m)) and decrypt AES
homomorphically (blindfold) to proceed with FHE (m). The cloud may then conduct any
homomorphic execution on the FHE-encrypted data.

Smart and Vercauteren [51] suggested employing homomorphic evaluation of AES to
perform SIMD (single-instruction multiple-data) computations. Later, some studies [14,51,52]
enhanced the performances of the AES circuit’s homomorphic evaluation by using current
theoretical enhancements and optimizations.

Multi-key homomorphic encryption can deal with the use cases of multiple
parties [48,53], combining their separately encrypted data in one service, then process-
ing the encrypted data, and finally, only the authorized parties that provided the data could
see the outcome. The use cases can be developed further with the adoption of multi-key
homomorphic encryption. Figure 6 shows some potential homomorphic encryption real-
world use cases, especially with the adoption of a multi-key mechanism. We illustrate
some examples of industrial viable use cases where homomorphic encryption can be de-
ployed directly, such as customer financial and credit risk rating [54,55], supply chain [56],
automotive systems [57], and healthcare applications [58,59].

Figure 6. Use cases of homomorphic encryption for big data.

The literature provides numerous examples of the use of homomorphic encryp-
tion algorithms in in-depth case studies. For example, Guo et al. [60] addressed the
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problem of recognition speed on the circuit board of a robot and security issues in the
cloud. Morampudi et al. [61] presented a privacy-friendly iris authentication with fully
homomorphic encryption. The authors proposed a new mechanism for iris authenti-
cation and enforced the security level using the fan-vercauteren scheme [62]. Lagesse
et al. [63] developed and implemented a Raspberry-based framework for similar video
detection and effectively worked with a fully homomorphic encryption algorithm in mobile
device environments.

Introducing homomorphic libraries with Big Data applications can achieve pure data
analyzers with a minimum of cryptographic experience while providing a smooth and
familiar interface and API. Most privacy-friendly machine learning technologies use homo-
morphic encryption libraries to ensure pre-processing capability and security of private
information. In this context, Cape Privacy Company has developed TF Encrypted [6], a
TensorFlow-based framework. TensorBoard allows users to explore the static data flow
graph, which helps identify and manage machine learning and cryptography problems.
PySyft [64] is a PyTorch-based library introduced by OpenMined. It enables privacy preser-
vation in Deep Learning by using homomorphic encryption algorithms for individual data
or model owners. The interested reader should also refer to the references [65,66].

5. Implementations of Some Homomorphic Encryption Toolkits

Academic and industrial companies are currently working hard to implement and
deploy numerous homomorphic encryption libraries. In addition, many organizations
are currently using or preparing to use fully homomorphic encryption libraries to build
their data security applications. It appears that fully homomorphic encryption is very
close to the real world for massive implementations and can mitigate the difficulties in the
deployment phase. Table 2 lists the major homomorphic encryption tools. Most current
libraries are designed for cryptographers and data analysts, and provide configurable
capabilities that make it easy to explore the HE scheme and its parameters. From Table 2,
we can see that there are simple criteria that can be applied when choosing which tool to
use based on the computational efficiency of multiplicative homomorphic operations and
the operating system. Existing libraries in Table 2 contain a collection of homomorphic
operations that can be used to construct complicated functions. In this paper, we list the
following primary libraries based on their usability and performance, which are known
from previous research and the relevant existing research [28].

Table 2. Homomorphic Encryption Toolkits.

Library Author & Schemes Language Initial Release Last Major Update Software License

HElib Halevi, Shoup (IBM), BGV, CKKS C++ May 2013 August 2019 Apache v2.0
HEAAN Cheon, Kim, Kim, Song, CKKS C++ May 2016 July 2021 CC BY-NC 3.0

PALISADE NJIT, BFV, BGV, and CKKS C++ July 2017 August 2021 BSD 2-clause
TFHE Chillotti et al., TFHE C++ April 2017 February 2020 Apache v2.0

Microsoft
SEAL Microsoft, BFV, CKKS C++ December 2018 November 2020 MIT

NuFHE NuCypher, GPU based TFHE Python October 2018 July 2019 GPL-3.0
Lattigo EPFL-LDS, BFV, CKKS Go December 2020 July 2021 Apache v2.0

• SEAL is an open-source (MIT license) homomorphic encryption technology devel-
oped by Microsoft. The open-source library is in C++ and implements different
homomorphic encryption algorithms, e.g., BGV and CKKS.

• HElib is IBM’s open-source cross-platform platform that facilitates several kinds of
homomorphic encryption. The open-source library in C++ also implements different
homomorphic encryption algorithms with various optimizations, e.g., BGV and CKKS.

• Palisade homomorphic encryption software library is a cross-platform open-source
tool and library that provides various lattice cryptography implementations with
construction blocks and homomorphic encryption algorithms. The open-source toolkit
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is based on C++ and supports several homomorphic encryption algorithms such as
BFV, BGV, and CKKS.

Table 3 lists the average execution time (in microseconds) for the homomorphic
encryption libraries of CKKS. All tests were run on an Intel i7-10710u CPU @ 1.61 Ghx
and 16 GB from RAM running Ubuntu 20.04.3 LTS. The goal of this test was to compare
the execution times of different cryptographic methods by measuring the duration for
parameter creation, key generation, encryption, evaluation, and average ciphertext and
decryption algorithms. In this context, we measured the execution time of the operations of
the homomorphic encryption tools. First, we generated a random plaintext with a different
ciphertext modulus and encrypted it into ciphertext. Then we applied the scoring function
and finally decrypted the results. Each process was analyzed under the default parameters
of each toolkit and in the same environment.

In this analysis, we evaluated the security level (128 bits) of each component and saw
how the performance of the execution speed changed in seconds. We suspect that the
differences in results between these tools are due to differences in programming language
implementation and optimization in each tool. Furthermore, this comparison test took the
default parameters of each homomorphic encryption algorithm in each tool and the same
length of the plaintext.

Table 3. Average of the execution time (in microseconds) for CKKS homomorphic encryption algorithms.

n Palisade HELib SEAL

1024 585 482 257
1024 415 3159 10

2048 1173 997 479
2048 809 5104 19

4096 2753 2288 1926
4096 1432 14,279 72

8192 7538 4664 5688
8192 6038 48,960 290

16,384 23,183 12,581 19,344
16,384 13,776 183,254 1166

Figures 7 and 8 show the results of the measured runtimes for encryption and decryp-
tion depend on the dimension of the ciphertext. As shown, the ratio of the performance
differences decreases as the dimension of the ciphertext increases. The encryption process
in the CKKS scheme performs best when the HELib library is used for ciphertext dimen-
sion n = 8192, but the SEAL library gives the best results for smaller dimensions n. The
decryption process in the CKKS scheme performs best when the SEAL library is used.
Using SEAL, the decryption procedure in the CKKS scheme is faster than using Palisade
and HELib.
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Figure 7. Comparison results of the runtime of the encryption algorithm based on the dimension of
the ciphertext.

While the comparison in Table 3 appears to be simple, it provides information not
only on how these tools perform but also on the performance speeds of the libraries. The
BFV and CKKS schemes are supported in the SEAL and PALISADE libraries, while the
BGV scheme is supported in the HElib and PALISADE toolkits. From the results of the
implementation, it is clear that both encryption and decryption operations (with the public
key and private key) have approximately the same performance in each homomorphic
encryption algorithm.

Figure 8. Comparison results of the runtime of the decryption algorithm based on the dimension of
the ciphertext.

Note that there are several limitations and challenges to fair comparisons; a specific
comparison circuit should be used. For example, to create a ciphertext consisting of only
zeros and ones in SEAL and HElib, a binary encoder must be used for all other tools. In
reality, however, this approach can result in two similar ciphertexts that can be compared bit
for bit. This procedure is both time consuming and insecure, according to Sathya et al. [67].
A machine with limited resources can decrypt the ciphertext by randomly comparing it
to a known ciphertext. Because of these potential security threats, most homomorphic
encryption tools and libraries do not readily provide a comparison API [67].

6. Discussion and Challenges

Although fully homomorphic encryption currently has a wide range of uses, sev-
eral applications are currently unable to use fully homomorphic encryption due to the
limitations of this technique. [68]. In general, homomorphic encryption applications are
client-server scenarios where both the data and the method must be kept secret, and most
current research does not address the security of the private keys. Here, it depends heavily
on the context of the application itself.
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One of the major obstacles in this context is the development of use cases for multime-
dia data, e.g., high-resolution images and videos [69–71], as fully homomorphic encryption
is still quite slow due to insufficient computational power and the highly complex oper-
ations of homomorphic encryption algorithms. For example, an online face recognition
application could only handle a few seconds delay. On the other hand, offline opera-
tions can be accommodated in homomorphic encryption applications, such as statistics on
medical research results, even if this takes a considerable amount of time.

The homomorphic encryption algorithm is not without drawbacks; in addition to
the known computational costs, we must consider two other factors. One example is the
lack of multi-user functionality in most common homomorphic encryption algorithms. In
theoretical studies, we assume that all data owners are encrypted with the same key, but
this is rarely the case when there are numerous data owners in a practical scenario. In
this context, multiple data owners may or may not trust each other. These data owners
are not willing to train a model on jointly encrypted data. In the practical scenario, this
situation can be solved by using a homomorphic encryption algorithm with multiple keys,
which guarantees the encryption of the data with multiple independent keys and allows the
trained model to be recovered from the different data owners, each having their own key.

One of the drawbacks is that homomorphic encryption requires high structural
changes and specialized client-server applications to work properly. Industrial companies
cannot use this technique for scientific analysis without first obtaining user consent. This
can drive up overall costs and constantly divert the company’s attention to other solutions
that are more efficient at encrypting analytics activities and ignore privacy concerns.

Most implementations of homomorphic encryption software, as well as various toolk-
its, have poor performance in terms of decrypted data quality when using current CPUs.
This problem is actually an inherent problem resulting from the use of noise in lattice-based
encryption algorithms. Unlike traditional encryption methods, FHE does not guarantee
data integrity. Unlike traditional encryption methods, such as AES block-cypher or chaotic
encryption, homomorphic encryption algorithms do not guarantee data integrity [72]. The
problem of data corruption or integrity loss in homomorphic encryption tools can limit the
effectiveness and accuracy of any Big Data analytics framework for privacy preservation.

Cryptoscientists are interested in discovering and predicting complex security and
privacy situations in the real world based on cross-data analysis of various IoT Big Data
sources [65]. For example, in federated learning, we need to use homomorphic encryption
to protect the system and user privacy [45,59,73]. As we know from the current literature,
federated learning systems are vulnerable to attacks from malicious clients [74,75]. Al-
though the federated learning approach has been proposed to enable collaborative training,
the privacy problem has increased with the risk of leaking collaborative data by combining
different databases, especially against a variety of privacy attacks, such as the privacy
threat from linkages between databases [1,76]. Given the high-impact privacy threat in
federated learning systems, researchers may need to explore some defense strategies for
the federated learning aggregator to identify malicious participants based on their model
updates. Malicious attackers can potentially penetrate the computing infrastructure [77].

Due to the variety, volume, truth content, importance, and complexity of Big Data,
data processing systems with ever-increasing computational capacities are needed. In
addition, homomorphic encryption provides immutable, secure, and transparent data
transfers that require more processing capacity. However, when sophisticated big data is
encrypted with a homomorphic encryption algorithm, the system suffers from unexpected
computational complexity, resulting in poor performance. Therefore, the structure of the
homomorphic encryption algorithm should be further improved to meet the use cases and
adaptive multi-key encryption.

Finally, it should be noted that we have only considered homomorphic encryption
tools in our survey and discussion. Serious challenges in real industrial applications are
often even more complicated and require a mix of approaches such as homomorphic
encryption and multiparty computation techniques. Current tools have successfully mini-
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mized the complexity of complex homomorphic encryption algorithms. There is a wide
range of libraries that enable secure and efficient implementation of current homomorphic
encryption algorithms. Accordingly, we expect a more holistic approach to these challenges,
and tool building will support a wider range of approaches that could be a significant
asset to the secure computing industry. The scope of industrial use cases will grow in step
with advances in the understanding and efficiency of homomorphic encryption algorithms.
This essentially transformative solution will become more widespread for various Big Data
applications, fundamentally changing the framework for how and where companies can
leverage various private information assets.

7. Conclusions

In this paper, we presented an overview of privacy-preserving techniques in Big
Data analytics with homomorphic encryption algorithms. We evaluated the security
of homomorphic encryption and its lack of IND-CCA security. We also described an
application scenario that may be of interest for analysis techniques between data owners
and data analysts. Then, we listed and compared the features and performance of several
new homomorphic encryption toolkits. Finally, we examined the obstacles and gaps in
deploying practical, secure applications in the field. The results of this work are relevant
to both academics and industrialists working in the area of encryption-based Big Data
analytics. Based on the research results, we offer some theoretical and practical implications
for integrating advanced encryption technology into Big Data applications. A homomorphic
encryption algorithm is a viable approach for industrial applications that enable secure and
efficient collaboration between data owners and untrusted data analyzers.

Due to the fact that this is a fruitful area of research, we anticipate that further dis-
coveries will enable broader use of private data in production environments, especially to
support Big Data analytics processes.
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