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Abstract: We employ numerically implicit subgrid-scale modeling provided by the well-known
streamlined upwind/Petrov–Galerkin stabilization for the finite element discretization of advection–
diffusion problems in a Large Eddy Simulation (LES) approach. Whereas its original purpose was
to provide sufficient algorithmic dissipation for a stable and convergent numerical method, more
recently, it has been utilized as a subgrid-scale (SGS) model to account for the effect of small scales,
unresolvable by the discretization. The freestream Mach number is 2.5, and direct comparison
with a DNS database from our research group, as well as with experiments from the literature of
adiabatic supersonic spatially turbulent boundary layers, is performed. Turbulent inflow conditions
are generated via our dynamic rescaling–recycling approach, recently extended to high-speed flows.
Focus is given to the assessment of the resolved Reynolds stresses. In addition, flow visualization is
performed to obtain a much better insight into the physics of the flow. A weak compressibility effect
is observed on thermal turbulent structures based on two-point correlations (IC vs. supersonic). The
Reynolds analogy (u′ vs. t′) approximately holds for the supersonic regime, but to a lesser extent
than previously observed in incompressible (IC) turbulent boundary layers, where temperature was
assumed as a passive scalar. A much longer power law behavior of the mean streamwise velocity is
computed in the outer region when compared to the log law at Mach 2.5. Implicit LES has shown
very good performance in Mach 2.5 adiabatic flat plates in terms of the mean flow (i.e., C f and U+

VD).
iLES significantly overpredicts the peak values of u′, and consequently Reynolds shear stress peaks,
in the buffer layer. However, excellent agreement between the turbulence intensities and Reynolds
shear stresses is accomplished in the outer region by the present iLES with respect to the external
DNS database at similar Reynolds numbers.

Keywords: iLES; SUPG; supersonic; turbulent inflow conditions; boundary layers

1. Introductory Remarks

The modeling of turbulent high-speed flow is crucial in supersonic/hypersonic vehi-
cles. Among the currently available Computational Fluid Dynamics (CFD) numerical tools
for tackling turbulence, the most commonly known (and cheaper) are RANS (Reynolds-
Averaged Navier–Stokes), LES (Large Eddy Simulation), and DNS (Direct Numerical
Simulation) [1]. DNS directly resolves the governing formulation for fluid flows called the
Navier–Stokes equations; it does not employ any turbulent model but requires significant
computational resources. Consequently, if one wants to carry out DNS, it is mandatory to
use a highly scalable and efficient flow solver, mainly if the goal is to predict spatially de-
veloping turbulent boundary layers (SDTBL), implying accurate turbulent time-dependent
inflow conditions [2,3]. On the contrary, LES models the effects of Kolmogorov scales via
a spatial filter [4], and the large-scale motions are computed directly, whereas only the
small-scale motions are modeled, resulting in a reduction in computational resources com-
pared to the DNS approach. However, this computational reduction significantly depends
on the analyzed geometry and flow complexity: it is well known that in wall-bounded
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flows, even the “inertial subrange scales” located in the near-wall region could be tiny,
not to mention if detached turbulent boundary layers are going to be predicted. Thus, the
computing and running effort reduction by considering LES with respect to DNS could
be limited to one order of magnitude in the spatial framework, according to the present
authors’ experience. This is in agreement with a more theoretically founded estimate when
accounting for computational scaling in space of DNS as O

(
Re9/4

)
and that of LES as

O
(

Re13/7
)

[5], which leads to roughly an order of magnitude difference at moderately
high Re in space. Nonetheless, the computational cost reduction in space grows more
proportional to Re. Of course, the timestep could be larger in LES for unsteady simulations
and CFL constraints, introducing a new source of effort cutback. Despite its poor perfor-
mance in reproducing peak values of flow fluctuations and Reynolds stresses in the buffer
layer (i.e., for y+ ≈ 15–20, where turbulence production is maximum), it is a promising
alternative to compute the 3D time-dependent details of the largest turbulent structures,
which are responsible for most of the transport phenomena in turbulent boundary layer
problems, by using a simple model for the smaller turbulent scales.

The following generic classes can be specified for LES modeling [6,7]:

• Explicit sub-grid scale (SGS) models: they assume that the numerical method provides
an accurate solution to the resolved-scale equation, such as eddy-viscosity, scale-
similarity, and mixed approaches. Since it operates on the smallest represented scales,
it requires the numerical truncation error to be small, which could be reduced by
spatial filtering.

• Implicit LES (iLES): defined as an “implicit SGS” model that is directly contained
(embedded) within the numerical discretization scheme. This is very convenient and
helpful for physically complex flows or complex geometries. It merges the numerical
discretization with the SGS model.
The significant difference in approach used in iLES compared with standard LES is
how SGS modeling is pursued [4]. In conventional LES, a “physical” SGS model
is added to the fluid dynamics calculation (or apparent stresses) to account for the
unresolved scales of turbulence. The SGS model is developed based on understanding
the structure and characteristics of turbulent flows. On the contrary, iLES relies upon
the features of a numerical method, which abides by a set of physical principles to
accomplish the same purpose as explicit LES [4]. Empirical experience has shown that
iLES can achieve high-quality simulations of turbulence [8–10].

Furthermore, the approach of implicit LES (henceforth, iLES) has obtained significant
attention on very challenging high Reynolds number flows [4] in recent years, where the
use of HPC tools is almost mandatory. For instance, MILES (the Monotone Integrated LES
approach) was first proposed by Boris [11] and incorporated the effects of the SGS physics
on the resolved scales through functional reconstruction of the convective fluxes using
locally monotonic finite volume schemes [12,13]. Thus, the MILES approach implicitly mod-
els the subgrid-scale stresses and turbulent heat fluxes through the numerical algorithm,
including second-order or third-order accurate spatial schemes. Supersonic spatially de-
veloping turbulent boundary layers (SDTBL) have been predicted via explicit and implicit
LES [14,15], where the rescaling–recycling technique by Lund et al. [16] was employed for
turbulent inflow generation. In [14], comparisons of the MILES and Smagorinsky models
exhibited almost identical results, indicating that the Smagorinsky model was not needed
for supersonic turbulent boundary layers.

While, in the majority of the previously cited literature, the selected numerical tech-
niques were finite difference (FD) or finite volume (FV), a steadily growing number of
studies on turbulent boundary layers can be found via continuous finite element meth-
ods [17–21]. Additionally, the Discontinuous Galerkin (DG) methods (originally introduced
by Reed and Hill [22] in 1973) have substantially evolved in the last few decades, gain-
ing important ground in computational fluid dynamics [23,24]. As stated by [23], and
contrary to finite volume methods, discontinuous Galerkin methods allow the use of
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higher-order accuracy on unstructured meshes [25,26], permitting efficient parallelization
through hybridization [27,28] as well. On the other hand, DG methods exhibit superior
stability and robustness concerning continuous finite element methods [23,24]. In addition,
the variational multiscale (VMS) method provides a finite element-specific, mathematically
rigorous approach to LES [23,29–31]. The availability of Sobolev subspaces allows the spa-
tial filtering operation in LES to be defined as a projection operation [23]. More recently,
Stoter et al. [23] presented a new approach for integrating discontinuous Galerkin methods
in the variational multiscale paradigm for fluid dynamics problems.

In terms of iLES applied to compressible evolving wall-bounded flows, Urbin and
Knight [14] successfully tested the MILES approach on an unstructured grid of tetrahedral
cells over a Mach 3 adiabatic flat plate. Their numerical results proved that the subgrid-
scale effects can be properly captured by MILES without needing a physical model. The
subgrid-scale influence was implicitly modeled by the adaptive local deconvolution method
(ALDM) in [32] to describe a supersonic turbulent boundary layer over a compression–
expansion ramp configuration. Poggie et al. [33] carried out comprehensive mesh resolution
and domain dimension sensitivity studies in compressible SDTBL flows via DNS and well-
resolved LES, where the filtering effect of the numerical scheme supplied the needed
dissipation of the unresolved scales. Flow statistics were collected over 50 non-dimensional
time units (δo/U∞), and the reference boundary layer thickness in wall units, δ+, ranged
within 550–570 in all cases. Ritos et al. [34] scrutinized several high-order methods
in the iLES approach for a Mach 2.25 adiabatic flat plate and δ+ ≈ 400: the Monotone
Upstream-centered Schemes for Conservation Laws (MUSCL) and the Weighted-Essentially
Non-Oscillatory (WENO) schemes in conjunction with the Harten-Lax-van Leer-Contact
(HLCC) solver. The authors gathered 2400 samples over three flow cycles or flow-through
time, obtaining excellent results in comparison with the DNS database for the ninth-order
scheme; however, significant discrepancies were found in the first- and second-moment
flow statistics in second- and fifth-order numerical schemes. Moreover, [35] tested three
different local subgrid-scale models, including implicit LES, in adiabatic flat plates at
Mach 2. The von Karman number, δ+, approximately ranged from 450 to 1250, and flow
statistics were taken from 300δin/U∞ non-dimensional time. They found a consistent
near-wall trend of flow fluctuations via iLES.

In summary, in this manuscript, we evaluate for the first time the numerical per-
formance of implicit subgrid-scale modeling provided by the well-known streamline
upwind/Petrov–Galerkin stabilization (SUPG) [17,18] for the finite element discretiza-
tion of advection–diffusion problems combined with the Dynamic Multiscale Approach
(DMA) [36–38] for turbulent inflow generation in supersonic spatially developing turbu-
lent boundary layers at a freestream Mach number, M∞, of 2.5 and moderate Reynolds
numbers (i.e., 410 < δ+ < 680). Furthermore, in order to ensure a statistically steady flow,
iLES was run for approximately 64 flow-through time, collecting 4001 flow fields over
1530 non-dimensional time units δinl/U∞, which is a significantly larger sampling time as
compared to previous iLES work.

2. Governing Equations and Inflow/Boundary Conditions

In this work, the flow can be safely assumed to follow a continuum formulation
given the very low Knudsen number. Furthermore, the conditions present allow for the
assumption of local equilibrium due to the lack of chemical reactions, strong shocks, and
other high enthalpy effects. By assuming local equilibrium and a continuum, we also
neglect molecular vibration and rotation. After these assumptions, we arrive at the classical
compressible Navier–Stokes equations [39], which are a set of non-linear partial differential
equations. Given the compressible nature of the flow, we can no longer assume trivial
conservation of mass by equaling the flow divergence to zero because abrupt density
variations are seen due to pressure waves. To this end, we apply the weak form of the
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equations presented in Equations (1)–(3) (although presented in their strong conservation
form for clarity and brevity).

∂ρ

∂t
+

∂

∂xj

(
ρuj
)
= 0 (1)

∂ρui
∂t

+
∂

∂xj

(
ρuiuj + pδij − σij

)
= 0 (2)

∂ρe
∂t

+
∂

∂xj

(
(ρe)uj − uiσij + qj

)
= 0 (3)

The equations follow index notation, where i refers to the i-th coordinate. Further, ρ is the
density calculated from the ideal gas law (under the assumption of a calorically perfect
gas); p is the pressure; σij is the viscous stress tensor. In this work, we assume that the stress
tensor follows that of a Newtonian fluid (i.e., a linear stress–strain law).

σij = µ

(
∂ui
∂xj

+
∂uj

∂xi

)
− 2

3
µδij

(
∂uk
∂xk

)
(4)

In Equation (4), µ is defined as the dynamic viscosity, and qi encompasses the heat fluxes
due to thermal gradients in the i direction. In this work, we assume that heat fluxes follow
Fourier’s law, qi = κ ∂T

∂xi
, where κ is the thermal conductivity. Finally, e in Equation (3) is the

total energy per unit mass, which we assume to follow:

e = cvT +
1
2

uiuj (5)

As presented in Equation (5), cv is the specific heat at constant volume. Finally, we model
the fluid viscosity following a power law as per Equation (6).

µ = µ∞

(
T

T∞

)0.76
(6)

As we previously hinted, the finite element flow solver used for the present work imple-
ments the equations in their weak form. The PHASTA flow solver [40] was chosen due to
its computational efficiency, strong scaling performance, and validated implementation of
the governing equations. The Petrov–Galerkin (SUPG) finite element spatial discretization
scheme is the basis for the scheme used in this work. The SUPG scheme implementation
offers second-order accuracy in space [17,18]. Moreover, we employ a fully implicit, second-
order discretization in time. Numerical dissipation is employed as an implicit subgrid-scale
(SGS) model. A high-performance, iterative Krylov solver is used to solve the resulting
system of equations in space. We will not delve further into the details regarding the finite
element method employed; however, interested readers are referred to [41,42].

The SDTBL’s physics modeling via LES must take into account the following key points:

1. The computational domain ought to be sufficiently large to contain even the so-called
“superstructures” or largest scale motions (LSM) (Hutchins and Marusic [43,44]),

2. Injecting accurate, time-dependent inflow turbulent fluctuations is required to reduce
the streamwise computational domain length since the flow is no longer required to
develop from freestream conditions. This allows for the simulation of larger-scale
systems (i.e., larger Re) [37,45].

3. It is indispensable that the turbulent inflow information exhibits a physically accurate
power spectrum to minimize the “inlet developing section” and reduce the “non-
physical” developing section [46] (ideally, this section should be as small as possible,
but can be typically reduced to the order of 2–3 δinl’s).

To address aforementioned points 2 and 3, we use a modified version of the inflow
condition generation approach proposed by Araya et al. [45], the Dynamic Multiscale
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Approach (DMA), extended to account for compressibility effects in SDTBLs in [36–38].
The DMA is based on a modified version of the approach proposed by Lund et al. [16],
widely known as the rescaling–recycling approach. Furthermore, it has already been
demonstrated that the compressible DMA can dramatically shorten the development
section (see Lagares and Araya [46]) to, at most, ∼2.5δinlet. Moreover, it has been shown
that it is capable of reproducing inflow conditions, preserving the qualities of a developed
flow’s energy spectra [46]. Interestingly, the same work showed that the outflow condition
could have a more drastic effect on the overall quality of the power spectra [46]. Xu
and Martin [47], Urbin and Knight [14], and Stolz and Adams [15] have also proposed
extensions to Lund’s original methodology for compressible boundary layers. Contrary
to previous approaches, and as will be addressed later in the manuscript, we avoid the
need for empirical correlations in connecting the recycle plane’s friction velocity to the
inlet’s friction velocity. To aid in the discussion of the DMA, we provide an infographic
depicting iso-contours of the outer-scaled instantaneous static temperature on the method
in Figure 1. The idea behind the rescaling–recycling method can be succinctly stated as
follows: “re-insert a scaled flow solution extracted from a recycled plane downstream”.
Others have reported that prescribing a steady, Dirichlet pressure inlet condition results
in higher stability and accuracy in numerical cases than an unsteady, fluctuating pressure.
We have also found that a steady pressure at the inlet yields a more accurate and stable
numerical simulation. Both Kistler and Chen [48] and Urbin and Knight [14] state that “the
static pressure can be assumed constant at the inlet plane since the pressure fluctuations
are small compared to the static temperature fluctuations”. Note that we indirectly impose
instantaneous density profiles due to the calorically perfect gas assumption, leading to the
perfect gas equation of state. The core idea behind the transformations (i.e., scaling laws) is
to transform the streamwise, non-homogeneous flow conditions into quasi-homogeneous
conditions. We follow a statistical description of the instantaneous flow parameters based
on the Reynolds decomposition:

ui(x, t) = u′i(x, t) + Ui(x, y) (7)

T(x, t) = t′(x, t) + T(x, y) (8)

As part of the inflow condition generation procedure, we must consider the SDTBL as two
zones, an inner and an outer portion, that blend smoothly. To this end, we apply distinct
scaling laws for these two zones [45], hence the term multiscale in the Dynamic Multiscale
Approach. We blend the two via a smooth, blending function, thus creating a composite,
instantaneous flow profile accounting for phenomena in both zones. The projection preserves
dimensionless wall distances by mapping values at iso-y+ in the inner zone and at iso-y/δ
in the outer zone. As was previously mentioned, Figure 1 shows thermal iso-contours in the
computational domain while also highlighting the inlet, test and recycle planes. When re-
scaling the flow parameters [45], we must account for the ratio of the friction velocity, uτ, at the
inlet to that of the recycle plane. We define uτ as

√
τw/ρ, where ρ is the fluid density and τw

is the shear stress at the wall. Given that we must prescribe the inlet boundary layer thickness
per the predicted Reynolds number at the inlet, prescribing uτ,inl is not only unnecessary
but redundant. Seeking to tackle this issue, Stolz and Adams [15], Urbin and Knight [14],
and Lund et al. [16] have used the 1/8-th power law relating the momentum thickness in
ZPG flows to the friction velocity as: uτ,inl/uτ,rec = (δ2,inl/δ2,rec)

−1/8. This empirical power
law can strongly depend on the Reynolds number and other compressibility effects. To this
end, [45] introduced a dynamic component (hence the “dynamic” in DMA) calculating the
power law’s exponent dynamically by connecting a new, “test” plane (mentioned in Figure 1)
to the recycle plane as:

γδ2 =
ln(uτ,test/uτ,rec)

ln(δ2,test/δ2,rec)
. (9)
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In Figure 1, one can observe typical “bulges” and “valleys” as in incompressible
thermal turbulent boundary layers, with the outer irrotational flow penetrating further into
the near-wall region.

Figure 1. Boundary layer schematic for the supersonic turbulent boundary layer via iLES. Iso-surface
of normalized instantaneous static temperature (T/T∞ = 1.7). Contours of velocity magnitude in
cross-sectional planes (i.e., inlet, test, and recycle plane).

The rest of the boundary conditions in computational domains are as follows: the
standard no-slip condition is imposed for all velocity components at the bottom surface. In
supersonic cases at Mach 2.5, quasi-adiabatic conditions were prescribed at the wall. The
ratio Tw/T∞ is 2.25 and Tw/Tr is 1.06, where Tw is the wall temperature, T∞ is the freestream
temperature, and Tr is the recovery or adiabatic temperature. The Prandtl number (Pr)
was set to 0.72 in the compressible cases. The temperature is considered a passive scalar
(Pr = 0.71) for the incompressible case plus isothermal wall conditions. Periodicity of all
instantaneous flow variables is imposed on lateral surfaces. On the top surface, freestream
values are imposed. At the outflow plane, nothing is prescribed, but flow parameters are
extrapolated from the interior of the physical domain.

2.1. Computational Domain and Discretization Strategies

In this section, details of the computational domain, discretization strategies, and
influence of the selected mesh on numerical results are shown and discussed for the
iLES case. In Figure 2 (left image), an isometric view of the computational box is seen.
In addition, the streamwise dimension of the computational box is chosen to be large
enough (in the order of forty boundary layer thicknesses) to properly capture the large-
scale motions (LSM) or “superstructures” that carry most of the turbulent energy of the
flow and whose streamwise length scales are at least six boundary thicknesses, as discussed
by [43]. Furthermore, the domain width is prescribed as approximately four and a half
inlet boundary layer thicknesses. According to our previous experience and the generally
accepted spanwise length, the selected domain width can gather several low/high-speed
streaks, as shown and discussed later in this section. In the upper right image of Figure 2, a
foreground view of the inlet plane is visualized. Hexahedral elements (2,046,179 elements in
total) have been considered in the full domain, showing excellent performance in boundary
layer problems and minimal numerical dissipation. The reader is referred to Table 1 for
further details regarding mesh resolution and the number of grid points for this case. The
lower right image of Figure 2 depicts a close-up of the hexahedral element distribution.
Approximately 75% of the wall-normal points were clustered inside the turbulent boundary
layer. The mesh is equidistant in the streamwise and spanwise direction but stretched in
the wall-normal or vertical direction with a growth factor of roughly 1.1.
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Figure 2. A 3D isometric view of the computational box (left), inflow plane with hexahedral element
distribution (right, top view), and close-up of the near-wall discretization (right, bottom view) in
the iLES case.

As stated by Tejada-Martinez and Jansen [21], when dealing with LES, the resulting
outcomes are determined by the numerical approach and grid point distribution employed.
Thus, performing “grid refinement to achieve grid-independent results would lead to a
DNS, no longer LES”. Therefore, the impact of the mesh on our numerical results is evalu-
ated by computing the one-dimensional energy spectra (Euu) and two-point correlations
(Ruu) of the streamwise velocity fluctuations (u′) in the spanwise direction for the numerical
cases considered in this study. Figure 3 exhibits the power spectra (Euu/Euu(0)) normalized
by the energy at the first wavenumber at three different wall-normal stations, i.e., y+ = 5,
250, and 500. The wall-normal coordinates were strategically selected to scrutinize mesh
resolution in the linear viscous layer (y+ = 5), in the middle of the log region (y+ = 250),
and in the wake region (y+ = 500) of the turbulent boundary layer. DNS cases for the
incompressible regime (Figure 3a) and the supersonic regime (Figure 3b) show a significant
drop off of the energy spectra (up to five decades). Additionally, the energy-containing
scale (∼k−1

z ) and the typical −5/3 inertial range (∼k−5/3
z ) are clearly identified. In the dis-

sipation range at the highest wavenumbers, smooth “tails” indicate a proper capture of the
Kolmogorov length scales. Furthermore, in this high-wavenumber zone, the spectra do not
show any energy pile-up, confirming that turbulence scales are appropriately resolved [49].
Interestingly, we have detected the presence of a considerable zone with a local slope ∼k−3

z ,
immediately down the −5/3 inertial range or energy transfer range. According to [50],
a second inertial range (i.e., enstrophy transfer range) can be found in two-dimensional
turbulence. In particular, an evident enlargement of the inertial range with slope ∼k−3

z
can be observed as one moves further from the wall. However, further analysis must be
performed to physically explain this spectrum’s behavior in three-dimensional turbulence,
which is beyond the scope of the present manuscript and will be published elsewhere. Turn-
ing to iLES energy spectra based on resolved streamwise velocity fluctuations, while the
total drop-off of energy spectra is smaller than that of the DNS cascade, the major aspects
and features are present. Moreover, the inertial sub-range has been acutely reproduced,
implying a suitable grid point distribution in the iLES domain. The mesh resolution was
prescribed based on typical values [15].
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(a)

(b)

(c)

Figure 3. One-dimensional energy spectra in the spanwise direction at y+ = 5, 250, and 500 for:
(a) Incompressible DNS, (b) Mach 2.5 DNS, and (c) Mach 2.5 iLES.
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Davidson [51] suggested in his paper that two-point correlations were the best statistical
parameter for assessing LES resolution. The two-point correlations (Ruu) of u′ are shown at
y+ = 5, 15, 100, and 250 in Figure 4 for DNS and iLES. In all cases, it is observed that the
autocorrelation coefficients, Ruu, decay toward zero over a distance of Lz/2 at most in the outer
region. This confirms that the computational domain is sufficiently wide along the spanwise
direction. Additionally, the profiles of Ruu in Figure 4 depict a local minimum. For y+ = 5 and
15, these minimum values are at z+ ≈ 50, which indicates an average spacing (λ+ = λuτ/ν)
of low-speed streaks equal to 100. This value is in agreement with the universally accepted
range of λ+ = 100± 20 according to [52]. An evident streak spacing increase can be seen
in the log region. The trend of two-point correlations confirms the suitability of the selected
domain width in all cases. This is consistent with the resolution sensitivity study by [33],
stating that the computational domain should be at least two times the maximum boundary
layer thickness in iLES predictions. In our case, the iLES computational domain is 2.7δmax.

(a)

(b)

Figure 4. Cont.
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(c)

Figure 4. Two-point correlations Ruu in the spanwise direction at y+ = 5, 15, 100, and 250 for: (a) Incom-
pressible DNS, (b) Mach 2.5 DNS, and (c) Mach 2.5 iLES.

Table 1. Numerical cases.

Case Approach M∞ Tw /T∞ Reδ2 δ+
max Lx × Ly × Lz ∆x+ ,∆y+

min/∆y+
max , ∆z+ Cores Nx × Ny × Nz

Incompressible (IC) DNS 0 Isothermal 2000–2400 951 16δinl × 3δinl × 3δinl 11.5, 0.4/10, 10 1200 990 × 250 × 210

Supersonic
Q-adiabatic DNS 2.5 2.25 2867–3406 966 15.1δinl × 3δinl × 3δinl 11.9, 0.4/11, 12 1200 990 × 250 × 210

Supersonic
Q-adiabatic iLES 2.5 2.25 1310–2141 680 43δinl × 3.3δinl × 4.4δinl 40.4, 0.53/49, 22.4 96 440 × 60 × 80

2.2. The Flow Solver for HPC

Performing Direct Numerical Simulations or Large Eddy Simulations at high Reynolds
numbers such as the ones included in the present work requires a very efficient, highly
scalable CFD solver. In this work, we leveraged the open-source PHASTA flow solver.
The interested reader is referred to [17,18,41] for a more in-depth overview of PHASTA
and its use in both incompressible and compressible flows. Combining minimal dissipa-
tion numerics and adaptive [53–55] unstructured meshes, PHASTA has been applied to
flows ranging from validation on DNS and LES benchmarks such as channel flow and
decay of isotropic turbulence [17,20,21,56] to cases of practical interest including incompress-
ible ([19,57] and compressible [37,55,58–60] boundary layer flow control and hypersonic
flows [36,38]. As a result, PHASTA has a strong track record of supporting closely co-
ordinated experimental–computational studies [55,57–60]. PHASTA leverages implicit
techniques to bridge the gap across a broad range of length and time scales in many flow
regimes, including turbulent flows based on multiple numerical approximations, includ-
ing Unsteady RANS (URANS), Detached Eddy Simulations (DES), LES, and DNS [18].
Furthermore, PHASTA’s performance and strong scaling have been studied in depth on
high-performance computers [19,61,62].

3. Mean Flow and Higher-Order Statistics

Table 1 shows details of the cases to be discussed in this section. A supersonic DNS
database at Mach 2.5 will be used as a validation tool for supersonic iLES. In addition, an
incompressible DNS database is utilized to assess compressibility effects. More information
about these DNS cases at high Reynolds numbers can be found in Lagares and Araya [3].
For the incompressible case, the wall temperature condition is isothermal, while it is quasi-
adiabatic for both supersonic cases with a wall temperature to freestream temperature ratio
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of 2.25 (=Tw/T∞). Similarly, we enforce a wall temperature to the adiabatic wall temperature
(recovery temperature) ratio of 1.06 (=Tw/Tr). Table 1 also exhibits the compressible
momentum thickness Reynolds numbers (Reδ2 = ρ∞δ2U∞/µw) and the friction Reynolds
number or von Karman number (δ+ = δuτ/νw). Here, δ2 is the compressible momentum
thickness, U∞ is the freestream fluid velocity, ρ∞ is the freestream fluid density, µw is
the dynamic viscosity at the wall, δ is the 99% boundary layer thickness, and uτ is the
friction velocity. Finally, information regarding domain dimension, mesh resolution in
wall units, the number of cores employed, and the number of grid points considered
is depicted in Table 1, as well. The ratios of the maximum to the inlet boundary layer
thickness, δmax/δinl , are 1.19, 1.2, and 1.65 for the incompressible DNS, supersonic DNS,
and supersonic iLES cases, respectively. Sampling collection for statistical analysis is
based on averaging 4001 flow fields in all cases over 302, 295, 1530 non-dimensional time
units δinl/U∞ for the incompressible DNS, supersonic DNS, and supersonic iLES cases,
respectively, where δinl is the inlet boundary layer thickness. Samples were taken after at
least 15 flow-through times to allow the flow to evolve. We consider δinl as the length scale
for time normalization purposes as well as an adequate statistical collection time, as done
by [49]. In their study, [49] performed DNS of supersonic turbulent boundary layers at
M∞ = 2 and collected statistical samples over 333 and 242.8 non-dimensional time units
δinl/U∞ for TBL2 and TBL3 cases at similar Reynolds numbers as considered here. The
present domain widths, relative to the maximum boundary layer thickness, range over
Lz/δmax = 2.5, 2.42, and 2.45, for the incompressible DNS, supersonic DNS, and supersonic
iLES cases, respectively. These values are consistent with recommendations by [33], where
it was concluded that the domain width must be at least two times the maximum boundary
layer thickness to sufficiently capture low/high-speed streaks as well as spectral energy
content in iLES.

In Figure 5a, we highlight the skin friction coefficient including data for our aforemen-
tioned DNS data under supersonic conditions at high Re numbers [3]. Excellent agreement
between the computational [3] and experimental [63,64] results is evident. Further, we can
observe in Figure 5b the inner-scaled streamwise velocity profile, where the compressible
results are plotted following the van Driest transformation. We observe excellent agreement
between our present numerical results and experimental data from Mabey and Sawyer [65],
albeit at a slightly higher Reδ2 and with a minor difference in Mach number at Mach 2.49.
Furthermore, the present DNS data show a high degree of collapse with DNS data by
Pirozzoli and Bernardini [49] at a similar Reynolds number but lower Mach at M∞ = 2.
This suggests that the van Driest transform has absorbed weak compressibility effects at
these rather moderate Mach numbers. Moreover, we observe that the log-law coefficients
proposed by White [66] and Osterlund et al. [67] tend to describe the large logarithmic
region (≈80 wall units) for our DNS at Reδ2 = 3298.

The infographic in Figure 6 depicts the performed analysis to evaluate the presence of
either logarithmic or power law inside the supersonic SDTBL based on highly accurate DNS
data. In Figure 6, the corresponding diagnostic functions for the log and power laws are
highlighted. Constant values of these functions indicate the local presence of either a log
or power law behavior. Moreover, an average value of 0.407 was obtained for the κ or von
Karman constant. On the other hand, the computed average value of γ in the power law was
approximately 0.15. Interestingly, the power law region occupies a more extended portion of
the boundary layer with respect to the log law, i.e., 146 (power) vs. 84 (log) in wall units.
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(a)

(b)

Figure 5. (a) Skin friction coefficient and (b) van Driest transformation in wall units at M∞ = 2.5 via DNS.

Figure 6. Diagnostic functions for log and power law in the supersonic regime (M∞ = 2.5) via DNS.

The scope of this work extends to the compressibility effects on velocity and temperature
two-point correlations in the buffer region (y+ ≈ 15). We focused on this region due to
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the strong turbulence and large mean velocity gradients present due to the peak turbulence
production and peak values of streamwise velocity (u′) and thermal (t′) fluctuations. Due
to the previously mentioned peak turbulence production and intensity, the buffer region is
often characterized by small, highly energetic length scales in addition to low/high-speed
streaks and maximum energy transfer from the mean components to the turbulent kinetic
energy (i.e., the fluctuating components). The time-averaged two-point correlations of thermal
fluctuations, Rtt, are contrasted in Figure 7 along the streamwise, wall-normal, and spanwise
axes for DNS cases. Incompressible and supersonic thermal fluctuations in the reference
zone (i.e., x/δ = 0, y+ = 15 and z/δ = 0, being δ the local momentum boundary layer
thickness) depict a strong correlation with downstream temperature fluctuations, showing
long “heads” larger than 1δ. This downstream influence zone of thermal fluctuations is more
preponderant in the supersonic regime, as indicated by the white arrows in the inserts of
Figure 7. Notice that a slightly thicker structure is observed for the supersonic regime while
showing a longer streamwise “head” but shorter “tail” than the turbulent structure of the
incompressible regime. In general, both turbulent thermal structures for the incompressible
and supersonic cases exhibit a similar streamwise length (around 1.85–1.9 δ) and analogous
spanwise width ∼0.12–0.13δ’s (not shown). Furthermore, the supersonic effects on the
Reynolds analogy (i.e., by analyzing the correlation between streamwise velocity fluctuations,
u′, and thermal fluctuations, t′) are scrutinized by computing time-averaged two-point cross-
correlations Rut, as seen in Figure 8. Both parameters depict a high level of correlation, with
total streamwise lengths in the order of 2.2–2.4δ’s. The similarity between iso-surfaces of Rut
in the incompressible and supersonic regime is impressive (let us clarify that Rut < 0 in the
supersonic SDTBL, which has been normalized by the reference value Rut,o), indicating that
the Reynolds analogy possesses a weak effect of the Mach number (compressibility), at least
for the conditions (Reynolds number and wall adiabatic conditions) considered in our DNS
approach [3]. Let us recall that the temperature in the incompressible case was assumed to be
a passive scalar with isothermal wall conditions.

It is possible that the principal innovation of the present article is the implementation
and evaluation of the turbulent inflow methodology based on DMA. Figure 9a shows
the time variation of the power γδ2, as defined by Equation (9), for the iLES case. The
power γδ2 oscillates significantly in the transient stage of the simulation. The case was run
for approximately 64 flow-through time to ensure convergence of flow statistics, where
the temporal filter for “on the fly” calculation of the mean flow was varied. As the flow
reaches the “statistically steady state” (sample collection was performed during the last
30,000 viscous time, i.e., t+ = t/(u2

τ/νw), or last 35 flow-through time), the cumulative
average value of the exponent is roughly −0.1081. This averaged power differs by around
13% from the typical empirical value of −1/8 as described by White [66]. On the other
hand, the time-averaged γδ2 agrees quite well with regression (−0.105), as reported by [15],
which is based on experiments by Coles, Mabey, and Shutts [68–70] at a Mach number
range of 2.5 < M∞ < 4.5. The time-averaged ratio (uτ,inl/uτ,rec) is slightly above one by
the end of the predictions, as seen in Figure 9b. In Figure 10a, the temporal evolution of
the near-wall region is explored via the friction velocity (proportional to the wall shear
stress) at the inlet, test, and recycle stations. It can be observed that friction velocities are
within 5.17% to 5.5% of the freestream velocity, U∞. The time variation of the edge of the
boundary layer thickness in wall units is described by Figure 10b. Clearly, the proposed
turbulent inflow generation [36–38] is demonstrated to be stable, being able to produce
realistic inlet conditions. Similarly, the streamwise variation of the 99% boundary layer
thickness, δ, and normalized by the inlet value is depicted in Figure 11a, where a very short
developing section (∼2.5 to 3 δinl’s) is observed. Downstream, the typical linear behavior
of the boundary layer thickness in ZPG flows can be seen. By the end of the computational
domain, some wiggles are present, caused by the prescribed zero-flux condition at the
outflow. Furthermore, the momentum thickness Reynolds number, Reδ2, in Figure 11b
exhibits a very analogous streamwise trend to δ.
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(a)

(b)

Figure 7. The 3D two-point correlation of thermal fluctuations (Rtt) at y+ = 15. (a) Incompressible,
(b) supersonic.

(a)

Figure 8. Cont.
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(b)

Figure 8. The 3D two-point cross-correlations of u′t′ (Rut) at y+ = 15. (a) Incompressible,
(b) supersonic.

(a)

(b)

Figure 9. Time variation of (a) γδ2 exponent and (b) (uτ,inl/uτ,rec) ratio via iLES.



Entropy 2022, 24, 555 16 of 24

(a)

(b)

Figure 10. Time variation of (a) friction velocity normalized by freestream velocity and (b) boundary
layer thickness in wall units at the inlet, test, and recycle plane via iLES.

The skin friction coefficient, C f , is depicted in Figure 12a vs. Reynolds numbers (Reδ2).
Our iLES approach exhibits excellent performance, showing good agreement with DNS
from Zhang et al. [71]; however, we have prescribed 267 times fewer points (563 M vs.
2.1 M grid points) in our iLES domain with respect to the DNS domain in [71]. Note
that the skin friction coefficient slope from iLES follows a similar tendency as our DNS’
slope [3] at higher Reynolds numbers. In both cases (i.e., in iLES and DNS), the corre-
sponding turbulent inflow conditions based on the DMA approach have been very realistic
and accurate according to the very short inlet developing section observed (≈3δinlet

′s for
reader’s reference). In [33], the inflow boundary condition was created by the compressible
Blasius solution and turbulence transition was triggered via a body force method. While
this approach in [33] may generate more natural inflow information, the total transitional
developing zone encompassed approximately 30 reference boundary layer thicknesses, one
order of magnitude larger than in the present study based on the DMA methodology. The
mean streamwise velocity based on the van Driest transform from iLES exhibits excellent
agreement with the DNS from Zhang et al. [71] at similar Reynolds and Mach number,
almost overlapping, as well as with the DNS by [49] at M∞ = 2 and LDV measurements
by [63] at M∞ = 2.32 (see Figure 12b). A clear Reynolds number dependency is present be-
yond y+ > 30 in comparison with our DNS supersonic case at Reδ2 = 3298 and experiments
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by Mabey and Sawyer (1976) at Reδ2 = 5970. Furthermore, there is an obvious upward shift
and shrinking of the logarithmic region given by the lower Reynolds numbers considered in
iLES (also observed in DNS by [71]). However, the slope ∂U+

VD/∂y+ exhibits a clear log be-
havior according to coefficients proposed by White [66] and Osterlund et al. [67] (≈100 wall
units). The presence of a “hump” in the U+

VD profile for iLES around 20 < y+ < 40 might
be caused by a lack of numerical dissipation in this region, and further analysis should be
carried out.

(a)

(b)

Figure 11. Streamwise development of (a) boundary layer thickness, δ/δinl , and (b) momentum
thickness Reynolds number, Reδ2, via iLES.
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(a)

(b)

Figure 12. (a) Skin friction coefficient and (b) van Driest transformation in wall units at M∞ = 2.5
via iLES.

Turbulence intensities (u′+rms, v′+rms, w′+rms) and Reynolds shear stresses (< u′v′ >+) are shown
in Figure 13 together with DNS data at similar Reynolds numbers from [71,72]. Lessons
learned are as follows:

(a) iLES significantly overpredicts peak values of u′, and the Reynolds shear stress peaks
in the buffer layer.

(b) Excellent agreement of turbulence intensities and < u′v′ >+ in the outer region by
iLES with respect to DNS from Zang et al. (2018) [71] at similar Reynolds numbers.
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(a)

(b)

Figure 13. Cont.
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(c)

(d)

Figure 13. Turbulence intensities and Reynolds shear stresses in inner/outer units at M∞ = 2.5 via
iLES: (a) u′rms, (b) v′rms, (c) w′rms, (d) < u′v′ >.

Iso-surfaces of resolved streamwise velocity fluctuations (u′) and thermal fluctuations
(t′) were extracted and are displayed in Figure 14. Positive values of fluctuations are in red,
whereas negative values are represented by blue surfaces. Iso-surfaces of u′ were extracted
at 20% of the freestream velocity (±0.20U∞), while the wall temperature (maximum) was
considered as a reference for thermal fluctuation extraction, i.e., ±0.18Tw. From Figure 14a,
one can observe the presence of low (blue) and high (red) speed streaks, particularly in the
near-wall region. A close-up window can be seen on the right. Low-speed streaks appear as
very elongated parcels of fluid with low momentum. At such a moderate Reynolds number,
the turbulence structure is finer and more isotropic with respect to lower Reynolds numbers
(not shown here). Some strong ejection events (u′ < 0, v′ > 0) can be observed (or pumping
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up of low-momentum fluid by hairpin legs). On the other hand, sweep events (u′ > 0,
v′ < 0) bring high-momentum fluid to the wall. Figure 14b exhibits iso-surfaces of static
thermal fluctuations t′. Overall, the thermal fluctuating field seems to be more isotropic,
with a much finer structure of turbulence. The Reynolds analogy is somewhat satisfied
but in the negative sense, i.e., u′t′ < 0, as reported by a number of investigators [35,49].
There are some regions of low-momentum fluid (or low-speed streaks), which are highly
correlated to high (hot) thermal fluctuations and vice versa. Our experience dictates that
the Reynolds analogy is much better satisfied in incompressible flow, indicating some
compressibility effects at the supersonic regime.

(a) u′

(b) t′

Figure 14. Iso-surfaces of streamwise velocity fluctuations (a) and thermal fluctuations (b) (positive
values in red and negative values in blue).

4. Conclusions

Implicit LES (iLES) of supersonic ZPG spatially developing turbulent boundary layers
has been carried out at moderate Reynolds numbers. The iLES accuracy has been demon-
strated by contrasting the present results against theory, DNS, and experimental data. A
weak compressibility effect on turbulent thermal structures based on two-point correlations
has been found. The Reynolds analogy (u′ vs. t′) approximately holds for the supersonic
regime, but to a lesser extent, as observed in incompressible turbulent boundary layers
with temperature as a passive scalar. A more prolonged power law behavior of the mean
streamwise velocity in the outer region was found compared to the log law at Mach 2.5.
Implicit LES has shown excellent performance in Mach 2.5 adiabatic flat plates in terms of
the mean flow (i.e., C f and U+

VD).
iLES significantly overpredicts peak values of u′, and consequently, Reynolds shear

stress peaks in the buffer layer. Excellent agreement of turbulence intensities and Reynolds
shear stresses was achieved in the outer region by iLES regarding external DNS databases
at similar Reynolds numbers. The total computational resource saving was estimated to be
roughly in the order of 100 for our DNS database and in the order of 1200 with respect to
DNS by [71]. An ongoing examination of the standard dynamic Smagorinsky SGS model is
being conducted.
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