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Abstract: In this work, an efficient and robust numerical scheme is proposed to solve the variable
coefficients’ fourth-order partial differential equations (FOPDEs) that arise in Euler–Bernoulli beam
models. When partial differential equations (PDEs) are of higher order and invoke variable coeffi-
cients, then the numerical solution is quite a tedious and challenging problem, which is our main
concern in this paper. The current scheme is hybrid in nature in which the second-order finite differ-
ence is used for temporal discretization, while spatial derivatives and solutions are approximated via
the Haar wavelet. Next, the integration and Haar matrices are used to convert partial differential
equations (PDEs) to the system of linear equations, which can be handled easily. Besides this, we
derive the theoretical result for stability via the Lax–Richtmyer criterion and verify it computationally.
Moreover, we address the computational convergence rate, which is near order two. Several test
problems are given to measure the accuracy of the suggested scheme. Computations validate that
the present scheme works well for such problems. The calculated results are also compared with the
earlier work and the exact solutions. The comparison shows that the outcomes are in good agreement
with both the exact solutions and the available results in the literature.

Keywords: higher-order PDEs; Euler–Bernoulli beam models; Haar wavelets; finite differences

1. Introduction

Small static and dynamic deflection problems can be observed properly in linear
theory. For the determination of large (dynamic and static) deflection, linear theory is not
beneficial and requires an accurate analysis. Linear theory admits inexact curvature in
the study of beam deflections. The pioneering work in the field of thin beam theory was
carried out by Bernoulli. Jacob Bernoulli then studied elastic theory and showed that the
bending moment and curvature are both proportional. Later on, the Bernoulli theory was
extended to loaded beams by Leonhard Euler.

The PDE of a thinand long beam is known as the Euler–Bernoulli model. The solution
of this model shows the shortest distance (transverse vibration) from the beginning position
in which stress and strain are linearly related. The mathematical form of the Euler–Bernoulli
model [1] is described as follows:

γ(x)∂ttu(x, t) + ∂xx[C(x)∂xxu(x, t)] = E(x, t), 0 < x < 1, 0 < t ≤ T, (1)

with appropriate initial and boundary conditions:

u(x, 0) = Υ1(x), ∂tu(x, 0) = Υ2(x), 0 ≤ x ≤ 1, (2)
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{
u(0, t) = εo(t), ∂xu(0, t) = δo(t), 0 < t ≤ T,
u(1, t) = ε1(t), ∂xu(1, t) = δ1(t), 0 < t ≤ T,

(3)

or {
u(0, t) = ζo(t), ∂xxu(0, t) = µo(t), 0 < t ≤ T
u(1, t) = ζ1(t), ∂xxu(1, t) = µ1(t), 0 < t ≤ T,

(4)

where the notations ∂ttu(x, t), ∂xxu(x, t) stand for the second derivative with respect to
the time and space variables, respectively. Equation (1) is the variable coefficients’ FOPDE
in which u(x, t) represents the beam displacement, γ(x) is the mass per unit length, C(x)
shows the bending stiffness of the beam, E(x, t) is the source term, and L is the total length.
This kind of equation has widespread applications in robotics designs and large flexible
space structures [2,3]. Several analytical methods have been applied to derive the closed-
form solution of the governing equation. Wazwaz [4] used the Adomian decomposition
method to solve the variable coefficients’ FOPDEs. Lieu [5] applied He’s variational iter-
ation technique to explain free vibration in an Euler–Bernoulli beam. For more generic
cases of initial conditions, analytical solutions are quite complicated; therefore, researchers
are constantly trying to focus on the numerical solutions. A variety of numerical methods
via finite difference schemes have been developed for the solution of different forms of
Equation (1) such as Jain et al. [6], Evans [7], Conte [8], Richtmyer [9], and Cranial [10].
Evans et al. [11] established a stable computational method using the hopscotch algorithm.
Aziz et al. [12] proposed a three-level scheme using a parametric quintic spline to solve
the FOPDEs. Rashidinia [13] implemented a three-level implicit scheme coupled with a
sextic spline to solve fourth-order equations. Recently, Imtiaz et al. [14] numerically stud-
ied fractional-order Korteweg–de Vries and Burger’s equations via the meshless method.
Senol and his co-authors [15] investigated the Coudrey–Dodd–Gibbon–Sawada–Kotera
equation with three different methods. Akinyemi [16] solved (1 + 3)−dimensional frac-
tional reaction–diffusion trimolecular models. The same author [17] and his collaborators
computed the numerical solutions of coupled nonlinear Schrödinger–Korteweg-de Vries
and Maccari systems numerically. Jiwari [18] applied barycentric rational interpolation and
local radial basis function algorithms for the multi-dimensional Sine–Gordon equation.

In the past few years, wavelet-based approximation techniques gained great impor-
tance for solving PDEs [19,20]. In all kinds of wavelets, the simplest family is the Haar
wavelet (HW), which comprises rectangular box functions. The usage of these wavelet
attracted more researchers because of its easy implementation and achievements with
good results. The HW based on Haar functions introduced by Alfred Haar in 1910, which
are quite simple mathematically, are discontinuous at breaking points of the interval and,
hence, not differentiable. Due to this reason, the direct implementation of the HW for the
solution of differential equations is not possible. For this purpose, Cattani [21,22] used inter-
polating splines to remove this ambiguity. Similarly, an alternative idea was given by Chen
and Hasio [23]. They suggested approximating the maximum-order derivative with finite
HW series. Later on, this approach was extended for the solution of different problems.
Lepik [24,25] introduced a numerical method using the HW to obtain the solution of PDEs.
Jiwari [26] used the HW coupled with quasi-linearization for the solution of Burgers’ equa-
tion. Mittal et al. [27] studied numerically the system of viscous Burgers’ equations with the
HW. Oruç [28,29] applied the finite difference hybrid scheme combined with the HW for the
solution of modified Burgers’ and KdV equations. Kumar [30] solved the system of Burgers’
equations through the finite difference HW technique. Somayeh et al. [31,32] used a semi-
analytical approach for solving the Hunter–Saxton and foam drainage equations. The same
author [33] implemented an HW-based scheme for the solution of the two-dimensional
system of PDEs. Mittal and Pandit [34] solved unsteady squeezing nano-fluid problems
via the HW. Jiwari [35] developed a hybrid numerical method consisting of the HW for the
nonlinear Burger’s equation. Pandit and Mitall [36] introduced the scale-3 Haar wavelet for
the numerical solutions of the fractional advection dispersion equation. The same author
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and his co-authors [37] defined an operational-matrix-based algorithm for computational
modeling of hyperbolic-type wave equations. For more details about these wavelet, we
refer to [25,38].

In the present work, a hybrid scheme consisting of the HW and finite difference is
suggested to find the numerical solution of Equation (1) with the homogeneous and non-
homogeneous forms with variable coefficients. The remainder of this paper is as follows.
In Section 2 the main motive of the current work is given. The preliminaries of the HW
and their integrals are given in Section 3. The description of the method and stability are
presented in Sections 4 and 5, respectively. For the validation of the suggested scheme,
some test problems are addressed in Section 6. In Section 7 we present the detail description
of the initial disturbance and noisy data. Finally, the conclusion is reported in Section 8.

2. Motivation

To develop methods for solutions of higher-order PDEs either analytical, semi-analytical,
or numerical is an essential need for the physical interpretation of the problem. In the
literature, several numerical techniques have been adopted for FOPDEs. According to our
knowledge, a hybrid numerical method based on the HW and finite difference along with
stability for FOPDEs has not been reported yet. Therefore, the main motive of this work is
to determine numerical solutions of FOPDEs using finite differences and the HW.

3. Haar Wavelets and Their Integrals

The HW based on Haar functions, which were defined in 1910, belongs to a well-
known class of the wavelet family known as the Daubechies wavelet. The HW is a recent
mathematical tool, which became popular in the numerical study of various differential
and integral equations. Initially, it was introduced for the interval [0, 1), but Lepik [24]
extended this for any arbitrary interval [A,B).

To define the HW, assume x ∈ [A,B), then the HW family is defined for i ≥ 1 as
follows:

h1(x) =

{
1, x ∈ [A,B)
0, otherwise.

(5)

hi(x) =


1, x ∈ [ξ1(i), ξ2(i))
−1, x ∈ [ξ2(i), ξ3(i)),
0, otherwise,

(6)

where ξs+1(i) = A+ (2k + s)νδx, s = 0, 1, 2 and ν =M/m.
In the aforementioned equations, the interval is subdivided into 2M intervals of equal

length δx = B−A
2M , whereM = 2λ and λ denote the maximal level of resolution. Next, two

parameters j = 0, · · · , λ and k = 0, · · · , 2j − 1 are taken, which decompose the wavelet
number i = m + k + 1, where m = 2j. To solve nth-order PDEs, we need the following
repeated integrals:

Ri,β(x) =
∫ x

A

∫ x

A
· · ·

∫ x

A
hi(z)dzβ =

1
(β− 1)!

∫ x

A
(x− z)β−1hi(z)dz, (7)

where
β = 1, 2, . . . , n, i = 1, 2, . . . , 2M.

Keeping in view Equations (5) and (6), the analytical expression of these integrals is given
as [25]
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R1,β(x) =
(x−A)β

β!
, (8)

Ri,β(x) =


0, x < ξ1(i)
1
β! [x− ξ1(i)]

β x ∈ [ξ1(i), ξ2(i))
1
β!
[
(x− ξ1(i))β − 2((x− ξ2(i))β

]
x ∈ [ξ2(i), ξ3(i))

1
β!
[
(x− ξ1(i))β − 2((x− ξ2(i))β + (x− ξ3(i))β

]
x ≥ ξ3(i).

(9)

Function Approximation

If w(x) ∈ L2[A,B) is a square integrable function, then it can be approximated via
HW series as:

w(x) =
2M
∑
i=1

αihi(x), (10)

where αi are the unknown HW coefficients. At collocation points x → xl , Equation (10)
takes the following discrete form:

w̃ =
2M
∑
i=1

αihi(xl). (11)

In matrix form, Equation (11) can be written as:

Θ = JA, (12)

where Θ and A are 2M× 1-dimensional matrices and J is a 2M× 2M-dimensional
matrix. From Equation (12), one can calculate the unknown coefficients, and then, the
approximation to F (x) can be computed using Equation (10) for different resolution levels.

4. Description of the Method

In this section of the manuscript, the proposed scheme is presented for Equation (1)
with boundary conditions in the form of Equation (3). We rewrite Equation (1) as:

γ(x)∂ttu + C(x)∂xxxxu + 2C ′(x)∂xxxu + C ′′(x)∂xxu = E , (13)

where C′(x) = dC
dx . Applying the finite difference to the temporal part and (θ-weighted

≤ θ ≤ 1 scheme, Equation (13) reduces to

γ(x)
u+1 − 2u + u−1

τ2 + θ
[
C(x)∂xxxxu + 2C ′∂xxxu + C ′′(x)∂xxu

]+1

+(1− θ)
[
C(x)∂xxxxu + 2C ′(x)∂xxxu + C ′′(x)∂xxu

]
= E +1,

(14)

where u = u(x, t), E  = E(x, t), t+1 = τ + t, and τ is the time step size. The associated
boundary conditions Equation (3) is transformed to{

u+1(0) = εo(t+1), ∂xu+1(0) = δo(t+1), 0 < t ≤ T
u+1(1) = ε1(t+1), ∂xu+1(1) = δ1(t+1), 0 < t ≤ T.

(15)

In more simplified form, Equation (14) can be written as

γ(x)u+1 + τ2θC(x)∂xxxxu+1 + 2θτ2C ′(x)∂xxxu+1 + θτ2C ′′(x)∂xxu+1 = N  + τ2E +1, (16)

where

N  =
(

2u − u−1
)

γ(x) + (θ − 1)τ2[C(x)∂xxxxu + 2C ′(x)∂xxxu + C ′′(x)∂xxu
].
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Next, we assume the Haar wavelet approximation for the highest-order derivative as

∂xxxxu+1(x) =
2M
∑
i=1

α
+1
i hi(x), (17)

where α
+1
i are unknown constants to be determined. Integration of Equation (17) four

times from 0 to x leads to:

∂xxxu+1(x) =
2M
∑
i=1

α
+1
i Ri,1(x) + ∂xxxu+1(0)

∂xxu+1(x) =
2M
∑
i=1

α
+1
i Ri,2(x) + x∂xxxu+1(0) + ∂xxu+1(0)

∂xu+1(x) =
2M
∑
i=1

α
+1
i Ri,3(x) +

x2

2!
∂xxxu+1(0) + x∂xxu+1(0) + ∂xu+1(0),

u+1(x) =
2M
∑
i=1

α
+1
i Ri,4(x) +

x3

3!
∂xxxu+1(0) +

x2

2!
∂xxu+1(0) + x∂xu+1(0) + u+1(0).

(18)

Using the boundary conditions u+1(1), ∂xu+1(1) in Equation (18), the unknown terms
can be computed as

∂xxxu+1(0) = φ(t+1) + 12
2M
∑
i=1

α
+1
i Ri,4(1)− 6

2M
∑
i=1

α
+1
i Ri,3(1)

∂xxu+1(0) = ψ(t+1)− 6
2M
∑
i=1

α
+1
i Ri,4(1) + 2

2M
∑
i=1

α
+1
i Ri,3(1),

(19)

where

φ(t+1) = 6
[
δ1(t+1) + δo(t+1)− 2ε1(t+1) + 2εo(t+1)

]
ψ(t+1) = −2

[
δ1(t+1) + 2δo(t+1)

]
− 6
[
εo(t+1)− ε1(t+1)

]
.

Making use of Equation (19) in Equation (18), we obtain

∂xxxu+1(x) =
2M
∑
i=1

α
+1
i
[
Ri,1(x)− 6Ri,3(1) + 12Ri,4(1)

]
+ φ(t+1)

∂xxu+1(x) =
2M
∑
i=1

α
+1
i [Ri,2(x) + (2− 6x)Ri,3(1) + (12x− 6)Ri,4(1)] + xφ(t+1) + ψ(t+1)

∂xu+1(x) =
2M
∑
i=1

α
+1
i

[
Ri,3(x) + (2x− 3x2)Ri,3(1) + (6x2 − 6x)Ri,4(1)

]
+

x2

2
φ(t+1)

+ xψ(t+1) + δo(t+1)

u+1(x) =
2M
∑
i=1

α
+1
i

[
Ri,4(x) + (x2 − x3)Ri,3(1) + (2x3 − 3x2)Ri,4(1)

]
+

x3

3!
φ(t+1)

+
x2

2
ψ(t+1) + xδo(t+1) + εo(t+1).

(20)

The proposed technique is based on the collocation approach; therefore, the collocation
points are

xl =
l − 0.5

2M , l = 1, · · · , 2M.
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Putting Equations (17) and (20) in Equation (16) and replacing x with xl leads to the
following system of linear equations

2M
∑
i=1

α
+1
i

[
γ(xl)A(i, l) + τ2θC(xl)hi(xl) + 2θτ2C ′(xl)Υ(i, l) + τ2θC ′′(xl)Ψ(i, l)]

= Λ(i,  + 1) + Ω(i,  + 1),

(21)

where

A(i, l) =
[
Ri,4(x) + (x2 − x3)Ri,3(1) + (2x3 − 3x2)Ri,4(1)

]
Υ(i, l) =

[
Ri,1(x)− 6Ri,3(1) + 12Ri,4(1)

]
Ψ(i, l) =[Ri,2(x) + (2− 6x)Ri,3(1) + (12x− 6)Ri,4(1)]

Λ(l, t+1) =N (l, t) + E(l, t+1)

Ω(i,  + 1) =− γ(xl)
{ x3

3!
φ(t+1) +

x2

2
ψ(t+1) + xδo(t+1) + εo(t+1)

}
− 2τ2θC ′(x)

{
φ(t+1)

}
− τ2θ

{
xφ(t+1) + ψ(t+1)

}
.

There are 2M equations in Equation (21), which can be solved for 2M unknowns iteratively.
After the computation of the unknown constants, the required solution can be computed
from Equation (20).

Note

To use the second kind of boundary conditions given in (Equation (4)), one may use
first u+1(1), ∂xxu+1(1) in Equation (18) to obtain the following system of equations:

µ1(t+1) =
2M
∑
i=1

α
+1
i Ri,2(1) + ∂xxxu+1(0) + µ0(t+1)

ζ1(t+1) =
2M
∑
i=1

α
+1
i Ri,4(1) +

1
3!

∂xxxu+1(0) +
1
2!

µ0(t+1) + ∂xu+1(0) + ζ0(t+1).

(22)

After solving Equation (22), one can easily obtain ∂xxxu+1(0) ∂xu+1(0). Once these terms
are calculated, then expressions for the derivatives and solutions can be extracted following
the strategies given in Equations (19)–(21).

5. Stability

Here, we present the theoretical result related to the stability of the proposed technique.
To derive the condition, one can deduce the following equations from Equation (20) as:

∂xxxxu+1 = Hα+1, (23)

∂xxxu+1 = Υα+1 + Υ̃+1, (24)

∂xxu+1 = Ψα+1 + Ψ̃+1, (25)

u+1 = Fα+1 + F̃ +1, (26)

whereH, Υ, Ψ are differentiation matrices,F is the interpolation matrix, and Υ̃+1, Ψ̃+1, F̃ +1

are boundary terms given in Equation (20). Using initial condition u−u−1

τ = Υ2(x) together
with Equations (23)–(26) and x → xl in Equation (16), we obtain
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[
γ(xl)F (i, l) + τ2θC(xl)H(i, l) + 2θτ2C′(xl)Υ(i, l) + θτ2C′′(xl)Ψ(i, l)

]
α+1 =

[
γ(xl)F (i, l)

+ (θ − 1)τ2
(

C(xl)H(i, l) + 2C′(xl)Υ(i, l) + C′′(xl)Ψ(i, l)
)]

α + τ2E +1 + τγ(xl)Υ2(xl).
(27)

In alternative form, Equation (27) can be written as:

Mα+1 = Nα +B+1, (28)

where

M = γ(xl)F (i, l) + τ2θC(xl)H(i, l) + 2θτ2C′(xl)Υ(i, l) + θτ2C′′(xl)Ψ(i, l),

N = γ(xl)F (i, l) + (θ − 1)τ2
(

C(xl)H(i, l) + 2C′(xl)Υ(i, l) + C′′(xl)Ψ(i, l)
)

,

B+1 = τ2E +1 + τγ(xl)Υ2(xl).

It follows from Equation (28) that

α+1 = M−1Nα +M−1B+1. (29)

Plugging Equation (29) in Equation (26), one obtains

u+1 =F
(
M−1Nα +M−1B+1

)
+F +1

=FM−1Nα +FM−1B+1 +F +1.
(30)

Using Equations (26) and (30), we have

u+1 = FM−1N
(
F−1uj −F−1F̃ +1

)
+FM−1B+1 +F +1

= FM−1NF−1uj −FM−1NF−1F̃ +1 +FM−1B+1 +F +1.
(31)

Equation (31) shows an iterative formula between u+1 and u. If ũ is the approximate
solution, then

ũ+1 = FM−1NF−1ũj −FM−1NF−1F̃ +1 +FM−1B+1 +F +1. (32)

Let e = |u − ũ|, then from Equations (31) and (32),

e+1 = Ξe, (33)

where Ξ = FM−1NF−1 is the amplification matrix. According to the Lax–Richtmyer
criterion, the stability condition will be fulfilled if ||Ξ ≤ 1||, which needs the spectral radius
ρ(Ξ) ≤ 1.

6. Illustrative Examples

In this section, we investigate the performance of the proposed method by solving
various examples. To measure the efficiency, two error norms L2, L∞ were addressed,
which are defined by:

L2 =

(
2M
∑

i

∣∣∣uext
i − ũapp

i

∣∣∣2) 1
2

L∞ = max
1≤i≤2M

∣∣∣uext
i − ũapp

i

∣∣∣,
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where u and ũ denote the exact and numerical solutions, respectively. Furthermore, we
compute the convergence rate by using the following formula

Convergence rate =
log(eλ

∞ − eλ+1
∞ )

log(2)
.

6.1. Problem 5.1

Consider Equation (1) with γ(x) = C(x) = 1, in the following form

∂ttu(x, t) + ∂xxxxu(x, t) = (π4 − 1) sin πx cos t, 0 ≤ x ≤ 1, 0 < t ≤ T, (34)

coupled with appropriate conditions

u(x, 0) = sinπx, ∂tu(x, 0) = 0, 0 ≤ x ≤ 1, (35)

u(0, t) = u(1, t) = 0, ∂xxu(0, t) = ∂xxu(1, t) = 0, 0 < t ≤ T. (36)

The exact solution of this problem is u(x, t) = sin πx cos t. This problem was solved this
problem with the help of the proposed method. In Table 1, pointwise errors are compared
with existing results [12,39–41] for fixed τ = 0.005 using different time and resolution
levels. From the table, it is clear that the computed results are in good agreement with those
available in the literature. Moreover, we calculated the convergence rate for this problem
and addressed it in Table 2, which is approximately of order two. Graphical solutions in
the form of 2D and 3D plots with the absolute error are shown in Figure 1 for time t = 4.
It is clear from the figure that the proposed method gives accurate solutions for a small
number of collocation points and matches well the exact solution.

Table 1. Absolute error at different points in Problem 5.1.

Methods Points t x = 0.1 x = 0.2 x = 0.3 x = 0.4 x = 0.5

Present 64 0.02 6.54 × 10−7 1.24 × 10−6 1.71 × 10−6 2.01 × 10−6 2.11 × 10−6

64 0.05 5.22 × 10−6 9.94 × 10−6 1.36 × 10−5 1.60 × 10−5 1.69 × 10−5

64 1 7.14 × 10−4 1.35 × 10−3 1.87 × 10−3 2.20 × 10−3 2.31 × 10−3

128 0.02 2.60 × 10−7 4.94 × 10−7 6.81 × 10−7 8.00 × 10−7 8.42 × 10−7

128 0.05 2.59 × 10−6 4.94 × 10−6 6.80 × 10−6 7.99 × 10−6 8.40 × 10−6

128 1 6.83 × 10−4 1.29 × 10−3 1.78 × 10−3 2.10 × 10−3 2.21 × 10−3

Mittal [39] 91 0.02 3.20 × 10−5 6.08 × 10−5 8.37 × 10−5 9.84 × 10−5 1.04 × 10−4

91 0.05 3.59 × 10−5 6.83 × 10−5 9.39 × 10−5 1.10 × 10−4 1.16 × 10−4

91 1 6.32 × 10−5 1.20 × 10−4 1.65 × 10−4 1.94 × 10−4 2.04 × 10−4

181 0.02 3.55 × 10−6 6.76 × 10−6 9.30 × 10−6 1.09 × 10−5 1.15 × 10−5

181 0.05 3.99 × 10−6 7.58 × 10−6 1.04 × 10−5 1.23 × 10−5 1.29 × 10−5

181 1 7.00 × 10−6 1.33 × 10−5 1.83 × 10−5 2.16 × 10−5 2.27 × 10−5

Caglar [40] 121 0.02 4.80 × 10−6 9.70 × 10−6 1.40 × 10−5 1.90 × 10−5 2.40 × 10−5

191 0.02 5.20 × 10−6 2.10 × 10−6 3.10 × 10−6 4.20 × 10−6 5.20 × 10−6

521 0.02 4.90 × 10−7 9.90 × 10−7 1.40 × 10−6 1.90 × 10−6 2.40 × 10−6

Aziz et al. [12] 20 0.05 9.30 × 10−6 8.00 × 10−6 2.80 × 10−6 1.00 × 10−6 2.70 × 10−6

Rashidinia [13] 20 0.05 2.91 × 10−6 1.73 × 10−6 1.60 × 10−6 2.23 × 10−6 2.60 × 10−7

Mohammadi [41] 40 0.05 2.96 × 10−6 1.77 × 10−6 1.64 × 10−6 2.28 × 10−6 2.65 × 10−7
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Table 2. Convergence rate of Problem 5.1 at t = 0.2.

Problem 4.1

λ τ L∞ Rate

2 1/100 90,568 × 10−3

3 1/200 2.4428 × 10−3 1.8904
4 1/400 6.8223 × 10−4 1.8402
5 1/800 2.0398 × 10−4 1.7418
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Figure 1. Solutions profile of Problem 5.1. (a) Exact and approximate solutions at t = 4, τ = 0.001.
(b) Absolute error in (a). (c) Exact 3D plot. (d) Approximate 3D plot at t = 4, τ = 0.01, λ = 4.

6.2. Problem 5.2

Consider the non-homogeneous problem of the form [41]

∂ttu(x, t) + ∂xx
(
(1 + sin πx)∂xxu(x, t)

)
= E(x, t), 0 ≤ x ≤ 1, 0 < t ≤ T, (37)

coupled with the initial conditions

u(x, 0) = ∂tu(x, 0) = 0, 0 ≤ x ≤ 1, (38)

and the boundary conditions

u(0, t) = u(1, t) = 0, ∂xu(0, t) = ∂xu(1, t) = 0, 0 < t ≤ T. (39)

The corresponding source term can be adjusted according to the exact solution:

u(x, t) = x(1− x) exp(−t)t2 sin 4πx.

We obtained the solution of this problem in the time domain [0, 4]. In Table 3, we record
the absolute error at point x = 0.5, using different times. From table, the computations
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show that our results are better than those described by Mohammadi [41]. In Table 4,
different error norms are calculated, which identify that the proposed method produces
good results at small resolution levels. The convergence rate of this problem was computed
and is addressed in Table 5, which shows that the scheme is approximately of order two.
Exact versus approximate solutions together with the absolute error are plotted at time
t = 4 in Figure 2. It is clear from the figure that the exact and approximate solutions are in
good agreement.

Table 3. Absolute error in displacement of Problem 5.2.

Methods Points τ t = 0.2 t = 0.4 t = 0.8 t = 1 t = 2 t = 4

Present 32 0.001 1.76 × 10−13 5.72 × 10−13 1.80 × 10−12 2.14 × 10−12 2.87 × 10−12 2.39 × 10−12

64 0.001 1.72 × 10−13 5.75 × 10−13 1.48 × 10−12 1.90 × 10−12 2.95 × 10−12 6.13 × 10−13

[41] 100 0.01 1.78 × 10−5 5.85 × 10−5 1.57 × 10−4 2.00 × 10−4 2.95 × 10−4 1.60 × 10−4

200 0.005 2.38 × 10−6 7.80 × 10−6 2.09 × 10−5 2.67 × 10−5 3.94 × 10−5 2.57 × 10−5

Table 4. Maximum error norms of Problem 5.2 at different times with τ = 0.001.

t = 0.2 t = 0.5 t = 1 t = 4

λ L∞ L2 L∞ L2 L∞ L2 L∞ L2

4 6.10 × 10−5 3.38 × 10−4 3.86 × 10−4 2.11 × 10−3 1.02 × 10−3 5.58 × 10−3 8.64 × 10−4 4.72 × 10−3

5 1.11 × 10−5 7.36 × 10−5 5.85 × 10−5 3.29 × 10−4 2.24 × 10−4 1.23 × 10−3 2.29 × 10−4 1.25 × 10−3
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Figure 2. Solutions profile of Problem 5.2. (a) Exact and approximate solutions at t = 4, τ = 0.001.
(b) Absolute error in (a). (c) Exact 3D plot. (d) Approximate 3D plot at t = 4, τ = 0.01, λ = 5.
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Table 5. Convergence rate of Problem 5.2 at t = 1.

λ τ L∞ Rate

2 1/100 1.5254 × 10−2

3 1/200 3.9824 × 10−3 1.9374
4 1/400 9.5864 × 10−4 2.0545
5 1/800 2.1397 × 10−4 2.1635

6.3. Problem 5.3

Now, we consider the following equation:

∂ttu(x, t) + ∂xx
(
(1 + sin πx)∂xxu(x, t)

)
= E(x, t), 0 ≤ x ≤ 1, 0 < t ≤ T, (40)

inscribed with the initial conditions

u(x, 0) = ∂tu(x, 0) = 0, 0 ≤ x ≤ 1, (41)

and the boundary conditions{
u(0, t) = 0, ∂xu(0, t) = t2e−t, 0 < t ≤ T,
u(1, t) = t2e−t, ∂xu(1, t) = t2e−t, 0 < t ≤ T.

(42)

The exact solution of this problem is given by

u(x, t) =
(

x + sin3 πx
)

t2e−t.

The approximate solution of this problem was computed at different resolution levels. In
Table 6, we present the error norms for different times (t = 0.2, 0.5, 1, 4) using λ = 4, 5.
It is observed from the table that the error norms are small, which shows the efficiency
of the suggested scheme. The absolute error in displacement at x = 0.5 matches those
reported in [41] and presented in Table 7. It is clear from the table that the computed
errors at different times are small. Moreover, the spectral radius for this problem and
for previous two problems are addressed in Table 8 which shows that stability condition
fulfilled. Graphical solutions and the absolute error are shown in Figure 3. From the figure,
one can see that the exact and approximated solutions agree mutually.

Table 6. Maximum error norms of Problem 5.3 at different times with τ = 0.001.

t = 0.2 t = 0.5 t = 1 t = 4

λ L∞ L2 L∞ L2 L∞ L2 L∞ L2

4 2.73 × 10−3 1.93 × 10−2 1.29 × 10−2 9.08 × 10−2 3.14 × 10−2 2.20 × 10−1 2.50 × 10−2 1.75 × 10−1

5 2.72 × 10−3 1.93 × 10−3 1.27 × 10−2 9.07 × 10−2 3.08 × 10−2 2.20 × 10−1 2.46 × 10−2 1.75 × 10−1

Table 7. Absolute error in displacement at x = 0.5 of Problem 5.3.

Methods Points τ t = 0.2 t = 0.4 t = 0.8 t = 1 t = 2 t = 4

Present 32 0.01 1.40 × 10−3 1.51 × 10−3 1.46 × 10−4 6.95 × 10−4 3.62 × 10−3 2.68 × 10−3

[41] 100 0.01 7.82 × 10−3 2.59 × 10−2 7.27 × 10−2 9.43 × 10−2 1.44 × 10−1 7.65 × 10−2
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Figure 3. Solutions profile of problem 5.3. (a) Exact and approximate solutions at t = 0.2, τ = 0.001.
(b) Absolute error in (a). (c) Exact 3D plot. (d) = Approximate 3D plot at t = 0.2, τ = 0.01, λ = 5.

Table 8. Spectral radius of Problems 5.1, 5.2, and 5.3 at t = 0.2.

λ Problem 5.1 Problem 5.2 Problem 5.3

ρ(Ξ) ρ(Ξ) ρ(Ξ)
1 0.99984 0.99937 0.99937
2 0.99984 0.99929 0.99929
3 0.99984 0.99927 0.99927
4 0.99984 0.99927 0.99927

7. Initial Disturbance and Noisy Data

Here, we discuss the effect of the small perturbation in the initial condition and the
noisy data. In the initial perturbation, we take the initial condition u0 = Υ1(x) + ε where
ε is a small number. The idea of this perturbation was taken from [42]. Simulations were
performed for different values of resolution levels λ and and for different values of ε,
which are given in Table 9. From the table, we concluded that the small perturbation in
the initial data produces a small change in the solution, which shows that the method
is stable. Similarly, we take u0(xi) = Υ1(xi) + (−1)(i) × ε, i = 1, · · · , 2M, for the noisy
case [43]. In Table 10, we present the numerical results for the noisy case. From the table, it
is pretty much clear that the variation in the resolution level for the noisy case still gives
stable solutions.

In both cases, when we increase the resolution level, the accuracy increases, which is
obvious from Tables 9 and 10. Besides this, the absolute error for the noisy case is plotted
in Figure 4, which clearly indicates the accuracy of the techniques because this agrees with
the previous error when no noise exists. The simulations and graphical error indicated that
the method works for both types of data.
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Table 9. Maximum error norms of all problems for t = 1.0, after initial disturbances.

ε = 10−2 Problem 5.1 Problem 5.2 Problem 5.3

λ L∞ L2 L∞ L2 L∞ L2

1 4.53 × 10−2 2.02 × 10−1 4.82 × 10−1 3.16 × 100 1.30 × 10−1 2.27 × 10−1

2 2.10 × 10−2 9.41 × 10−2 1.67 × 10−2 8.62 × 10−2 4.90 × 10−2 3.09 × 10−1

3 1.46 × 10−2 6.55 × 10−2 4.14 × 10−3 2.18 × 10−2 3.40 × 10−2 2.26 × 10−1

4 1.30 × 10−2 5.82 × 10−2 1.34 × 10−3 5.94 × 10−3 3.15 × 10−2 2.20 × 10−1

ε = 10−3 Problem 5.1 Problem 5.2 Problem 5.3

λ L∞ L2 L∞ L2 L∞ L2

1 3.64 × 10−2 1.63 × 10−1 4.78 × 10−1 3.16 × 100 1.36 × 10−1 7.63 × 10−1

2 1.18 × 10−2 5.30 × 10−2 1.55 × 10−2 8.56 × 10−2 5.02 × 10−2 3.16 × 10−1

3 5.38 × 10−3 2.40 × 10−2 3.99 × 10−3 2.18 × 10−2 3.39 × 10−2 2.26 × 10−1

4 3.75 × 10−3 1.67 × 10−2 9.02 × 10−4 4.70 × 10−3 3.13 × 10−2 2.20 × 10−1

Table 10. Maximum error norms of all problems for t = 1.0 ε = 10−2, with noisy initial data.

Noise = 1% Problem 5.1 Problem 5.2 Problem 5.3

λ L∞ L2 L∞ L2 L∞ L2

1 3.55 × 10−2 1.58 × 10−1 4.77 × 10−1 3.16 × 100 1.37 × 10−1 7.67 × 10−1

2 1.08 × 10−2 4.84 × 10−2 1.54 × 10−2 8.56 × 10−2 5.03 × 10−2 3.16 × 10−1

3 4.35 × 10−3 1.94 × 10−2 3.98 × 10−3 2.18 × 10−2 3.39 × 10−2 2.26 × 10−1

4 2.72 × 10−3 1.21 × 10−2 8.47 × 10−4 4.69 × 10−3 3.13 × 10−2 2.20 × 10−1
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Figure 4. Error profile of all problems at t = 1.0. (a) Error in Problem 5.1. (b) Error in Problem 5.2.
(c) Error in Problem 5.3.

8. Conclusions

In this work, a mixed numerical method based on the Haar wavelet coupled with
the finite difference was proposed to solve the FOPDEs. First, the scheme was tested with
initial data, and then, small perturbations with and with out noise were introduced. The
obtained results matched with earlier work and exact solutions. Furthermore, the accuracy
of the scheme was checked via computing the L2 and L∞ error norms. It was observed that
the proposed scheme works well for smooth and noisy initial data, which indicates that the
method can be applied for other such problems.
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