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Abstract: Mathai’s pathway model is playing an increasingly prominent role in statistical distri-
butions. As a generalization of a great variety of distributions, the pathway model allows the
studying of several non-linear dynamics of complex systems. Here, we construct a model, called the
Pareto–Mathai distribution, using the fact that the earthquakes’ magnitudes of full catalogues are
well-modeled by a Mathai distribution. The Pareto–Mathai distribution is used to study artificially
induced microseisms in the mining industry. The fitting of a distribution for entire range of magni-
tudes allow us to calculate the completeness magnitude (Mc). Mathematical properties of the new
distribution are studied. In addition, applying this model to data recorded at a Chilean mine, the
magnitude Mc is estimated for several mine sectors and also the entire mine.

Keywords: superstatistics; parametric statistics; seismic moments; completeness magnitude

1. Introduction

Studying complex systems has been a recurring and growing scientific challenge.
As these are non-equilibrium systems that exhibit complicated inhomogeneous spatio-
temporal dynamics, several statistical models have been proposed. Searching for models
that adequately describe physical systems in driven stationary states has promoted the
development by Tsallis [1] of non-extensive statistical mechanics as a generalization of
Boltzmann–Gibbs statistical mechanics. Note that physical systems in a driven stationary
state are far from the equilibrium state and could be characterized by long-range interac-
tions, metastability, multifractality, and others. A new generalization of this was proposed
by Beck and Cohen [2] through the introduction of a more general framework called su-
perstatistics, which includes Tsallis’ statistics. Based on the fact that different generalized
forms of entropy have been proposed to obtain distributions of systems out of equilibrium,
Mathai proposed the pathway model [3]. Mathai demonstrated that Tsallis’ statistics and
superstatistics are particular cases of the pathway model. According to experimental re-
sults, he observed the existence of a variety of distributions, which can be grouped into
two families. Based on these findings, a pathway parameter that allows passing from
one functional form to another was introduced. Thus, by means of the maximization of a
generalized entropy he obtained the pathway model given by

f (x) = cxγ−1
(

1− b(1− α)xδ
) η

1−α , x ≥ 0

Depending on the values of parameters α, γ, δ > 0, b, η and for x > 0, it is possible to
obtain a great variety of distributions as special cases; above c is a normalizing constant.
For instance, when pathway parameter α = q > 1 and γ = 1, b = 1, η = 1 and δ = 1,
Tsallis’ statistics is obtained. For α = 1, γ− 1 = 3/4, b = 1 and δ = 1, we get the Maxwell–
Boltzmann density. For α < 1 and parameters γ = 1, b = 1, δ = 1 and η = 1, we obtain
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a q-binomial distribution. For α 6= 0, γ < 1, η = 0, and arbitrary values of b and δ, the
Pareto distribution is obtained, (for more cases see [3–5]). Another aspect [6] is that for
α < 1, the Mathai model remains as a generalized type-1 beta model in the real case. For
α > 1, the model assumes the generalized type-2 beta model for real x. That is, there
is a range of α pathway parameters that superstatistic considerations do not cover. The
Pareto distribution obtained from the Mathai model results by assigning specific values to
characteristic parameters of the pathway model, but the Pareto distribution is not obtained
as a limit case of the Mathai law, as proposed here.

In this article, we propose a new Pareto–Mathai distribution, obtained by means of a
transformation of the exponential distribution, whereby we pass from one kind of random
variable to another. For instance, when the new distribution is applied to earthquakes,
we pass from seismic magnitude to seismic moment [7]. In this context, crucial problems
with the application of the Gutenberg–Richter (GR) law [8] are faced by superstatistics [9]:
First, deviations of the GR model for the data of upper extreme seismic magnitudes register
are successfully explained by Tsallis formalism (e.g., [1,2,10–13] and references therein).
Second, the completeness magnitude (Mc), that is, the lowest magnitude at which one
hundred percent of the events in a space-time volume are detected, must be determined
in order to apply the GR law correctly. Here, we fit the Pareto–Mathai distribution for the
whole range of magnitudes expressed as seismic moments and we also use it to estimate Mc
by an analytical method. Additionally, we can point out that this proposal allows adding a
new distribution to the family of Pareto distributions (see e.g., [14–16]).

The purpose of this article is to construct the Pareto–Mathai distribution, to analyze its
properties and to apply it to an experimental data of microearthquakes induced by mining.
To this end, using data from a Chilean underground mine as a real system, we show that
this new proposed distribution fits very well with the recorded data of the whole range of
magnitudes. This allows us to analytically calculate the completeness magnitude.

The paper is organized as follows. In Section 2, the Pareto–Mathai distribution is
constructed by applying a transformation to the exponential distribution and combining it
with the Mathai distributions. The Pareto distribution is obtained as a limiting case, and
a multivariate generalization of the Pareto–Mathai function is proposed. In Section 3, we
investigate some properties of the Mathai and Pareto–Mathai distributions. The density
function’s behavior for the new model is analyzed as a function of its parameters; addi-
tionally, we estimate the parameters of the Mathai and Pareto–Mathai distributions via
Maximum Likelihood Estimation. In Section 4, the Pareto–Mathai distribution is applied to
micro-earthquakes by using data recorded in a real system (a mine in Chile), and the com-
pleteness magnitude is calculated for its sectors and also the entire mine. The discussion
and conclusions are the subject of Section 5.

2. Pareto–Mathai Distribution

In this section, we set up the Pareto–Mathai distribution by applying to the Mathai
distribution the same transformation used to pass from the exponential distribution to the
Pareto law. If F(x) is an exponential distribution function, that is, FX̂(x) = 1− e−λx, the
transformation G(x) = F ◦ ln(x) corresponds to a Pareto distribution with parameter λ
and threshold xm = 1.

In [13] it was shown that the distribution

p(x) =
λ3n/2Γ(c + 3n/2)

Γ(3n/2)Γ(c)
(x− x0)

3n/2−1[1 + (x− x0)λ]
−c−3n/2

for suitable parameters c, n, λ > 0 and x0 fits very well with the magnitudes of Chilean
earthquakes. Taken n = 2γ/3, λ = (q − 1)b, c = −1/(1− q) − 3n/2 and x0 = x̄m we
obtain the Mathai distribution (shifted model)

f (x) = c(x− x̄m)
γ−1(1− (1− q)b(x− x̄m))

1
1−q , x > x̄m, (1)
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with q, b, γ > 0 and 1− (1− q)b(x− x̄m) > 0 which modelizes the whole range of Chilean
earthquakes magnitudes represented by a random variable X̂. The distribution (1) can be
obtained as a Beck Cohen superstatistics:

f (x) =
∫ ∞

0
ρ(x)βe−βx fβ(β)dβ, (2)

where ρ(x) = (x− x̄m)γ−1 is a density of states and fβ is the density function for the relevant
parameter β that follows a chi-square distribution. In the Beck Cohen formalism, we say that
f (x) results from considering the system locally explained by an exponential distribution.

We want to fit the empirical distribution of earthquake seismic moments represented
by X because the seismic moment is fundamentally superior to any magnitude scale
given the fact that it quantifies a parameter of the commonly accepted earthquake source
model [17]. This construction is based on the facts that the Mathai distribution (1) fits
magnitudes and seismic moments are usually modeled by a Pareto distribution. Therefore,
we apply the transformation FX(x) = FX̂(ln x), that is, fX(x) = 1

x fX̂(ln x), to obtain such a
distribution. Hence, the seismic moments could be explained by a distribution

fX(x) =
c
x

(
ln

x
xm

)γ−1(
1− (1− q)b ln

x
xm

) 1
1−q

, x > xm, (3)

where xm = ex̄m andc = cq,b,γ is a normalization constant given by [3]:

cq =


[(q−1)b]γ

B
(

γ, 1
q−1−γ

) , q > 1

[(1−q)b]γ

B
(

γ,1+ 1
1−q

) , q < 1
. (4)

In this way, the distribution function for q > 1 can be calculated compactly in terms of
beta functions, namely

F(x) = I
(

s(x)
s(x) + 1

; γ,
1

q− 1
− γ

)
, (5)

where s(x) = (q− 1)b ln x
xm

and I is given by

I(x; a, b) =
B(x; a, b)
B(a, b)

,

where B is the incomplete beta function:

B(x; a, b) =
∫ x

0
ua−1(1− u)b−1du, 0 ≤ x ≤ 1

On other hand, for q < 1, the cumulative distribution function is given by

F(x) = I
(

r(x)
r(x) + 1

; γ, 1 +
1

1− q

)
,

where r(x) = (1− q)b ln x
xm

. The expression for the distribution function is specially useful
for applications because it allows us to compute the survival function.

Remark 1. An important limit case of the Pareto–Mathai law (3) is when q→ 1, which yields the
shifted log-gamma distribution [18]:

f (x) = c
(

ln
x

xm

)γ−1 xb
m

xb+1 , x > xm, (6)
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where c is the normalization constant c = bγ/Γ(γ) (here Γ(.) is the gamma function).

Remark 2. Another way to obtain the Pareto–Mathai distribution (3) is via the Beck–
Cohen superstatistics:

f (x) =
∫ ∞

0
ρ(x)β

xβ
m

xβ+1 fβ(β)dβ,

where the density fβ is the same as in (2) (that is, a chi-square distribution) and the density of states
is ρ(x) = lnγ−1(x/xm).

Remark 3. Inspired by the more general form of the Mathai distribution, the density (3) could be
generalized as follows:

f (x) =
c
x

lnγ−1 x
xm

(
1− (1− q)b lnδ x

xm

) η
1−q

, x ≥ xm, (7)

where c = cq is given by

cq =


δ[(q−1)b]

γ
δ

B
(

γ
δ , η

q−1−
γ
δ

) , q > 1

δ[(1−q)b]
γ
δ

B
(

γ
δ ,1+ η

1−q

) , q < 1
, (8)

where η
q−1 > γ

δ > 0. It is easy to verify that the constant c is the same as for the Mathai density

f (x) = c(x− xm)
γ−1
(

1− (1− q)b(x− xm)
δ
) η

1−q , x > xm. (9)

Additionally, we can show that the distribution function given by

F(x) =

 I
(

s(x)
s(x)+1 ; γ

δ , η
q−1 −

γ
δ

)
, q > 1,

I
(

r(x)
r(x)+1 ; γ

δ , 1 + η
1−q

)
, q < 1,

(10)

corresponds to (7) for s(x) = (q − 1)b lnδ x
xm

and r(x) = (1 − q)b lnδ x
xm

, and to (9)
for s(x) = (q− 1)b(x− xm)δ and r(x) = (1− q)b(x− xm)δ.

3. Properties of Pareto–Mathai Distribution

An important difference between the Tsallis and Mathai distributions (9) is that the
density function for the former is always strictly decreasing but for the latter it could have
a maximum attained in a value greater than xm (depending on the parameter values).

Proposition 1. The density function (9) has a maximum at

x∗ =
(

γ− 1
b[(γ− 1)(1− q) + δη]

)1/δ

+ xm, (11)

if (γ− 1)(1− q) + δη > 0, b > 0, γ, q > 1 and δ ≥ 1. Moreover, (9) is monotonically increasing
to the left of x∗ = x∗b,q,γ,δ,η and is monotonically decreasing to its right. Thus, under this condition,
its distribution function has an inflection point at x∗.

Proof. The derivative of f (x) is:

f ′(x) = (x− xm)
γ−2
(

1− (1− q)b(x− xm)
δ
) η

1−q−1{
γ− 1− (x− xm)

δ[(γ− 1)(1− q)b + δηb]
}

.
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Thus the critical values for f (x) are x1 = xm and x2 =
(

γ−1
b[(γ−1)(1−q)+δη]

)1/δ
+ xm ≥ xm. It

is easily shown that f ′(x) > 0 ∀x ∈ [xm, x2) and f ′(x) < 0 ∀x ∈ (x2, ∞). On other hand, we
have f (xm) = 0 and f (x) ≥ 0 then f (x) is the minimum at xm and the absolute maximum

point will be x =
(

γ−1
b[(γ−1)(1−q)+δη]

)1/δ
+ xm ≥ xm.

Similarly, the Pareto–Mathai’s density function (7) has an absolute maximum value.
However, the critical value, where the maximum is reached, cannot be calculated in a
closed form. Thus, numerical methods are necessary to compute it:

Proposition 2. The density function (7) has a maximum at a point x∗ > xm determined uniquely
by the equation:

(1− q)buδ+1 − [(γ− 1)(1− q) + ηδ]buδ − u + γ− 1 = 0, u ≥ 0 (12)

where u = ln x∗
xm

, (γ − 1)(1− q) + δη > 0, b > 0, γ, q > 1, and δ ≥ 1. Moreover, (7) is
monotonically increasing to the left of x∗ and monotonically decreasing to its right. Thus, under
this condition its distribution function has an inflection point at x∗.

Further, the solution of (12) satisfies:

∂u
∂γ

=
(q− 1)buδ + 1

(q− 1)b(δ + 1)uδ + [(γ− 1)(1− q) + ηδ]bδuδ−1 + 1
> 0 (13)

∂u
∂b

= − (q− 1)u + [(γ− 1)(1− q) + ηδ]

(q− 1)b(δ + 1)uδ + [(γ− 1)(1− q) + ηδ]bδuδ−1 + 1
uδ < 0. (14)

Thus, the extreme value x∗ is increasing in γ and is decreasing in b. Furthermore, if u < γ− 1
we have:

∂u
∂q

=
(−u + γ− 1)

(q− 1)b(δ + 1)uδ + [(γ− 1)(1− q) + ηδ]bδuδ−1 + 1
buδ > 0, (15)

as x∗ is increasing in q. Additionally, the explicit expression of x∗ for the particular case δ = η = 1,
that is, for the distribution (1), is x∗ = xmeu∗ , where

u∗ =
(γ− 1)(1− q)b + b + 1 +

√
[(γ− 1)(1− q)b + b + 1]2 + 4(q− 1)b(γ− 1)

2b(q− 1)
(16)

Proof. The equation f ′(x) = 0, where f (x) given by (7), is equivalent to:

1
x2 lnγ−2 x

xm

(
1− (1− q)b lnδ x

xm

) η
1−q−1

×

×
[
(1− q)b lnδ+1 x

xm
− [(γ− 1)(1− q) + ηδ]b lnδ x

xm
− ln

x
xm

+ γ− 1
]
= 0.

Thus, the critical points are given by

x1 = xm,

(1− q)buδ+1 − [(γ− 1)(1− q) + ηδ]buδ − u + γ− 1 = 0,

where u = ln x2
x . At x1 = xm we have f (x1) = 0 and f (x) ≥ 0 for all x > xm hence x1 = xm

is a global minimum of (3). Now, we are going to prove that the density is maximum at x2,
which is uniquely determined by (12). Define

g(u) = (1− q)buδ+1 − [(γ− 1)(1− q) + ηδ]buδ − u + γ− 1. (17)
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Note that g(0) = γ − 1 > 0 by assumption and g(uM) < 0 for uM is big enough be-
cause the coefficient of the term uδ+1 is negative. Thus, by the Intermediate Value The-
orem there is a solution for (12). On the other hand g′(u) < 0 for all u > 0 given that
(γ− 1)(1− q) + ηδ > 0. Clearly f ′(x) > 0 for [xm, xmax) and f ′(x) < 0 for (xmax, ∞). Fi-
nally, the relations (13)–(15) are obtained by implicitly deriving the Equation (12). These
analytical results are obtained by varying the probability density function f (x) as a func-
tion of the seismic moments for different values of the parameters q, γ and b. Accord-
ingly, to study the behavior of f (x) with respect to one of them, the others must be
considered constant.

Remark 4. The Equations (11) and (16) give us, respectively, the completeness magnitude using
the Mathai distribution and the completeness seismic moment using the Pareto–Mathai distribution.

The Pareto–Mathai density function (3) is represented in Figure 1 for different values
of the parameters q, b and γ. Figure 1a shows that the density function begins with a
minimum value, increases to a maximum value and subsequently decreases. Assuming
fixed values of the parameters b and γ, the maximum value of the density function increases
when the entropic index q decreases, approaching value one. Thus, the effect of increasing
the value of q implies an increase in the value of the density function for the high values of
the random variable x, thus generating a heavy-tailed distribution. In Figure 1b, we assume
that the parameters q and b are fixed and let the γ parameter vary. We observe that when γ
decreases, the maximum of the density function increases and, depending on the chosen
values of q and b, its position shifts towards the lower x values. In the limit case γ = 1,
the density function is a strictly decreasing function. This limit case corresponds to the
Beck–Cohen superstatistical model in which the density of states is one, i.e., ρ(x) = 1. In
the region of lower values of the random variables, the behavior of the density function is
clearly controlled by the density of states. In Figure 1c, we consider the entropic parameters
q and γ fixed and let the values of the parameter b vary. When the value of b increases,
the maximum value increases and the position of the maximum shifts towards the lower
values of x. The density function increases from a minimum up to a maximum value and
subsequently decreases. However, in the region of large values of the random variable, the
density function does not vary significantly as a function of the parameter b.

A comparison between the Pareto distribution and the Pareto–Mathai distribution
demonstrates that moments for Pareto exist for the shape parameter greater than one,
while for Pareto–Mathai, no moment exists at all. We summarize these observations in the
following two propositions. The first is about Mathai distribution [19] and the second is
about the Pareto–Mathai law.

Proposition 3. For the Mathai distribution (9) with xm = 0, the j-th moment for q > 1 is given by

E(X j) =
cq

δ(b(q− 1))
γ+j

δ

B
(

γ + j
δ

,
η

q− 1
− γ + j

δ

)
,

where cq is given by (8), η
q−1 −

γ
δ > 0, η

q−1 −
γ+j

δ > 0, γ + m > 0 and γ, b, η, δ > 0. For q < 1
the j-th moment is given by

E(X j) =
cq

δ(b(1− q))
γ+j

δ

B
(

γ + j
δ

, 1 +
η

1− q

)
,

where cq is given by (8), γ + j > 1, γ, δ, b > 0.
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(a) (b)

(c)

Figure 1. Pareto–Mathai density function f (x) for different values of the parameters q, b and γ. In
(a), b and γ are fixed. In (b), b is fixed. In (c) q is fixed.

Remark 5. For the shifted Mathai distribution (9) we have by direct calculus:

E(X j) =
j

∑
i=0

(
j
i

)
xj−i

m E(Xi
0),

where E(X0
0) = 1 and E(Xi

0) is the i-th moment of the unshifted Mathai distribution given by
Proposition 3 for i = 0, 1, . . . , j.

Proposition 4. Let η, b > 0, δ ≥ 1 and γ > 1. For the Pareto–Mathai distribution (7) and
for q > 1, there does not exist any moment. Instead, for 0 < q < 1, the j-th moment exists. In
particular, the expectation is given by

E(X) =
cq

δ[(1− q)b]
γ
δ

B
(

1 +
η

1− q
,

γ

δ

)
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Proof. Suppose q > 1. Then

E(X) = c
∫ ∞

xm
lnγ−1 x

xm

(
1− (1− q)b lnδ x

xm

) η
1−q

dx

=
cxm

δ[(q− 1)b]
γ
δ

∫ ∞

1
u

γ
δ−1(1 + u)

η
1−q e

u1/δ

[(q−1)b]1/δ du

The integrand of the last integral is continuous and non negative and goes to infinity if
u→ ∞, whence this integral diverges.

Now, suppose q < 1. The support of f (x) is
(

xm, xme[(1−q)b]−1/δ
)

. Clearly, the inte-

grand of E(X j), g(x) = cxj−1 lnγ−1(x/xm)(1− (1− q)b lnδ(x/xm))η/(1−q) is continuous
function over the compact interval

[
xm, xme[(1−q)b]−1/δ

]
so E(X j) is finite. For j = 1 we have:

E(X) =
c

δ[(1− q)b]
γ
δ

∫ 1

0
u

γ
δ−1(1− u)

η
1−q du =

cq

δ[(1− q)b]
γ
δ

B
(

1 +
η

1− q
,

γ

δ

)
.

3.1. Multivariate Pareto–Mathai Distribution

The Pareto–Mathai distribution can be generalized to the multivariate case, just as
Mathai’s model was generalized by Joseph [19]:

f (x1, x2, . . . , xn) =
kq

x1 · x2 . . . · xn

(
ln

x1

x1
m

)γ1−1(
ln

x2

x2
m

)γ2−1
. . .
(

ln
xn

xn
m

)γn−1
×

×
(

1− (1− q)
[

b1 lnδ1
x1

x1
m
+ b2 lnδ2

x2

x2
m
+ . . . + bn lnδn xn

xn
m

]) η
1−q

, xi > xi
m (i = 1, 2, . . . , n)

where

kq =
∏n

i=1 δi(bi(q− 1))
γi
δi

B
(

η
q−1 −∑n

i=1
γi
δi

, ∑n
i=1

γi
δi

) , q > 1 (18)

and

kq =
∏n

i=1 δi(bi(q− 1))
γi
δi

B
(

1 + η
1−q , ∑n

i=1
γi
δi

) , q < 1. (19)

Above xi
m, δi, γi ≥ 0, for i = 1, . . . , n and η

q−1 − ∑n
i=1

γi
δi

> 0 if q > 1 and 1 + η
1−q > 0 if

q < 1.
The multivariate models whose marginal distribution are Pareto–Mathai and Mathai

distributions are important in seismology, since the inter-event time can be modeled by a
q-exponential distribution and the seismic moments can be modeled by a Pareto–Mathai law.
In particular, the multivariate Pareto-q-Exponential-Mathai distribution can be defined as:

f (x1, . . . , xl , xl+1, . . . , xn) = kq
(x1 − x1

m)
γ1−1 · . . . · (xl − xl

m)
γl−1

xl+1 · . . . · xn
lnγl+1−1 xl+1

xl+1
m

. . . lnγn−1 xn

xn
m
×

×
(

1− (1− q)
[

b1(x1 − x1
m)

δ1 + . . . + bl(xl − xl
m)

δl + bl+1 lnδl+1
xl+1

xl+1
m

+ . . . + bn lnδn xn

xn
m

]) η
1−q

,

where xi > xi
m for all i = 1, 2, . . . , n, kq is the normalization constant given by (18) and (19),

xi
m, δi, γi ≥ 0 for i = 1, . . . , n, η

q−1 − ∑n
i=1

γi
δi

> 0 if q > 1 and 1 + η
1−q > 0 if q < 1.
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Here, the first l variables are Mathai distributed and the remaining n − l variables are
Pareto–Mathai distributed.

3.2. Parameter Estimation

To estimate the parameters for a dataset, we write the optimization problems to
find the optimal parameters for Mathai and Pareto–Mathai distributions. As we can
observe, the optimality conditions for the optimal parameters are rather complicated, so
numerical methods for non linear optimization problems must be used in order to find these
parameters. The optimization problems was implemented in Python and the scipy.optimize
package with the Broyden-Fletcher-Goldfarb-Shanno algorithm was used. A logarithmic
transformation was applied to the data and Mathai distribution parameters was estimated
by MLE in order to provide a good initial guess for the parameters in the Pareto Mathai
distribution. The logarithmic transformation was used because the optimization problem
for transformed data is more stable than the problem for the original data.

Let (x1, x2, . . . , xN) be a simple sample. Then, the likelihood function for (7) is given by:

L = L(q, b, γ, δ, η) =
N

∏
i=1

f (xi; q, b, γ, δ, η) =
N

∏
i=1

cq,b,γ

xi

(
ln

xi
xm

)γ−1(
1− (1− q)b lnδ xi

xm

) η
1−q

.

Note that the parameter xm is not estimated using the Maximum Likelihood Estimation.
It is obtained directly from the data as the minimum seismic moment.

In order to facilitate the optimization of L(q, b, γ, δ, η), we take the logarithm:

ln L = N ln cq,b,γ −
N

∑
i=1

ln xi + (γ− 1)
N

∑
i=1

ln
(

ln
xi
xm

)
+

η

1− q
ln
(

1− (1− q)b lnδ xi
xm

)
.

Thus the maximization problem maxq,b,γ,δ,η L(q, b, γ, δ) is equivalent to

max
q,b,γ,δ,η

N ln
[(q− 1)b]γ

B
(

γ
δ , η

q−1 −
γ
δ

) + (γ− 1)
N

∑
i=1

ln
(

ln
xi
xm

)
+

η

1− q
ln
(

1− (1− q)b lnδ xi
xm

)
such that

η

q− 1
− γ

δ
≥ 0

q, b, γ, δ, η ≥ 0.

Remark 6. The maximization of the likelihood function for (9) is equivalent to the following
optimization problem:

max
q,b,γ,δ,η

N ln
[(q− 1)b]γ

B
(

γ, η
q−1 −

γ
δ

) + (γ− 1)

(
N

∑
i=1

ln(xi − xm)

)
+

η

1− q
ln
(

1− (1− q)b(xi − xm)
δ
)

such that
η

q− 1
− γ

δ
≥ 0

q, b, γ, δ, η ≥ 0.

By solving this optimization problem numerically, we will give the estimate of
the parameters of the Pareto–Mathai model. For optimizing, we use an optimization
python package.

4. Application

Block/panel caving is a common technique to mine typically low-grade massive
steeply dipping ore bodies with high friability (see Figure 2). An undercut with haulage
access is driven under the orebody, with “drawbells” being excavated between the top of
the haulage level and the bottom of the undercut. The orebody is drilled and blasted above
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the undercut to create a void at each draw-point, so that the rock breaks and falls due to
friability and gravity. After that, the broken ore is removed via the haulage access.

Rock removal generates instability in the ore body and new fracturing begins. This
process produces seismic activity, which we examine in this section using the Pareto–
Mathai distribution (1). The seismic moments can be modeled with Pareto distribution
and its variations such as the q−Pareto and the Pareto–Mathai distribution. Additionally,
the seismic moment scale is more accurate than magnitude scale because the magnitude
generally is expressed at most with two decimals, implying a significant loss of information
on energy [12].

Figure 2. Block caving scheme http://www.groundtruthtrekking.org/Graphics/block-caving-
underground-mining-method-diagram.html (accessed on 5 September 2021).

An underground mine comprises a set of sectors, which are exploited independently.
However, these sectors are interrelated because the rock extracted is transported at a
transportation level, which is the same for all sectors. Additionally, the sectors have shared
geophysical aspects. For example, seismic activity in one sector could influence seismicity
in another. In our study case, we consider a mine represented in Figure 3, which is a Chilean
underground mine divided into five sectors, covering approximately 2000× 2500 m2. The
first four sectors are close to each other and the fifth is farther away from the previous ones.

The data is expressed by the Moment Magnitude Scale (M0) for magnitudes and in
Newton-meters (N ·m) for seismic moments. The relation between magnitudes and seismic
moments is given by [7]:

Mw =
3
2
(log10 M0 − 9.1),

where Mw is the moment magnitude scale or simply the magnitude. Note that M0 is
measured in energy units, while the magnitude Mw is an dimensionless quantity which can
be negative. In mining, many tremors with negative magnitudes are detected by geophones,
which are low energy events.

The seismic moment data obtained from this mine considers events from all spectre of
magnitudes, including even unreliable data. The limitation of the instruments (geophones)
to measure magnitude earthquakes produces unreliable measures under a magnitude
known as a completeness magnitude (Mc). This happens because small tremors are detected
only if they occur sufficiently close to a geophone. Thus, the number of these tremors are
underestimated. The estimation of the magnitude Mc is fundamental to distinguish the

http://www.groundtruthtrekking.org/Graphics/block-caving-underground-mining-method-diagram.html
http://www.groundtruthtrekking.org/Graphics/block-caving-underground-mining-method-diagram.html
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reliable data from the unreliable and to do so we will fit the Pareto–Mathai distribution
and calculate its critical value via Equation (16).

The database used includes events from 2003 to 2007 and the mine is partitioned
into five sectors, associating a sub-database with each one as follows: sector 1:71,621 data;
sector 2:70,987 data; sector 3:3641 data; sector 4:24,770 data and sector 5:8996 data. Later, a
complete database for the entire mine was considered. The range of values of the seismic
magnitudes and their corresponding seismic moments are indicated in Table 1.

Figure 3. Graphic representation of the mine sectors. They are considered as one system.

Table 1. Extreme values for each sector registered in the period 2003–2007.

Minimum Maximum

Sector Magnitude Seismic Moment Magnitude Seismic Moment

1 −2.12 8.273× 105 2.97 3.553× 1013

2 −1.52 6.516× 106 2.29 3.409× 1012

3 −1.31 1.375× 107 0.97 3.621× 1010

4 −1.31 1.384× 107 1.68 4.116× 1011

5 −1.55 5.931× 106 1.91 9.190× 1011

4.1. Cumulative Probability

By using our proposed model, we fit the cumulative probability, corresponding to
Equation (5), as a function of seismic moments. Figure 4 reveals a very good fit between
the theoretical model and the data recorded in each sector. This can be observed by means
of the RMSE, R2 and MAPE values (Table 2). In sectors 2 and 3, the q values are greater
than one. However, the γ values vary widely and are significantly greater than one: in
sector 1, Figure 4a, γ = 11.778; in sector 2, Figure 4b, γ = 14.999; in sector 3, Figure 4c,
γ = 3.754; in sector 4, Figure 4d, γ = 11.242 and in sector 5, Figure 4e, γ = 4.827. This
clearly shows that the term representing the “density of states” is very different from one
and differ among some sectors, which implies different completeness magnitudes. If we
consider the mine as a total system made up of five sectors, we find that the cumulative
distribution that best fits the recorded data is the one whose parameters are: q = 1.017;
b = 3.966 and γ = 12.641, (Figure 5). The result demonstrates that q > 1 for Sectors 2 and 3,
whence the data presents a deviation from the log-gamma distribution; in Sectors 1,3 and
4, the opposite happens. Since Sector 1 presents the biggest number of events among all
sectors and the data in this sector behaves according to a log-gamma distribution, if we
consider the data of the whole mine it is modeled by a log-gamma distribution as well (see
Figure 5). On the other hand, in the region with the lowest values of the seismic moments,
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the system behaves according to the Pareto–Mathai distribution that we are proposing and
which incorporates a “state density” term different from unity. The cumulative distribution
function, F(x), starts from a minimum value at xm and then increases reaching an inflection
point where it changes from a positive to a negative concavity. This inflection point is the
completeness magnitude. Equivalently, the probability density f (x), which starts from a
minimum value, then increases up to a maximum value and finally decreases.

(a) (b)

(c) (d)

(e)

Figure 4. Frequency distributions for seismic moments at different mine sectors. The empirical
distribution appears in orange and the black dashed line is the theoretical distribution.
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Figure 5. Frequency distribution for a set of sectors. The empirical distribution appears in orange
and the black dashed line is the theoretical distribution.

Table 2. RMSE and R2 errors for the Pareto–Mathai distribution fit.

Sector RMSE R2 MAPE(%)

1 0.00739 0.99926 2.70572
2 0.00844 0.99737 6.45977
3 0.02119 0.99415 10.12413
4 0.04437 0.99662 13.57314
5 0.01346 0.99775 3.96032

1–5 0.01519 0.99720 5.15808

In the next section, we analyze the density function of the seismic moments according
to the behavior of the cumulative distribution function. The inflection point is expected to
behave according to the interplay of parameters q, b and γ. Importantly, for lower values
of the parameter γ, the effect of the density of states is lower and the behavior of the
cumulative distribution function will depend fundamentally on the parameters q and b.
Thus, in the limit γ → 1, our model tends to the q–Pareto model [20] or the Beck–Cohen
model with state density ρ(x) = 1.

4.2. Density Probability

The behavior of the density of probability function (PDF) is analyzed regarding its
dependence on the parameters b, q and γ. This theoretical model includes studying
the variation of the PDF on one parameter while keeping the others constant. In this
context, and considering Equations (14) and (15), we have the following cases: an increment
(decrement) in entropic parameter q implies an increment (decrement) in Mc. Secondly, for
parameter γ, we have a similar situation as for q. Thirdly, for the b parameter we have the
inverse situation: an increment (decrement) in b implies a decrement (increment) in Mc.
The completeness magnitudes for each sector are shown in Table 3.

Table 3. The magnitudes and seismic moments for which the theoretical density function is maximum.

Sector Completeness Magnitude Completeness Seismic Moment

1 −1.22 1.849× 107

2 −0.68 1.218× 108

3 −0.99 4.062× 107

4 −0.77 8.744× 107

5 −1.08 3.007× 107

In order to study the behavior of the density function as a function of the indicated
parameters using data recorded at a mine, in Figure 6, we represent the probability density
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of the seismic moment. The data are the same as in Figure 4. The behavior of the probability
density function in the region of lower values of seismic moments is similar to that expected
under the Pareto–Mathai model that we propose (Proposition 2). The probability density
starts with a minimum value, increases up to a maximum at Mc and subsequently decreases
with the increase in the value of the seismic moments. The behavior of the probability
density function f (x) as a function of parameters q, γ and b depends on the interplay
between these parameters as we mentioned in Section 3.

(a) (b)

(c) (d)

(e)

Figure 6. Densities for seismic moments at different mine sectors. The figures (a–d) corresponds to
densities for sectors 1–4 respectively. The figure (e) is the probability density function for the seismic
moments registered in the whole mine.
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Our Pareto–Mathai model fits very well the empirical distribution of the seismic
moments for most sectors, encompassing values corresponding to the whole range of
detected magnitudes. This allows us to estimate analytically the completeness magnitude
Mc, as can be observed by the errors shown in Table 2. The QQ-plots corresponding to
Pareto–Mathai distribution for the sectors with more quantity of registered events, that
is, sectors 1 and 2, are compared with QQ-plots for log-gamma distribution in Figure 7.
The QQ-plots showed a better fit for the Pareto–Mathai distribution than for log-gamma
distribution, especially in the tails. The Pareto–Mathai distribution describes adequately
the seismic moments, which is a variable typically heavy tailed [12]. As can be observed
in Figure 4 and Table 2 the fits for Sectors 3 and 4 are acceptable but the proposed model
exhibits important deviations from empirical data in these sectors, which may be due
bimodal behavior [21].

(a) (b)

(c) (d)

Figure 7. QQ-plots for Moment Distributions. In the first column are shown the QQ-plot for Pareto–
Mathai distribution. More specifically the figures (a,c) correspond to the Pareto–Mathai QQ-plot for
sectors 1 and 2 respectively. In the second column are shown the QQ-plot for log-gamma distribution
(the limit case of Pareto–Mathai law). The figures (b,d) are the log-gamma QQ-plots for sectors 1 and
2 respectively.

5. Discussion and Conclusions

Understanding the dynamics that govern the occurrence of earthquakes, both in their
generation and in their effects on cities, is a major challenge for scientists. The search
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for predictive models has been focused on finding the one that best fits the reliable data
recorded by seismometers, i.e., earthquakes whose magnitude is over the completeness
magnitude Mc. However, it is useful to model the earthquakes for the entire range of
seismic moments in order to determine analytically the magnitude Mc. For these events,
the Gutenberg Richter law does not fit very well and an ad hoc distribution is introduced
to model it. Indeed, the introduction of Mathai’s pathway model adjusts very well to
the magnitude data recorded in the lower-valued region by incorporating the density
of states. But considering that the seismic moment is preferable to any magnitude scale
due to its accuracy, we use the seismic moments instead of magnitudes. To do so we
consider recent models that have been proposed from the point of view of statistical
mechanics: non-extensive statistical mechanics (Tsallis’ model), superstatistics (Beck-Cohen
model) and more recently the Mathai pathway model. (the latter has been applied with
incresing frequency).

In this article, the Pareto–Mathai model was constructed by applying a transformation
to the Mathai distribution. The latter is the transformation used to pass from the exponential
distribution to the Pareto model. When analyzing some of its properties, the probability
density was obtained first. It demonstrated that this probability density increases from an
initial minimum value to an absolute maximum value and then decreases as a function
of the increasing seismic moments. It was shown that, in the range of values of the
entropic index q > 1 (where the Pareto–Mathai distribution corresponds to a heavy-tailed
distribution) there is no moment, in contrast to the Mathai distribution for which the
j-th moment exists under the proper conditions. Additionally, we have proposed the
multi-varied Pareto–Mathai distribution, as it is well-suited for complex systems. The
latter are multi-parameter systems and their components could be spatially or temporally
interdependent or strongly correlated to a high degree.

To apply this new model, we fit it to registered microseisms in a Chilean underground
mine of a full catalog including reliable and unreliable data. Analyzing cumulative fre-
quency, we have demonstrated that the constructed Pareto–Mathai model adjusts very well
to the recorded data of microseisms that occurred in a four-year period. The good fit of the
Pareto–Mathai distribution to the empirical seismic data allows us to analytically calculate
the completeness magnitude, which is fundamental in order to identify authentic data and
faulty measurements.

The occurrence of microseisms in underground mines has a special characteristic in
terms of impact on productivity, as well as in seismology laboratories [22,23]. Thus, the
understanding of this phenomenon is crucial for saving lives of mining workers, avoiding
financial losses, etc. According to the scale of values of seismic magnitudes, in this type
of laboratory the studies of the complex non-linear dynamics of large-scale natural events
could be significantly improved.
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