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Abstract: The Markovian time evolution of the entropy production rate is studied as a measure of
irreversibility generated in a bipartite quantum system consisting of two coupled bosonic modes
immersed in a common thermal environment. The dynamics of the system is described in the
framework of the formalism of the theory of open quantum systems based on completely positive
quantum dynamical semigroups, for initial two-mode squeezed thermal states, squeezed vacuum
states, thermal states and coherent states. We show that the rate of the entropy production of the initial
state and nonequilibrium stationary state, and the time evolution of the rate of entropy production,
strongly depend on the parameters of the initial Gaussian state (squeezing parameter and average
thermal photon numbers), frequencies of modes, parameters characterising the thermal environment
(temperature and dissipation coefficient), and the strength of coupling between the two modes.
We also provide a comparison of the behaviour of entropy production rate and Rényi-2 mutual
information present in the considered system.

Keywords: entropy production; quantum correlations; open quantum systems; Gaussian states

1. Introduction

Entropy production (EP) is a basic concept in nonequilibrium classical and quantum
thermodynamics. It is intimately related to the second law of thermodynamics, which
enables identifying and quantifying the irreversibility of physical processes, expressed by
the generation of entropy and the dissipation of heat into the surrounding environment
of the systems [1–10]. According to the second law of thermodynamics, entropy change
∆S of the state of a system that exchanges energy during its interaction with a thermal
environment at temperature T has a lower bound:

∆S ≥
∫

δQ
T

, (1)

where δQ is the infinitesimal heat absorbed by the system. The strict inequality characterises
an irreversible process for which energy is dissipated into the environment in the form of
heat [11]. However, besides the entropy that flows from the system into the reservoir, some
additional entropy may be intrinsically generated by the process within the system, called
entropy production. From the second law of thermodynamics, it follows that EP is always
non-negative; it only has a zero value when the system is in thermal equilibrium with
its reservoir and it can consequently be used as a measure of the degree of irreversibility
of physical processes and to characterise a broad range of nonequilibrium phenomena.
Entropy production Σ can be defined as

Σ ≡ ∆S−
∫

δQ
T
≥ 0. (2)

Entropy 2022, 24, 696. https://doi.org/10.3390/e24050696 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24050696
https://doi.org/10.3390/e24050696
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-3033-7045
https://doi.org/10.3390/e24050696
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24050696?type=check_update&version=2


Entropy 2022, 24, 696 2 of 17

From Equation (2), the following equality [6,12] can be derived:

dS
dt

= Π(t)−Φ(t), (3)

where Π(t) denotes the irreversible EP rate, and Φ(t) the entropy flux from the system
into the environment. When the system reaches a stationary state, these two quantities
take strictly positive and equal values, while thermal equilibrium is reached only when
both are zero. The entropy of an open system does not satisfy a continuity equation, and
this prevents EP from being a physical observable; therefore, it is not generally accessible
by direct probing.

The last few years showed a growing interest in studying the properties of entropies of
quantum states, particularly tomographic entropies [13,14] and thermodynamic implications
of quantum features, including understanding the role, properties, and evolution of EP in
stochastic thermodynamics and related to the quantum theory of open systems [8–10,15–18].

In the case of a Markovian dynamics of open systems, described by a quantum dynam-
ical semigroup, information monotonically flows from the system into the environment,
and the corresponding EP is a non-negative quantity. Some models show a backflow of
information going from the environment to the system, and this is usually interpreted as
a signature of non-Markovianity. In this case, it is possible for intervals of time to exist
in which EP takes negative values. However, this does not mean that the second law of
thermodynamics is violated [19], but it can be understood in terms of information backflow
generated by quantum non-Markovianity, which means that the system recovers a part of
the information that it previously lost during interaction with the environment.

In [17], the authors carried out a study of the irreversibility generated in the stationary
state of a quantum system composed of two coupled quantum oscillators, with each inter-
acting with its local reservoir. The authors derived the expression of the rate of irreversible
EP in the stationary state, and their analysis showed that the generation of correlations and
EP are complementary aspects during interaction with the environment. In [18], the au-
thors investigated the behaviour of EP rate by studying non-Markovian Brownian motion
in an uncoupled bipartite quantum system interacting with two independent reservoirs.
In addition, the authors in [17,18] established a connection between EP rate and quantum
correlations in the bipartite system.

Here, we employ the formalism of the theory of open systems based on completely
positive quantum dynamical semigroups [20] to describe the dynamics of the rate of irre-
versible EP in a system composed of two coupled nonresonant bosonic modes embedded in
a common thermal environment by extending the study in [17,18] to some degree to analyse
the time evolution of EP in this system. The influence of the environment is discussed in
terms of covariance matrix by taking squeezed thermal states as initial states. We show
that the evolution of EP rate strongly depends on the parameters of the initial state of the
system (squeezing parameter and average thermal photon numbers of the bosonic modes),
frequencies of modes, parameters characterising the thermal reservoir (temperature and
dissipation coefficients), and the strength of the coupling between the two modes. Using
the general expression for the rate of EP, we describe its behaviour for the initial state of the
system, its time evolution, and for the non-equilibrium stationary state of the considered
system. Moreover, since the correlations existing in a bipartite system are determined by
its entropy, and the dynamics of correlations is thus related to EP [21–26], we provide a
description of these two fundamental quantum characteristics by comparing the behaviour
of EP rate and of a well-known correlation measure, namely, Rényi-2 mutual information,
relative to their evolution with time and in stationary state.

The paper is organised as follows. In Section 2 we present the master Markovian equa-
tion for the density operator of an open system in interaction with a general environment,
and solve the Lyapunov evolution equation for the covariance matrix of the state of the
bimodal bosonic system. In Section 3 we write the expression of EP rate for Gaussian states.
In Section 4 we describe the dynamics of EP rate for the considered system; in Section 5,
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we compare the behaviour of EP rate and Rényi-2 mutual information in the considered
system. Lastly, we summarise the obtained results and present the conclusions in Section 6.

2. Master Equation for Two Bosonic Modes Interacting with the Environment

We study the dynamics of a system composed of two coupled bosonic modes (har-
monic oscillators) in weak interaction with a thermal environment, by using the formal-
ism based on completely positive quantum dynamical semigroups. In this framework,
the Markovian irreversible time evolution of an open system is described by the Gorini–
Kossakowski–Sudarshan–Lindblad master equation for density operator ρ(t) [20,27–29]:

dρ(t)
dt

= − i
h̄
[H, ρ(t)] +

1
2h̄ ∑

j
(2Bjρ(t)B†

j − {ρ(t), B†
j Bj}+). (4)

Here H is the Hamiltonian of the open system, and operators Bj, B†
j , defined on the

Hilbert space of H, describe the interaction of the system with a general environment.
The Hamiltonian of two nonresonant linearly coupled in coordinates bosonic modes

of frequencies ω1 and ω2 is given by

H =
h̄ω1

2
(x2 + p2

x) +
h̄ω2

2
(y2 + P2

y ) + qxy, (5)

where x, y,px, py are the dimensionless position and momentum operators of the two
modes, respectively, and q is the coupling parameter. Operators Bj are taken to be polyno-
mials of the first degree in these canonical operators; if we choose initial Gaussian states,
Gaussianity is preserved with time due to the linear character of the dynamics [30,31].
R = {x, px, y, py}T, vector of canonically conjugated quadrature operators for the two
bosonic modes; σ, 4× 4 bimodal covariance matrix with elements given by the second
statistical moments of the quadrature operators:

σij = Tr[(RiRj + RjRi)ρ], i, j = 1, . . . , 4, (6)

which fully characterise the Gaussian state of a two-mode system. We neglected the first
moments, since they could be transformed into zero by suitable local displacements in
phase space.

The time evolution of covariance matrix σ(t) is determined by the following Lyapunov
equation [29]:

dσ(t)
dt

= Aσ(t) + σ(t)AT + D, (7)

A =




−λ ω1 0 0
−ω1 −λ −q 0

0 0 −λ ω2
−q 0 −ω2 −λ


, (8)

where A denotes the drift matrix, D is the diffusion matrix, and λ is the dissipation rate.
We assume that the diffusion matrix has the following form [20,29] (we set h̄ = 1):

D = 2 diag{λ coth
ω1

2kBT
, λ coth

ω1

2kBT
, λ coth

ω2

2kBT
, λ coth

ω2

2kBT
}, (9)

where kB is the Boltzmann constant, and T is the temperature of the thermal environment.
The time-dependent solution of Equation (7) is [29]

σ(t) = M(t)[σ(0)− σs]MT(t) + σs, (10)

where M(t) ≡ exp(At).
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This evolution, generated by a Gaussian completely positive map, is determined by
the 4 × 4 real matrices M and Y = σs −MσsMT, which satisfy Y + iΩ ≥ iMΩMT, where
Ω is the symplectic matrix

Ω =
2⊕

1

(
0 1
−1 0

)
. (11)

Since unitary evolution generated by Hamiltonian (5) does not commute with dynam-
ics generated by the interaction of the system with the thermal bath, the coupling between
the two bosonic modes affects irreversibility, while the open system evolves (in our case,
in the limit of large times) into a nonequilibrium steady state, described by stationary
covariance matrix σs, which can be obtained by setting dσ(t)

dt = 0 in Equation (7):

Aσs + σs AT = −D. (12)

Pair of matrices A and D represent the drift matrix and diffusion matrix of a quantum
system if and only if D + iAΩT− iΩAT ≥ 0, derived from the uncertainty principle [32]. In
order for the system to be stable, i.e., to admit a steady state, condition A + AT < 0 needs
to be satisfied.

The model is thus analytically solvable, and covariance matrix σ(t) depends on the
initial state, on parameters of the system and thermal bath, and on coupling between
modes. The chosen form for the diffusion matrix leads, in the case of noncoupled bosonic
modes q = 0, to an asymptotic Gibbs state that describes a thermal equilibrium with the
environment [20,25]. If the modes are coupled, the stationary state is not a product state
anymore. We provide here its form in the simple resonant modes case (ω1 = ω2 = ω) (we
set kB = 1):

σs(∞) =
coth

(
ω
2T
)

2(L2 − q2ω2)

×




2L2 − q2ω2 λq2ω −qωL −λqL
λq2ω 2L2 + q2(λ2 − 2ω2) −λqL qω(L− q2)
−qωL −λqL 2L2 − q2ω2 λq2ω
−λqL qω(L− q2) λq2ω 2L2 + q2(λ2 − 2ω2)


, (13)

where L ≡ ω2 + λ2. When q = 0, then Equation (13) becomes σG(∞) = coth
(

ω
2T
)

I.

3. Entropy Production Rate for Gaussian States

The usual approach for studying the EP is based on von Neumann entropy. The dy-
namics of the open quantum systems given by the master equation (4) can be reformulated
in terms of the Fokker-Plank equation for Wigner distribution function, therefore it is
appropriate to describe the evolution of EP by using a corresponding approach based on
the phase space formalism [6,33,34]. Consequently, we introduce the Wigner EP rate [12],
given by

Π(t) ≡ −∂tK(W(t)||Ws), (14)

where K(W(t)||Ws) is Wigner relative entropy, W(t) is the time-dependent Wigner function
and Ws is Wigner function for the stationary state.

We introduce the symplectic matrix representing time reversal operator
E = diag(1,−1, 1,−1). Then, dynamic variables can be divided according to their time
symmetry. Drift matrix A (8) is split into an irreversible component Airr, given by Airr =
1
2
(

A + EAET), and a reversible one Arev = 1
2
(

A− EAET):

Airr = diag(−λ,−λ,−λ,−λ), (15)
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Arev =




0 ω1 0 0
−ω1 0 −q 0

0 0 0 ω2
−q 0 −ω2 0


. (16)

The analytical expression of EP rate Π(t) as a function of drift matrix A, diffusion
matrix D, and covariance matrix σ is the following [6,17,18]:

Π(t) =
1
2

Tr[σ−1(t)D] + 2Tr[Airr] + 2Tr[(Airr)TD−1 Airrσ(t)]. (17)

In particular, when the system reaches nonequilibrium stationary state σs, expres-
sion (17) becomes [17]

Πs = Tr[Airr] + 2Tr[(Airr)TD−1 Airrσs]. (18)

4. Dynamics of Entropy Production Rate

The degree of irreversibility of the dynamics of an open system is associated with the
EP rate of its state. We now describe the dynamics of the EP rate in terms of the coupling
between two bosonic modes and parameters characterising the initial Gaussian state of the
considered system and thermal reservoir.

4.1. Initial Entropy Production Rate

We consider an initial squeezed thermal state with covariance matrix

σ0 =




a 0 c 0
0 a 0 −c
c 0 b 0
0 −c 0 b


, (19)

where
a = 2n1 cosh2 r + 2n2 sinh2 r + cosh 2r,
b = 2n1 sinh2 r + 2n2 cosh2 r + cosh 2r,
c = (n1 + n2 + 1) sinh 2r.

(20)

n1 and n2 are the average thermal photon numbers of the modes, and r is the squeezing of
the initial state.

Explicit calculations performed in Equation (17) lead to the following expression of EP
rate at the initial moment of time:

Π(0) = 2λ[−4 +
1

(1 + 2n1)(1 + 2n2)

×((−n1 + n2 + (1 + n1 + n2) cosh 2r) coth
ω1

2T
+(n1 − n2 + (1 + n1 + n2) cosh 2r) coth

ω2

2T
)

×
(
(1 + 2n1)(1 + 2n2) + coth

ω1

2T
coth

ω2

2T

)
tanh

ω1

2T
tanh

ω2

2T
]. (21)

For an initial squeezed vacuum state (n1 = n2 = 0), expression (21) becomes

Πv(0) = 2λ[−4 + cosh 2r
(

coth
ω1

2T
+ coth

ω2

2T
+ tanh

ω1

2T
+ tanh

ω2

2T

)
], (22)

which simplifies in the resonant case (ω1 = ω2 ≡ ω):

Πvr(0) = 8λ[cosh 2r coth
ω

T
− 1]. (23)
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For resonant modes and an initial symmetric thermal state (r = 0), EP rate has the form

ΠT(0) =
8λ(1 + n− ne

ω
T )2[coth ω

T − 1]
1 + 2n

. (24)

The simplest expression is obtained for an initial coherent state:

Πc(0) = 8λ[coth
ω

T
− 1]. (25)

EP rate at the initial moment of time does not depend on coupling q between modes.
The initial EP rate increases with squeezing r and dissipation rate λ. In addition, for an
initial symmetric squeezed vacuum state and coherent state, the rate of EP also increases
with the temperature of the reservoir. Equation (25) shows that the minimal zero value is
reached in the case of a coherent state for zero reservoir temperature.

Figures 1 and 2 illustrate the dependence of EP rate at the initial moment of time
on parameters characterising the initial Gaussian state and the thermal reservoir. Figure 1a
shows that, for an initial squeezed vacuum state, EP rate Πv(0) decreases by increasing
both frequencies of the two bosonic modes. In addition, the state of nonresonant modes
generally manifests a larger rate of EP, compared to the resonant case. This behaviour could
be interpreted as a result of the breaking of the symmetry between the two subsystems,
which is a factor leading to the increase in EP rate. Figure 1b illustrates for the particular
case of an initial symmetric squeezed thermal state that the initial EP rate increases with
both squeezing of modes and dissipation. Squeezing, which is a useful resource in both
quantum information and quantum thermodynamics, is intimately related to the Heisen-
berg uncertainty principle; by introducing an asymmetry between position and momentum
uncertainties, it modifies energy fluctuations, introduces extra increase in entropy, so EP
is also modified [35–39]. Figure 2a,b show that, for an initial symmetric squeezed thermal
state in resonant case, Π(0) slightly increases with both the average thermal photon number
and the frequency of modes for relatively small temperatures of the thermal bath, while it
decreases by increasing the photon number and frequency of modes for larger temperatures.
Π(0) decreases by increasing the temperature of reservoir for relatively small values of the
temperature; for larger values, it increases with temperature. This behaviour is the result of
the competition between influences exerted by parameters characterising the initial state
(thermal photon number and frequency of modes) and the environment (temperature and
dissipation) on EP rate.

Version April 30, 2022 submitted to Entropy 7 of 20

(a) (b)

Figure 1. Entropy production rate versus: frequencies ω1, ω2 of the bosonic modes for an initial
squeezed vacuum state with squeezing r = 1 and for dissipation λ = 0.1 (a); squeezing r and
dissipation λ, for an initial symmetric squeezed thermal state with thermal photon number n = 1
and for frequency ω = 1 of the resonant modes (b). In both graphs one sets temperature T = 1.

Π(t) = 4λ[−1 + e−2tλ
(
−1 + cosh 2r tanh

ω

2T

)

+
(

e2tλ((−1 + e2tλ)(1 + cosh
ω

T
) + cosh 2r sinh

ω

T
)
)

/
(

e2tλ(−2 + e2tλ) + (2− 2e2tλ + e4tλ) cosh
ω

T
+ 2(−1 + e2tλ) cosh 2r sinh

ω

T

)
]. (26)

The evolution in time of the EP rate Π(t) is illustrated in Fig. 3 for an initial162

symmetric squeezed thermal state (19), (20) as a function of the squeezing of initial163

state, in both cases of (a) uncoupled and (b) coupled non-resonant bosonic modes. We164

can see that Π(t) is always positive in the considered Markovian approximation and165

it decreases in time. At a given moment of time, Π(t) increases with the squeezing166

of initial state. As previously said, squeezing introduces an asymmetry between the167

position and momentum uncertainties of the modes, which modifies energy fluctuations168

and introduces extra increase in entropy, and this leads, consequently, to the change of169

the EP [35–39].170

The evolution in time of the EP rate Π(t) is illustrated in Fig. 4 for an initial171

symmetric thermal state as a function of the temperature of reservoir, in both cases172

of (a) uncoupled and (b) coupled non-resonant bosonic modes. One can see that Π(t)173

decreases by increasing the temperature of thermal reservoir for relatively small values174

of the temperature, while for larger values it is increasing with the temperature. This175

behaviour, at a given moment of time, is the result of the competition between the176

influences provided by the thermal photon number of modes and the temperature of177

thermal bath on the EP rate.178

In Fig. 5 it is illustrated the evolution in time of the EP rate Π(t) as a function of the179

dissipation parameter, for an initial coherent state, in the case of both (a) resonant and (b)180

non-resonant modes. We notice that Π(t) is increasing with the dissipation rate of the181

environment, and this behaviour of the EP rate can be interpreted as a signature of the182

increase of the degree of irreversibility with the losses generated during the interaction183

of the considered system with its reservoir.184

The evolution in time of the EP rate Π(t) as a function of the coupling between185

the two bosonic modes, in both cases of resonant and non-resonant modes, is shown in186

Fig. 6 (a), (b) for an initial symmetric squeezed thermal state and in Fig. 7 (a), (b) for an187

initial coherent state. The values of the working parameters are chosen in agreement188

Figure 1. Entropy production rate versus: (a) frequencies ω1, ω2 of the bosonic modes for an initial
squeezed vacuum state with squeezing r = 1 and for dissipation λ = 0.1; (b) squeezing r and
dissipation λ for an initial symmetric squeezed thermal state with thermal photon number n = 1 and
for frequency ω = 1 of the resonant modes. In both graphs, temperature is T = 1.
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(a) (b)

Figure 2. Entropy production rate for an initial symmetric squeezed thermal state with resonant
modes versus: average thermal photon number n and temperature T, for frequency ω = 1 (a);
frequency ω and temperature T, for the average thermal photon number n = 1 (b). In both graphs
one sets squeezing r = 1 and dissipation λ = 0.1.

with the Markovian condition of weak coupling λ of the system to the environment and189

with the already mentioned stability condition A + AT < 0. Under these assumptions190

we notice that Π(t) is increasing with the coupling q between the modes. Therefore,191

the stronger the coupling between modes, the more irreversible is the corresponding192

stationary process. The coupling between the modes is crucial relatively to the EP rate in193

the stationary state. Indeed, for zero coupling between the modes, the EP rate is zero in194

the stationary state, when the system is actually in thermal equilibrium with the reservoir.195

By contrary, for non-zero coupling between the modes, Π(t) tends asymptotically in196

time to a non-zero value in the non-equilibrium stationary state. From all the figures197

presented in this Subsection it follows that, depending on the considered parameters,198

the evolution in time of the EP is monotonous and may also present oscillations, which199

are relatively more dense and intense in the case on non-resonant modes compared to200

the resonant case.201

4.3. Entropy production rate in the stationary state202

The general expression of the EP rate in the stationary state is the following:203

Πs = [λq2(q2
(

ω4
1 + 18ω2

1ω2
2 + ω4

2 + 10λ2(ω2
1 + ω2

2)
)
− 16ω1ω2(λ

2 + ω2
1)(λ

2 + ω2
2)

+(16λ6 + 20λ4(ω2
1 + ω2

2) + ω1ω2(−3q2 + 4ω1ω2)(ω
2
1 + ω2

2)
+λ2(4ω4

1 − 6q2ω1ω2 + 24ω2
1ω2

2 + 4ω4
2))

×
(
(coth

ω1

2T
)2 + (coth

ω2

2T
)2
)

tanh
ω1

2T
tanh

ω1

2T
)]/

[2((4λ2 + ω2
1)

2 + 4q2ω1ω2 + 2(4λ2 −ω2
1)ω

2
2 + ω4

2)
×(λ4 + ω1ω2(ω1ω2 − q2) + λ2(ω2

1 + ω2
2))]. (27)

In the resonant case it simplifies to the following form:204

Πsr =
q2λ(λ2 + ω2)

(λ2 + ω2)2 − q2ω2 . (28)

We observe that the EP rate in the stationary state does not depend on the initial205

state, as expected. In addition, we notice that in the resonant case Πsr does not depend206

also on the temperature of the reservoir. In particular, for ω = 1 one obtains an expression207

similar to Eq. (12) in Ref. [17]. The open system composed of two resonant bosonic208

Figure 2. (a) Entropy production rate for an initial symmetric squeezed thermal state with resonant
modes versus: (a) average thermal photon number n and temperature T, for frequency ω = 1;
(b) frequency ω and temperature T, for the average thermal photon number n = 1. In both graphs
one sets squeezing r = 1 and dissipation λ = 0.1.

4.2. Time Evolution of Entropy Production Rate

We now analyse the behaviour of EP rate as a function of time, coupling between two
bosonic modes, and parameters characterising the initial state of the system and thermal
reservoir. Its general analytical expression is too intricate to be provided here; we thus only
report the expression of EP rate in the case of uncoupled bosonic modes (q = 0) for an
initial squeezed vacuum state in the resonant case (ω1 = ω2 ≡ ω):

Π(t) = 4λ[−1 + e−2tλ
(
−1 + cosh 2r tanh

ω

2T

)

+
(

e2tλ((−1 + e2tλ)(1 + cosh
ω

T
) + cosh 2r sinh

ω

T
)
)

/
(

e2tλ(−2 + e2tλ) + (2− 2e2tλ + e4tλ) cosh
ω

T
+ 2(−1 + e2tλ) cosh 2r sinh

ω

T

)
]. (26)

The time evolution of EP rate Π(t) is illustrated in Figure 3 for an initial symmetric
squeezed thermal state (19), (20) as a function of the squeezing of initial state, in cases
of (a) uncoupled and (b) coupled nonresonant bosonic modes. We can see that Π(t) is
always positive in the considered Markovian approximation and it decreases with time.
At a given moment, Π(t) increases with the squeezing of initial state. Squeezing introduces
an asymmetry between position and momentum uncertainties of modes, which modifies
energy fluctuations and introduces an extra increase in entropy, thereby leading to an EP
change [35–39].

The time evolution of the EP rate Π(t) is illustrated in Figure 4 for an initial symmetric
thermal state as a function of the temperature of reservoir, in cases of (a) uncoupled and
(b) coupled nonresonant bosonic modes. Π(t) decreases by increasing the temperature of a
thermal reservoir for relatively small values of temperature; for larger values, it increases
with temperature. This behaviour at a given moment of time is the result of the competition
between influences provided by the thermal photon number of modes and the temperature
of thermal bath on the EP rate.

Figure 5 illustrates the time evolution of EP rate Π(t) as a function of the dissipation
parameter, for an initial coherent state, in the case of (a) resonant and (b) nonresonant
modes. Π(t) increases with the dissipation rate of the environment, and this EP rate
behaviour is a signature of the increase in the degree of irreversibility with losses generated
during the interaction of the considered system with its reservoir.

The time evolution of EP rate Π(t) as a function of the coupling between the two
bosonic modes, in cases of resonant and nonresonant modes, is shown in Figure 6a,b for an
initial symmetric squeezed thermal state and in Figure 7a,b for an initial coherent state. The
values of working parameters were chosen in agreement with the Markovian condition of
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weak coupling λ of the system to the environment and with stability condition A + AT < 0.
Under these assumptions, Π(t) is increasing with coupling q between modes. Therefore,
the stronger the coupling between modes is, the more irreversible the corresponding
stationary process is. Coupling between modes is crucial relative to EP rate in the stationary
state. Indeed, for zero coupling between modes, EP rate is zero in stationary state, when
the system is actually in thermal equilibrium with the reservoir. For nonzero coupling
between modes, on the other hand, Π(t) asymptotically tends with time to a nonzero value
in the nonequilibrium stationary state. From the above, it follows that, depending on the
considered parameters, the time evolution of EP is monotonous and may also present
oscillations that are relatively denser and more intense in the case on nonresonant modes
compared to the resonant case.

4.3. Entropy Production Rate in Stationary State

The general expression of the EP rate in the stationary state is

Πs = [λq2(q2
(

ω4
1 + 18ω2

1ω2
2 + ω4

2 + 10λ2(ω2
1 + ω2

2)
)
− 16ω1ω2(λ

2 + ω2
1)(λ

2 + ω2
2)

+(16λ6 + 20λ4(ω2
1 + ω2

2) + ω1ω2(−3q2 + 4ω1ω2)(ω
2
1 + ω2

2)
+λ2(4ω4

1 − 6q2ω1ω2 + 24ω2
1ω2

2 + 4ω4
2))

×
(
(coth

ω1

2T
)2 + (coth

ω2

2T
)2
)

tanh
ω1

2T
tanh

ω1

2T
)]/

[2((4λ2 + ω2
1)

2 + 4q2ω1ω2 + 2(4λ2 −ω2
1)ω

2
2 + ω4

2)
×(λ4 + ω1ω2(ω1ω2 − q2) + λ2(ω2

1 + ω2
2))]. (27)

In the resonant case, it simplifies to the following form:

Πsr =
q2λ(λ2 + ω2)

(λ2 + ω2)2 − q2ω2 . (28)

EP rate in the stationary state does not depend on the initial state, as expected. In addi-
tion, in the resonant case, Πsr also does not depend on reservoir temperature. In particular,
for ω = 1, an expression similar to Equation (12) in [17] is obtained. The open system
composed of two resonant bosonic modes has symmetric configuration; the corresponding
nonequilibrium stationary state to which it evolves has the most minimal value of the EP
rate, and it is the closest possible to an equilibrium state [17].

Figure 8a,b and 9a,b illustrate the dependence of Πs on frequency and coupling
between bosonic modes and parameters characterising the thermal reservoir, i.e. dissipation
and temperature. EP rate in the stationary state increases with the coupling between modes
and with dissipation, while it decreases by increasing the frequency of the modes in the
resonant case. In the nonresonant case, it slightly increases with the temperature of the
thermal bath for relatively small values, and it saturates for larger values of temperature.
If the two modes are uncoupled (q = 0), from Equation (27) it follows that the EP rate in
the stationary state vanishes, and the system relaxes from the nonequilibrium stationary
state toward equilibrium Gibbs thermal state, in agreement with previously obtained
results [15,18,40,41].
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(a) (b)

(c)

Figure 3. The dependence on time t and squeezing r for non-resonant modes with frequencies
ω1 = 1, ω2 = 1.7 of: entropy production rate for dissipation λ = 0.1, uncoupled modes with q = 0
(a) and coupled modes with q = 0.2 (b); mutual information for q = 0.2 and dissipation λ = 0.1
(c). The initial state is a symmetric squeezed thermal state with average thermal photon number
n = 1 and the temperature of thermal bath is T = 0.1.

Figure 3. Dependence on time t and squeezing r for nonresonant modes with frequencies ω1 = 1,
ω2 = 1.7 of entropy production rate for dissipation λ = 0.1, (a) uncoupled modes with q = 0 and
(b) coupled modes with q = 0.2; (c) mutual information for q = 0.2 and dissipation λ = 0.1. Initial
state is a symmetric squeezed thermal state with average thermal photon number n = 1 and thermal
bath temperature T = 0.1.
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(a) (b)

(c)

Figure 4. The dependence on time t and temperature T for non-resonant modes with frequencies
ω1 = 1, ω2 = 1.7 of: entropy production rate for uncoupled modes with q = 0 (a) and coupled
modes with q = 0.8 (b) for an initial symmetric thermal state (squeezing r = 0) and average
thermal photon number n = 1; mutual information for q = 0.8 (c) for an initial symmetric squeezed
thermal state with squeezing r = 1 and average thermal photon number n = 1. The dissipation
parameter is λ = 0.4.

Figure 4. Cont.
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(a) (b)

(c)

Figure 4. The dependence on time t and temperature T for non-resonant modes with frequencies
ω1 = 1, ω2 = 1.7 of: entropy production rate for uncoupled modes with q = 0 (a) and coupled
modes with q = 0.8 (b) for an initial symmetric thermal state (squeezing r = 0) and average
thermal photon number n = 1; mutual information for q = 0.8 (c) for an initial symmetric squeezed
thermal state with squeezing r = 1 and average thermal photon number n = 1. The dissipation
parameter is λ = 0.4.

Figure 4. Dependence on time t and temperature T for nonresonant modes with frequencies ω1 = 1,
ω2 = 1.7 of entropy production rate for (a) uncoupled modes with q = 0 and (b) coupled modes
with q = 0.8 for an initial symmetric thermal state (squeezing r = 0) and average thermal photon
number n = 1; (c) mutual information for q = 0.8 for an initial symmetric squeezed thermal state
with squeezing r = 1 and average thermal photon number n = 1. Dissipation parameter is λ = 0.4.

Version April 30, 2022 submitted to Entropy 11 of 20

(a) (b)

(c)

Figure 5. The dependence on time t and dissipation λ for an initial coherent state of: entropy
production rate for resonant modes with frequency ω = 1 (a) and non-resonant modes with
frequencies ω1 = 1, ω2 = 1.7 (b); mutual information (c) for non-resonant modes with frequencies
ω1 = 1, ω2 = 1.7. The coupling constant is q = 0.1 and the temperature is T = 0.1.

Figure 5. Dependence on time t and dissipation λ for an initial coherent state of entropy production
rate for (a) resonant modes with frequency ω = 1 and (b) nonresonant modes with frequencies
ω1 = 1, ω2 = 1.7; (c) mutual information for nonresonant modes with frequencies ω1 = 1, ω2 = 1.7.
Coupling constant q = 0.1, and temperature T = 0.1.
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(a) (b)

(c)

Figure 6. The dependence on time t and coupling q between the modes of: entropy production
rate for resonant modes with frequency ω = 1 (a) and non-resonant modes with frequencies
ω1 = 1, ω2 = 1.7 (b); mutual information (c) for non-resonant modes with frequencies ω1 =

1, ω2 = 1.7. The initial state is a symmetric squeezed thermal state with squeezing r = 1 and
average thermal photon number n = 1. The parameters of the thermal bath are temperature
T = 0.1 and dissipation λ = 0.1.

Figure 6. Dependence on time t and coupling q between modes of entropy production rate for (a) res-
onant modes with frequency ω = 1 and (b) nonresonant modes with frequencies ω1 = 1, ω2 = 1.7;
(c) mutual information for nonresonant modes with frequencies ω1 = 1, ω2 = 1.7. Initial state is a
symmetric squeezed thermal state with squeezing r = 1 and average thermal photon number n = 1.
Thermal bath parameters: temperature T = 0.1 and dissipation λ = 0.1.
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(a) (b)

(c)

Figure 7. The dependence on time t and coupling q between the modes for an initial coherent
state of: entropy production rate for resonant modes with frequency ω = 1 (a) and non-resonant
modes with frequencies ω1 = 1, ω2 = 1.7 (b); mutual information (c) for non-resonant modes with
frequencies ω1 = 1, ω2 = 1.7. The parameters of the thermal bath are temperature T = 0.1 and
dissipation λ = 0.1.

Figure 7. Cont.
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(a) (b)

(c)

Figure 7. The dependence on time t and coupling q between the modes for an initial coherent
state of: entropy production rate for resonant modes with frequency ω = 1 (a) and non-resonant
modes with frequencies ω1 = 1, ω2 = 1.7 (b); mutual information (c) for non-resonant modes with
frequencies ω1 = 1, ω2 = 1.7. The parameters of the thermal bath are temperature T = 0.1 and
dissipation λ = 0.1.

Figure 7. Dependence on time t and coupling q between modes for an initial coherent state of
entropy production rate for (a) resonant modes with frequency ω = 1 and (b) nonresonant modes
with frequencies ω1 = 1, ω2 = 1.7; (c) mutual information for nonresonant modes with frequencies
ω1 = 1, ω2 = 1.7. Thermal bath parameters: temperature T = 0.1 and dissipation λ = 0.1.

(a) (b)

(c) (d)

Figure 8. Dependence on reservoir temperature T and coupling q between modes (left) and (right)
dissipation λ in stationary state of entropy production rate for (a) λ = 0.1 and (b) q = 0.1; mutual
information, for (c) λ = 0.1 and (d) q = 0.1. Mode frequencies: ω1 = 1, ω2 = 1.7.
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(a) (b)

Figure 9. Entropy production rate in stationary state versus coupling q and (a) frequency of resonant
modes ω for dissipation λ = 0.1; (b) dissipation λ for frequency of resonant modes ω = 1.

5. Entropy Production and Dynamics of Gaussian Rényi-2 Mutual Information

Gaussian state ρ of a two-mode continuous variable system can be described by
positive Wigner distribution in phase space [42]

Wρ(ξ) =
1

π2
√

det σ
exp

(
−ξᵀσ−1ξ

)
, (29)

where ξ ∈ R4 and σ is the covariance matrix completely characterising the Gaussian state.
Entropy is usually quantified by using von Neumann entropy. An alternative quan-

tifier of the quantum information contained in a Gaussian state is Shannon entropy of
Wigner distribution (29):

Sσ(ρ) =
1
2

ln(det σ) + 2(1 + ln π). (30)

In addition, Rényi-α entropies were introduced in quantum information theory that form
a family of additive entropies related to derivatives of the free energy with respect to
temperature, defined by:

Sα(ρ) = (1− α)−1 ln(Tr ρα), α ≥ 0. (31)

Rényi entropies represent useful instruments for studying quantum correlations in
multipartite systems. Up to an additive constant, expression (30) coincides with the Rényi
entropy of order 2, given by Equation (31) for α = 2. For α = 1 Rényi entropy becomes
von Neumann entropy S1(ρ) = −Tr(ρ ln ρ), and for α = 2 from expression (31) we obtain
S2(ρ) = − ln(Tr ρ2), which is the opposite of the logarithm of purity of the state ρ. Using
Equation (29), we obtain the following expression of the Rényi-2 entropy for Gaussian
states [43]:

S2(ρ) =
1
2

ln(det σ). (32)

For pure states (det σ = 1) S2(ρ) = 0 and it increases with the mixedness of the state. By
comparing the expressions in Equations (30) and (32), we see that Rényi and Shannon
entropy indeed coincide, up to an additional constant. Rényi-2 entropy has all the required
properties to be a legitimate measure of entropy, including strong subadditivity [43].

For any bipartite Gaussian state ρ of a system with subsystems A and B, Gaussian
Rényi-2 mutual information is defined by

I(ρA:B) = S2(ρA) + S2(ρB)− S2(ρ), (33)
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where ρA and ρB are the two marginals of ρ. Two-mode covariance matrix σ is written in
block form that contains covariance matrices of the parties:

σ =

(
σA σC
σT

C σB

)
, (34)

the Gaussian Rényi-2 mutual information has expression [43]

I(ρA:B) =
1
2

ln
(

det σA det σB
det σ

)
. (35)

I(ρA:B) ≥ 0 and it represents a measure of the total quadrature correlations between
the parties A and B in the state ρ.

The analytical time-dependent expression of Rényi-2 mutual information for the
system considered in this paper is very complicated; therefore, we only report its expression
for the stationary state in the particular case of resonant modes:

Is =
1
2

ln
(λ2 + ω(ω− q))(λ2 + ω(ω + q))(q4 + 8q2(λ2 −ω2) + 16(λ2 + ω2)2)

4(q2(λ2 −ω2) + 2(λ2 + ω2)2)2 . (36)

This does not depend on temperature.
We now describe the time evolution of the Gaussian Rényi-2 mutual information and

its behaviour in the stationary state, and compare it with EP rate behaviour.
The time evolution of mutual information I(t) is illustrated in Figure 3c as a function

of the squeezing of the initial state, which decreases with time. For a given moment of time,
I(t) increases with the squeezing of initial state, such as EP rate Π(t).

The time evolution of mutual information I(t) is illustrated in Figure 4c as a function
of the reservoir temperature. It decreases by increasing the thermal bath temperature.
For relatively large temperature values, EP rate Π(t) manifested similar behaviour.

Figure 5c illustrates the time evolution of mutual information I(t) as a function of
the dissipation parameter for an initial coherent state. In comparison with EP rate Π(t), it
generally decreases by increasing the dissipation rate of the environment. In addition, I(t)
is zero at the initial moment of time; after that, it has nonzero values, and its generation is
due to the coupling between modes.

The time evolution of mutual information I(t) as a function of the coupling between
two bosonic modes is illustrated in Figures 6c and 7c. It increased with coupling q between
modes, as expected. Similar behaviour relative to Π(t) was observed. Therefore, the
stronger correlations between modes are, the more irreversible the corresponding evolution
and stationary process are. The coupling between modes is crucial to EP rate Πs in the
stationary state; for zero coupling between modes Πs = 0 in the stationary state, when the
system is actually in thermal equilibrium with the environment. The same result is valid
for mutual information, which tends asymptotically to zero for large times. In contrast,
for nonzero coupling between modes, EP rate and mutual information asymptotically tend
with time to a nonzero value in nonequilibrium stationary state.

Figure 8c,d show that, in the nonresonant case, mutual information in the stationary
state, like the EP rate, slightly increases with temperature for relatively small values, and it
saturates for larger temperature values.

Like the EP rate, mutual information in the stationary state increases with the coupling
between modes, as illustrated in Figure 8c. More correlations between the two bosonic
modes are shared, larger the irreversibility is, that is larger the entropy generated in the
stationary state is. In particular, Figure 8a,c and Figure 9 show that, in the case of two
uncoupled bosonic modes (q = 0), when they separately reach locally thermal equilibrium
states, EP rate and mutual information vanish.

Figure 8d shows that, different from the behaviour of EP rate illustrated in Figure 8b,
mutual information decreases by increasing dissipation, as expected, due to the destructive
effect of the environment.
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This section’s results confirm the conclusions presented in [17,18] concerning the
relationship between EP rate and correlations existing between two modes of the consid-
ered system.

6. Summary and Conclusions

We described the Markovian time evolution of entropy production rate as a measure of
irreversibility manifested in a bipartite quantum system composed of two coupled bosonic
modes immersed in a common thermal environment. The dynamics of the system was
studied in the framework of the formalism of theory of open systems based on completely
positive quantum dynamical semigroups for initial two-mode squeezed thermal states,
squeezed vacuum states, thermal states, and coherent states. We also described time
evolution and behaviour in the stationary state of the measure of total correlations shared
between two modes, namely, Gaussian Rényi-2 mutual information, and compared them
with the behaviour of the entropy production rate.

The behaviour and evolution of the rate of entropy production, and total correlations
strongly depend on the parameters of the initial Gaussian state (squeezing parameter and
average thermal photon numbers), frequencies of modes, parameters characterising the
thermal environment (temperature and dissipation rate), and the strength of coupling
between the two modes.

In the case of the Markovian dynamics of open quantum systems, information flows
from the system into the environment and the rate of entropy production is correspondingly
a positive quantity. The main results of our investigation are summarised as follows:

- Entropy production rate increases with the squeezing between modes and with dissi-
pation rate; its time evolution is monotonous and may also present oscillations that
are relatively more dense and intense in the case of nonresonant modes compared to
the resonant case. Squeezing introduces asymmetry between position and momentum
uncertainties of modes that modifies energy fluctuations and introduces an additional
increase in entropy; this leads to an increase in entropy production rate. The increase
in entropy production rate with dissipation can be interpreted as a signature of the
increase in degree of irreversibility with losses generated during the interaction of the
system under scrutiny with the thermal reservoir. In comparison, mutual information
increases with the squeezing of the initial state, like the entropy production rate, while
it decreases by increasing the dissipation rate of the environment, in contrast to the
entropy production rate.

- Entropy production rate decreases by increasing the reservoir temperature for rela-
tively small temperature values, while it increases with temperature for larger val-
ues; this behaviour is the result of the competition between influences produced by
parameters characterising the initial state and bath temperature on the entropy pro-
duction rate. Similarly, mutual information decreases by increasing temperature of
thermal environment.

- At the initial moment of time, entropy production rate does not depend on cou-
pling between modes. For an initial symmetric squeezed vacuum state and a coher-
ent state, the initial entropy production rate increases with reservoir temperature,
and the minimal value of zero is reached in the case of a coherent state for zero
reservoir temperature.

- Entropy production rate and mutual information increase with the coupling between
modes. Consequently, the stronger the coupling between the modes, and therefore the
stronger their correlations, the more irreversible is the corresponding evolution and
stationary process, that is the larger the entropy generated during the interaction of
the system with its environment. Coupling is crucial relatively to these quantities in
the stationary state: if coupling between the modes tends to zero, then the entropy
production rate tends to zero in the stationary state, and the system relaxes from a non-
equilibrium stationary state toward the equilibrium Gibbs thermal state. The same
result is valid for mutual information, which tends asymptotically to zero for large
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times, for uncoupled modes. By contrast, for nonzero coupling between the modes,
entropy production rate and mutual information tend asymptotically with time to a
nonzero value in the non-equilibrium stationary state.

- Entropy production rate in the stationary state increases with the coupling between
modes, with dissipation, and slightly with the temperature of the thermal bath for
relatively small values; it saturates for larger values of temperature (in the nonresonant
case), while it decreases by increasing the frequency of the modes in the resonant case.
Entropy production rate in the stationary state does not depend on the initial state;
in addition, in the resonant case, it does not also depend on reservoir temperature.
In the nonresonant case, mutual information in the stationary state, like the entropy
production rate, slightly increases with temperature for relatively small values, and it
saturates for larger temperature values. In the stationary state, mutual information
increases with the coupling between modes, like the entropy production rate. Different
from the behaviour of the entropy production rate, mutual information decreases by
increasing dissipation, as expected, due to the destructive effect of the environment.

Obtained results in this paper confirm and are complementary to those in [17,18],
emphasising the closed relation between irreversibility that quantifies the difference from
reversible quasistatic transformations generated by the dynamical and stationary process,
and correlations existing in the considered bipartite system.

In order to extend the present analysis, we plan to take into consideration the role
played by the squeezing in the thermal reservoir, representing a quantum thermodynamic
resource, and perform a similar investigation of the dynamics of entropy production rate in
a bipartite system interacting with a squeezed thermal reservoir [10,38,44], which manifests
additional thermodynamic features compared to the thermal reservoir.
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