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Abstract: The interdependence of financial institut’ nsisy  sarily responsiblc or creating a systemic

hierarchy in the industry. In this paper, an Adaptive Hierarch. " Network Model is proposed to study
the problem of hierarchical relationships 2= sing ‘rom different. ‘ividuals in the economic domain.
In the presented dynamically evolving r ctwork model, new directe edges are generated depending
on the existing nodes and the hierarch :al structures among the necwork, and these edges decay over
time. When the preference of nodes ir  he network for higher ranks exceeds a certain threshold value,
the equality state in the network bec.  es unstable and » .nk states emerge. Meanwhile, we select
four real data sets for model evaluation. " abserve the csilience in the network hierarchy evolution

and the differences forn. " hv different pat.c .uerarchy preference mechanisms, which help us

better understand data sc =ncc ' network dynamics evolution.

Keywords: complex netwou -; »_twork dy .1amics; data science; network evolution

1. Intre  cctir

The 1. ncial and economic development of various regions differs depending on
their historic. development and geographical setting. The movement of people and
he developmer of commodity trade have promoted economic finance among different
1 ‘ons [1]. In‘some cases, the economic and financial system is likely to have a certain
lag. ~conomic and financial development due to the different levels of different regions
and i1. .icient allocation of resources [2,3]. At the beginning of 2020, the outbreak of
the ncw crown epidemic had a certain devastating effect on the economic and financial
development of different countries and regions. Even in some areas, the economy and
.nance were in a “pause” phase, significantly affecting people’s lives [2]. The data from
different countries, regions, and cities reflect different degrees of impact [4—6]. The complex
network is used to depict the problems shown by the data promptly and construct different
levels of differential structures to avoid economic and financial losses to the maximum
extent possible [7]. The extreme network structure in each industry commodity is the only
supplier of goods to other industry commodities. Ozsoylev et al. [8] consider the timing of
trading in financial investments and foreign exchange markets as synchronous, describing
the importance of investors grasp of important timing.

An important question is how hierarchical structures are formed in the economic and
financial spheres and how they are stabilized through interactions between individuals [9].
Numerous studies have shown that the “winner effect” in human societies is also present
in economic networks, i.e., people’s recognition of favorable activities increases their
likelihood of winning in future activities. In human societies, winning a competition or
battle leads to more support for individuals in future activities [10]. At the same time,
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the “winner effect” has a significant effect on the interaction between different financial
institutions in economic networks.

Literature Review

In the past few years, more and more scholars have started to study economic systems
from the perspective of networks [4,8]. Describing an economic system as a n2* vk, the
economic units in the system (e.g., individuals, firms, countries) are define . as noac  nd
the interactions between different units are described as the connected e ges between tt. 1.
The trend of the network structure over time can provide informati© ~bout the way ti
economic network system evolves. Hierarchical structures were first ap, ‘=d to study tt :
social behavior of biological groups, which survive and develo: avough ite. -hierarchi’ al
relations of superiority and inferiority [4]. At the same tin>_, the economic a.  fina .cial
field demonstrates a robust hierarchical structure, where’ ‘ividuals ~om differ . levels
of institutions play different roles in the economic r=twor. 5]. 7\esearch.rs have used
different methods to comparatively analyze the pr pagation . vstematic .inancial risk
under different scenarios and found a strong hie: -chical structurc  “aras’ 11] and Huang
et al. [12-14] modeled the business cycle dv .am. for systemic r. .ness to assess the
likelihood of failure of financial institutions « * differe. “~vels and argue that the failure of
a single entity in it triggers a series of f2" .. =s in the sysi. " i.e., the failure of one or more
financial institutions leads to the pre pagation of systematic  ancial risk on a larger scale.
Battiston et al. [15,16] introduce de' ree centrality in network’ to compare different financial
institutions and propose a new ¢ 1trality measure DebtRank, which further extends the
idea of centrality in networks, the 1pact of different’ avels of nodes on the network can be
seen more clearly. Vodenska et al. 7-19] propos 1 a BankRank centrality metric based
on the DebtRank idea.and study the < =i~*= .oviding evidence of the contagion of the
2007 financial crisisin' ., =and bond markets in emerging economies around the world.

Gai et al. [20] int1hduce oncentration and complexity of interbank structures
into the hierarchical stri cturs of thc  “twork, showing that different levels of financial
structures in<rease the ri¢ < of the batiking system when the network is subject to shocks.
The char ges. ‘he structu. = of the world trade network over time are also analyzed. The
study shows tl 1t as countr »<’trade more and more closely with each other, there is an
increc. g hetr -ooeneity in ‘.ie choice of trading partners, so that it is very difficult to iden-
. varep centauve . 1y in the international trading system. Gale and Allen et al. [21]
introducea infectious disease model among viruses into the financial system network,
treating finan. ' elructures with different levels of importance as different levels, and

und that the y .opagation of financial risk depends on the inter-network different levels
0. ‘er-rank connectivity [22]. Moreover, a complete financial network structures are more
stab. har-an incomplete network. In addition, network connectivity-based metrics explain
stock 1 urket returns during financial crises: if the country in crisis is well integrated into
the trade network, the crisis is more likely to spread; however, countries affected by a crisis
~hock that are well integrated into the network are, in turn, better able to eliminate the
impact. When a financial crisis hits a specific part of the global trade network, the use of
cascading and propagation issues in the network can help explain and understand the
process of financial crisis propagation. Langfield and Fricke et al. [23] used a maximum
entropy estimation method to compare the riskiness of financial networks. Cont [24] in-
troduces a “contagion index” to measure the importance of financial institutions, i.e., the
higher the rank, the greater the “contagion index” and analyzes the risk of contagion rank
in the network and applies it to the contagion effect of the global financial crisis during
1997-2012, suggesting that financial institutions can more easily improve risk sharing by
diversifying shocks.

At the same time, the rapid growth of financial data is becoming more and more
important to reflect the connection between data through the web [25]. Different financial
institutions are becoming more and more closely connected, and the financial structure has
become dynamically diverse. Page et al. [18] propose the classical PageRank algorithm
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to measure people’s interest in different web pages, which can help us better understand
people’s attention to different financial institutions. Applying it to the financial system, the
attention of different individual units can be better identified. De et al. [26] propose the
SpringRank algorithm to infer the hierarchical structure of different nodes in the network
based on the physical model. Extending their study to economic networks so that the
variability of individual interactions of different units in economic networks c== '~ better
studied. Hickey et al. [27] study the hierarchical structure in social networks .nd inve. ate
the stability of networks as well as the phenomenon of clustering, wh’:h can be app. 1
to different hierarchical financial networks to ensure that the net" ks do not get o
of control. Sayama et al. [28] propose a two-layer temporal network . el to enable .
better understanding of the evolutionary nature of networks_u=tal. [ 1] study t
key nodes in heterogeneous networks and apply their appli_ation to differen.. ‘scip’.nes,
providing a theoretical basis for identifying key nodes in< ancial ne works [32, .

Based on the above literature, the current reseaxch ne. ‘s to'address he tollowing
questions: (1) The phenomenon of ranking in ecs.ion:ic net. ks is seer everywhere,
while there is very little research on what fact® s lead to the e, rgen<: of ranking in
networks. (2) Whether the rank differences zxh. ‘=d by the sam _conomic network
dataset are consistent across node rankings, ind alsoc “ether the niost appropriate node
scoring function exists for different ecc _.aic network ¢ 2. (3) In the economic network
node interaction, what is the hierar_nical position of the . les that really generate the
association in the network. Theref re, in order to better exslore the network structure of
economic finance and to solve the roblem of shaping and sustaining different hierarchical
relationships among networks. W have conducted t e following work:

1. In this paper, we propose a lo.  *erm effec*’ . e network hierarchy evolution model.

The model emp! -izes the impo. . information interactions among different
financial institutic 1ic.

2. This paper introdu es par: ... = te control individual behavior and determines the
hierarchy of nodes i \ th- networ « through a function matrix.

3. This >r proposes n egalitarian theory under long memory to determine the net-

work elas ity and obi in the critical threshold of the system to ensure the hierarchical
‘ructure  mong netwc .s.

The stpe, .caured as follows. The second part describes in detail the proposed
network h.  ~rchy evolution model as well as the systematic egalitarian theory; the third
part verifies 1. -orrectness of the proposed theory through the simulation of real network

'ata; the fourth art concludes the paper.

2. 1. ‘erials and Methods

Ii. conomic networks, different institutions are more inclined to establish connections
with Fighly visible or authoritative institutions. The interaction between institutions forms
the theme of the network data, and the relationship between the data keeps changing
over time. Competition and cooperation among financial institutions are key to their
visibility, and the higher the visibility, the higher their value and the higher their relative
rank in the network. Hickey et al. showed by examining hierarchical structures that
dominance and prestige are two essential ways to form social status in social networks [27].
Similarly, hierarchical structures exist among financial institutions in economic and financial
networks, which play a significant role in economic development.

2.1. Related Definitions

Definition 1. (Degree k) For any given network, the degree k of a node is defined as the number of
edges connected to it.

Definition 2. (Adjacency matrix A) With a directed network G = {V, E}, let a;; be the case of
connected edges from node i to j. If there exists i — j, a;; = 1; otherwise, a;; = 0. Call A = (a;;) as
the network adjacency matrix.
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Definition 3. (Diagonal matrix D) let D™ and D°** be diagonal matrices whose coefficients are
the weighted-in and weighted-out degrees of the network, respectively Dj = %;Aj, Do = LiAji.
Definition 4. (Support w) In an economic network, different units (e.g., individuals, firms,
countries) interact with each other, and if there exists a directed edge i — j between two different
units, we conceptualize the directed edge as support, i.e., j is supported by i.

Definition 5. (Support matrix w(t)) The interaction between nodes in the n<_work changes. r
time, and the newly generated support relationship at moment t is defined +he support w(t)
the network.

2.2. Network Dynamic Evolution Model

The nodes in the network represent the individual!® = the dat and the ¢ aected
edges illustrate the interactions between different individu. - Inur prop ysed adaptive
hierarchical network evolution model, nodes reprs en.differc  economic .nd financial
individuals, and directed edges represent inter~" ions between «. “»renf adividuals. As
time changes, new interaction information i< ge. ated between 1 .viduals, and new
directed edges are generated based on the ¢ disting 1. "»s in the netivork and the current
hierarchy, after which these edges chane ' ith time. We  ~resent the directed edges i — j
as recognized support, i.e., the rank of individual j is higi  “han that of individual i. A
directed weighted network repres’ nts the interaction infor.nation between n nodes, and
the adjacency matrix A € R™" co stitutes all the nodes in the network. a;; is the weight of
i — j in the network, representing e degree of supyp srt between two different nodes. The
adjacency matrix A keeps changin_ -ith time acco' 1ing to the expression (1), where w(t)
is the support matrix representing the - oo ated support relationship at the moment
t. The “memory factor 710, 1] reflects uie maintenance time of the support relationship,
and the smaller m mean s tha. ~vnenditure relationship is more likely to be “forgotten”,
based on which the prog »sed .ynai.. _-volution model takes the general form of:

A(t+1) = A(t) + (1 - )w(t), (1)

whs the new support rela .onship w(t) depends on the ever support experience. The
score S in '~-lated by the score calculation function F : A — s in the related
node ram: ¥ algorithm, and thus, the ranking order of each node is obtained. In the
adjacency m. ix in the directed weighted network, D and D°* be diagonal matrices
vhose coefficier  are the weighted-in and weighted-out degrees of the network. Next, we
. three score’tunctions:

. rinsRank: SpringRank is the latest research ranking algorithm by De et al. [34] The
al orithm uses win-lose to quickly find the latent ranking in large networks, which has
good adaptability to large systems, and most of the economic systems studied in this
paper are large systems based on time series. Its treatment of the connections between
network nodes as scalable physical springs is a rank recursive implication, where the
rank of the supported individual is one rank higher than the rank of the supporting
individual. Mathematically defined, SpringRank assigns a value to each node in the
network, where the score s is a unique solution to a complex linear system [26].

[D"” L DOt (A + AT) + ﬁsl] s = [D"” - D‘W] e, )

where the unit matrix I and the regularization parameter 85 > 0 is a constraint added
to the solution system to reduce the influence of noise on the system solution and to
ensure the uniqueness of the resulting fraction s, where e is the vector of ones.

* PageRank: PageRank is a classical ranking algorithm proposed by Page et al. [18],
which is widely used in website promotion. In the economic system, if there is a
connected edge between two units, that is, it is considered to produce support and
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there will be no other link interference information, which can well avoid the trouble
caused by PageRank because it does not need to identify the connection characteristics,
while at the same time, it can rank the importance of the system globally.

Define score s as the PageRank vector of AT, which is the the unique solution to the
complex system

ﬁ,!,AT(DO”t)*1 +(1—By)n tee’s=s 3)

up to scalar multiplication. Standardize the score vector such that-*s = n, whe e
is the unit vector. In the definition, the passing parameter f, € * 1] and we use t *
constant , = 0.85 in our study.

*  RootDegree: Its only considers the number of neighboring < _des sup, ‘ted and d¢ s
not have transferability. The score s is the square roo’ of the weighte ~umbs. of

supportnode i, i.e., s; = /DI

It can be seen that all three score functions can bs .iewea  +.nk rankin; or centrality
measures. However, unlike the SpringRank and " ageRank sco.  the Ro< (Degree score
is only related to neighboring nodes, and the .. -t of the score v ' r,t depend on the
current hierarchy in which the individual is” Jcatea.

After the score s is known, a new survoi®relation:  =xists in the network is obtained
using a random utility model, a stanc.rd framework of . rete choice theory, which has
recently been widely used in dynar ic hierarchical models ) ,12,19]. We consider a utility
function of the form u;j(s) = Yk pg(f)fj(s) , where each ¢! is a smooth feature map; p; is

a preference parameter indicatin; -elative importan: e of the /th feature; and (/ij (s) is the
ijth entry of ¢’ (s). We use a specia  “se with linea" .eature map ([J}j(s) = sj, and quadratic

feature map, (pizj(s) =s; —s;)%. Toth. " _ew support relationship is created
2
‘a) = P18 + P2 (Si - Sj) ’ (4)

where we generally assur. e nat p; >, p2 < 0. The parameter p; represents the “prestige
preferen< ., ‘there a pos ‘ive value of p; indicates a preference for a high scorer; p»
repres .nts the Hroximity p =ference”, where a negative value of p; indicates a preference
for. ndividy al with a sin .1ar score to oneself. In addition, the probability of the final
~appor. latill , can be expressed by the polynomial

eltij(s)
pij(s) = W )
We ainm € N supports in the updated matrix w, where w;; gives the number of times
i supp. s j within a time step. Expressions (1) and (5) represent the key features of our
model. First, the dynamics in expression (1) indicate that the past support relationships are
decaying at rate ¢. Second, expression (5) shows that the likelihood of a node receiving
.nore support in a given time step depends on the probability of the distribution of support
received earlier. For ease of understanding, the concept of inter-individual support is
translated into the concept of rank in the network, i.e., the more support an individual
receives, the higher the rank it will be in the network.

Figure 1 is a schematic diagram of the dynamics of our model, reflecting the relative
change in rank at different nodes over a time horizon. The horizontal axis t represents the
moment change, and the vertical axis s represents the rank score; the higher the score rank
will be on the vertical axis. The dashed line ¢ represents the new support relationship at
time ¢, and the solid line represents the pre-existing support relationship in the system.
The lighter the color, the less important the relationship is and the more likely it is to
be “forgotten”. At t =1, the model is initialized and the support received by different
individuals is recorded in the network adjacency matrix A. The scoring function takes the
adjacency matrix A as input and the score vector s as output. A new support relation w is
then obtained according to expression (5), and this new relationship is weighted by 1 — ¢
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and combined with the previous support relation weighted by ¢. As time changes, this
process is repeated, and the new support relations in the network gradually replace the old
support in the system and update the score vector s. It can be observed that most of the
support is a “short” leap, which is a pervasive pattern in most network data.

s S S

(=1 =2 r=3 ..
Figure 1. Schematic diagram of our/ 10del dynamics. t = 1 initializes the nodes, different colors
of pre-know suppor’ matrices are recorded in A (solid arrows)
rrtical axis). After sards, the new support relations obtained
in the network are added (dashed lines,  * the next + .e period t = 2, the old support interactions
in the system decay by “><tor of ¢ (gray «. 1he new support and the decayed old support
relationship generate ane vsc  “:nction, which is then executed in the next time period according

to this step.

represent different network nodes, a s
and the node scores s = are calculated

To fac™" *e the obser\ ition of the behavior among nodes in the network, the concept of
“rank vi.ctor”" s introduc 1, whose jth element y; = n 1Y p; j represents the possibility
of ne' - supporf co the jthno . If all the -y; in the network are equal, then the system state
d af’ ** maint. oftierwise there will be differences.

is vala.
Figi. 2 shows uw rank variation of the dynamics with different parameters when
using the Sp° 2Rank score function. The left side of the figure shows the variation of rank

vectors for dit. it p; and pp, and different colors indicate the rank of different nodes.
= right side s’1ows the adjacency matrix at f = 4000. It can be seen from subplots (c) and
(g, At the hierarchical differentiation is more obvious in subplot (g). When p; is small,
the s, »viasawholeis approximately egalitarian, and for larger p1, there is a more clear
hierarr.iical structure. However, the network system is elastic, and later we will find the
critical value of p; that brings a huge change to the network hierarchy evolution under
tifferent score functions. In addition, the impact of p; is more reflected in the stability of
node ranking, as can be seen from Figure 2e,g that smaller p, can reduce the fluctuation
brought by the rank evolution in the network, making the network state smoother.
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(a) SpringRank: py =1, p;=0 (bFinal state A4000)
0.6
=
= 0.4
% 0.2 1 o~
A
0.0
(c) p1=1, p2=-2 (d)
0.6 I
= 0.4
= |
C
S 0.2 7
e« R R S
0.0 L N |
(e) p1=3, p2=0 (£
0.6 -
=04
Y4
C
S 0.2
0.0 = k ‘
(9) p1=3, p2=-" (h)
0.6
V4
C
S 0.2 —
- ?—- —
0.0 , , '
1000 2000 220 . 4000 Weights

Tim  ste (t)
0.00 0.03 0.06

Figur 2. Repre >ntative dyn mits of our proposed model. The population of n = 8 nodes is
sirtai. 1 using rhe SpringRan'« score function changing at 4000 time steps with m = 1 updates per
_nestep, tymng u.. | .n preference parameters p; and pp. Panels (a,c,e,g) represent the rank
vector 7y sin.  ted over time, different colors tracks the ranks of different nodes. Panels (b,d,f,h)
represent the ac. iy matrix A at t = 4000. Parameters: ¢ = 0.995. s = 1078,

- Parameter Lstimated

order to be able to statistically infer the hierarchical structure in the network, for our
model, ukelihood function is proposed that can support maximum likelihood parameter es-
timation and also allow direct comparison of different score functions. {A ()} = {A(t)};_,
is used to represent the time series of the matrix at a fixed time t. With the maximum
akelihood model, the parameters p are learned from the observed series of support matri-
ces {w(t)}, w(t) depending on the state sequence matrix {A(t)} just through the nearest
state A (7). Thus, we can decompose the observed probability of a set of parameters to be
determined as

P({w(t)}; A0 HP t),p). (6)

The expression (6) is an implicit function and the right-hand side of the equation ¢ has
vanished while w(t — 1) and A(t — 1) depend on w. Let k; = W;, and K; = eTk;. We get,

P(W(t);A(T)/A) = ﬁ( ) k K H ')’1] ) )
]

1]]

Integrating the terms of ¢ or p whose values do not depend as C(t) and then taking the



Entropy 2022, 24, 702 8 of 19

logarithm of the expression, we get
n n

log P(w(t); A(t),p) = Zl gkij(t) log 7ij(t) + C(¢). (8)
i=1j=

The logarithmic probability of the entire sequence expression is

n

L(g,p:{w(t)}, A(0)) = log P{w(t)}; A(0), ¢, 0) = i i Y kij(t)loa (1) +C.0 9)

t=0i=1j=1

It can be seen that the dependence of p is expressed through 7;;.. ~th ¢ andpa :
chosen as values for the parameter estimates:.

¢,0 = argmaxL(g,0; {w(t)}, A ). (10)

The standard theory of maximum likelihood for c.noner.. ™ distributior s shows that
L is a convex function for p for any determined ¢. 7.iis suggests th. 3 can b7 solved by stan-
dard first or second-order optimization method v. n @is known. 1 77 (¢;{w(t)}, A(0))
be the optimized logarithm for a fixed ¢, nd late  otimize L* fcr ¢ to complete the
maximum likelihood scheme. The glob~" ma.<imum ic  und by running multiple times
using different initial values of ¢. CLr model uses threc  +~ineters to fit thousands of
observations, so overfitting is not a' problem when training t .e data to evaluate the model.

2.4. Linear Stability

The behavior observed in Fi, -e 1 suggests t' at there are mechanisms of different
nature in the model under the p; | -tige pre” rence”. When p; is small, the stronger
institutions in the fin. ~l network do .._. cxhibit a strong competitive advantage and
the network as a who. > 1s . ~ximately egalitarian. However, for larger p;, stronger
individual institutions sl ow a s’.01.  ipetitive advantage to limit the network to a stable
hierarchical structure. W diine a fu.iction f in the memory factor ¢ — 1 to characterize
the critics e of p; for ' 'ifferent scoring functions to bring about a large change in the
overal” networ hierarchy ¢ -olution.

(s, A) = lim Elc(pA+ (1 -p)w)] —s

11
p—1 1—¢ ’ (1)

where the exp.  on is with respect to ¢. If f(s, A) = 0 for all A, then the score vector
‘s the key peint of expectation in the model. Our choice of SpringRank, PageRank
ar. ootDegree score functions allows us to derive conditions for the stability of grade
evolt. =in the long memory limit.
W consider the eigenfunctions of the model, where p; € R denotes the relatively
important feature parameter ¢' : R" — R™*" is the total feature mapping of the network
nd <pf»j(s) is the entropy of ¢!(s). Equation (4) is a special representation of the linear
feature 4)1.1j(s) = s; and the quadratic feature ¢>}j(s) = (s; — s;)%, while defining the network
update rate matrix G = [n~! pij]- Our goal is to obtain the stability of the system by first
considering the Jacobi matrix of the rank vector 7 in the system at a fixed point sy = fe.
Based on the previously defined “rank vector” v = n~'GTe = n~!¥;; and applying
differentiation, we have:

9 ko ol
180) 3 (1 - 4] Lzlpeg’:, (12)

i

where I'; and ¢; are the ith row of the jth feature mapping obtained by the network at sy.
When s) = e and G = n'E, thereisT; — n~ I and ; = n~'e . Thus, we have
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(1>

9(s0) _ 1 (I _ n*1E> f i pzaq’f(SO)

s M(sg; p) (13)

After that, this matrix is applied to our main results. As the time step ¢ increases, we
use ds = s(t+1) —s(t) and A = A(t + 1) — A(t) to denote the increment of s and A in
the network.

e  SpringRank Scores

We develop the computation from the introduced properties ¢Z«.  score function.
SpringRank score vector s of a regularized f € R matrix A is a s<lution ¢ linear syste 1
of equations

[Di+D0— (A+AT) +ﬁ1]s:«' L (14)

where d' = eTA,d° = ATe. Equation (2) is invertible- hen . e, e is the anly solution
to the equation. Therefore, assuming B > 0, defirc Ly = D'+ 2— (A+al)+pland
A = D! — D°. In the SpringRank function man_. - the vector sy - i='a fixed point of f
and is the only mean fixed point in the dyna> .cs. Tr.  “ixed point poir « is linearly stable in
the long memory limit if and only if the matsix M(0;, - 2n~!(I—n LE) eigenvalue is
strictly less than ﬁ T
Starting from the analytic form f f, the deterministic apr .oximation f of the SpringRank

vector is

f(s,A) =s+L, (—,Bs—m(nflL( s — (nfle—'y))> (15)

where Lg = T +n'I— (G+GT). ™ need to ompute J(so), the Jacobi matrix of f at
so = 0. The fixed poi1 ‘= stable when,, .5 strictly negative eigenvalues. Calculating
the derivative of (15).

af(s) _ 1 _ s(Lgs) 97
5 —I—L/3 \'3‘+m(n s —as))

Jow (e e 2] %)

Eva, ‘ing this exp.ession Lg ats = 0 and G(0) = n~'E gives:

Lyt BT+ (1 1E)< Zi 29! so))} (17)

i=1/(=

(16)

Since L p is positive definite symmetric, ngl is also symmetric. Therefore, the stability

{ the average immobile point in the SpringRank vector is determined by the eigenvalues

of the matrix in parentheses. Multiplying by nm~!, a sufficient condition to obtain the
matrix is

(1-n7"E) <21 -y i aq;l ) = M(0;p) — 21! (1-n"'E), (18)

i=1/(=

there are characteristic values not greater than 5
In particular, we have M(0;p) = pn ! (I— n’lE) so require the matrix:

on 1 (I - nilE) —2n ! (I - n*1E> =ntp-2) (I — nilE) (19)
p

have eigenvalues smaller than .-, so that the eigenvalues of the matrix can be calculated

corresponding to the vector e.
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Then, any vector v | e is also an eigenvector with eigenvalue n ! (p — 2). We therefore
require n 1 (B —2) < %, or p <2+ % to complete the argument.
Therefore, in the SpringRank Linear model, sy = 0 is a linearly stable fixed point of f
ifand only if p <2+ %
*  PageRank Scores: The PageRank score is the solution s of the linear system.
{‘BAT(DOY1 +(1- ﬁ)nilE} s=s, 20)

where D? = diag(Ae). We directly use the PageRank model with i - features, scalit
the parameter p, assuming that s is normalized so that s”e = r and . - not affect tt :
analysis. Uniqueness is a direct consequence of normalizatic.. 1.s = fe, e = n, th'.n
0 =1

Similarly, we next obtain a necessary condition dese” ngtherc *sof f. At .y fixed
point of f, we have D° = mI. Therefore it can be assurned tt. <is uefined b v s.

{,Bm’lnAT +(1-p ’1E} s=s (21)

As the number of time steps t increaset
[~ (AT +5AT+ (1= B)n"E] (s = s+ (22)
[m AT + (1 - B) E|ds + pm'n(5AT )s +0(1 - g) = ds, (23)

where the term o(1 — ¢) includes - term involvin , the product (JAT)(ds) and relies on
6s being a smoothing function of A ‘he case »” .ong time ¢.

[1 R ﬁ)n*lﬁ] bs = ﬁm’ln(éAT)s (24)

This expression gives i “.nplicit 1v presentation of f via the relation f(s, A) = lim,, llz[f‘sj.

Wecanth = -=enforce f( . A) = 0 by setting E[ds] = 0, obtaining the necessary condition
E[0ATs = 0 fc roots of f.

= JE[(SAT} s=(1-¢) (GT - AT)s (25)
Combu ~ (21) and rearranging yields the nonlinear system.
[GT +8711 - ﬁ)n_zE} s=p1n"ls (26)

Ther,, e riaximum eigenvalue of the matrix is 8~1n~!. Solving (26) by numerical iteration,
follow: d4 by applying the standard eigenvalue solution s and updating G using the new
value s. To derive the linear stability criterion, we derive the derivative of s in (24) to obtain

C— (1 B E]I(s) = pm ' [GTs - ATS)

Jds

= ﬁm_lnaa—s

= ,Bm’lnaa—s [GTS — ﬁflmnfls}.

|:GTS — B tmn s+ g1 — ﬁ)mn_zES] (27)

Then we evaluate at the linearly stable solution sy = e, this becomes

[I — B 1nAT — (1 ﬁ)n—lE}J(so) = Bm ' TE + BM(sg; p) — L. (28)
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When B < 1, [I — Bm~n"1E] oy B(m — B)~'n~LE this matrix has a unique eigenvec-
tor e and eigenvalues 1 + B(m — B)~!, while there are M(sg; p) = pn ! (I— n"'E) in the
PageRank model, then we get:

J(s0) = pm~! (1 + B(m — 5)*1)15 + Bp [I + Bm — ,B)’ln’lE} (1 - n’lE) 1 (29)

The eigenvalues of J(sg) can now be obtained with the eigenvector « cigenvai.  -1.
The eigenvalue of any vector orthogonal to e is Bp — 1 when and onlyvhen p < % Ti 5,
we obtain that in the PageRank-Linear model, the average root is lin_.. - stable when ar
only when p < %
*  RootDegree Scores

We first derive the functional form of f:

E[s(t+1)| A(t)] = E[A(t+ 1) A(t)]Te
= gA(t)e't —g)Elw(t)]e (30)
=gA{ e+ (1 mn'G(tH)Te.

We then bring the expression into Eqriaon (11), and n™ “)e = 7(f) to obtain:
f(s) =n 17 1E[G]e — A(t)e = m7 —s. (31)

We can determine that s is indee  *he unique avera e root of f. Assume that s = se, and
then that

f(s) =m, \mn_l — s) e. (32)
When s = m/n, the equ atio1. ~ual to zero. We calculate the derivative
Bf(‘;
= — mM(s;p) — 1.
S = mM(s;p) (33)

" ais matr < has strictly ~cgative eigenvalues, as long as the eigenvalue M(sg; p) is
stitcty, ssth’ =1 /m. Nex:, the operation of the square root is considered as part of the
.uontity ¢ ‘acilitate oo understanding of the computation. Assuming that s; is the entry
degree of nc ~jand ¢;(s) = /5, we get

-1
M(sg;p) = ;i/ap(ln_lE). (34)

It an be seen that the eigenvalues of this matrix are still zero and related to the
direction e. For any direction v L e, there exists an eigenvalue %% p. We have:

n-1

b (35)

N~

>

SRS

and get
n

n
p<2Vd =2/ . (36)

Thus, when and only when p < 2\/%, sp = “'eis a linearly stable immobile point of

the function f, we obtain the critical value of the giant change brought by the evolution of
the rank when using the RootDegree scoring function.

Thus, we obtain the system critical value p. by using the algebraic structure of the
score function and the stability conditions for SpringRank, PageRank and RootDegree
in the long-remembered time limit of averaging. An interesting phenomenon is that the
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“proximity preference” p, does not determine the initial state of the network hierarchy, only
p1 plays a role in the stability of the network hierarchy.

Theorem 1. For the three scoring functions SpringRank, PageRank and Rootdegree, f has a unique
linear stable root if and only if py < p§ ,where

2+ Bs% SpringRank

m

c=¢ Uy PageRank
2\/% RootDegree

Figure 3 illustrates the network rank stability prediction i che case of /8 nodes. 10
better explore the effect of p; on network stability, the avera< e value aver the la. 007 dme
steps is simulated by making p, = 0. The curves show.". rariatior »f the moc . under
long memory. We divided the stability points into 2 ¢/oups,  ~hvith the sc me rank. For
p1 < pi, the ranks in the network are stable; conver cly, at p; > the netw: .k changes to
unequal stable fixed points. Interestingly, in the © =~Rank and Roo. <re models, there is
a stable inequality state where a node receive’ supp  *from almost a. .1odes (Figure 3a,b).
It can also be seen that a network is in two star’e (equal.  »nd inequality) equilibrium states,
where nodes in both equality and inec a1 7 states are g. ing support from other nodes,
and which state the network event.ally converges to dep  ds on the initial conditions
of the system. The SpringRank 1 .0del shows different bhavioral characteristics from
the other two functions. At pf, tt node ranks in the network are staggered, after which
multiple high-ranking nodes bec: e unstable as p+' ncreases, until finally only very few
high-ranking nodes remain. Althou_ ‘he system ¢ .bility depends on the initial conditions
of the network, it is lik-lv that the systc .e selectable stable states under this model.
From this, it can be in ... " *hat the SpringRank model is suitable for network systems
with multiple different ihitial c. “ons and different rank states, which can be verified in
the subsequent data.

(. DotDegree (b) PageRank
1.0 /aeeeeeeee% o 1.0 _—000p000000000000
s 0.8 1
> ]
o, 0.6 Z 0.6
c i c
&g 04 £ 0.4
0.2 ! 0.2
0 O T T T : T T 0‘0 1 T T T T T
0.0 2.5 5.0 7.5 10.0 0.0 0.5 1.0 1.5 2.0
Rank-sensitivity p; Rank-sensitivity p;

(c) SpringRank (d) SpringRank (Detail)
1.0 |

0.8

/

g
0.4+ —§—<o
: O
0.2 ; C)%
O
0.0 -

00 25 50 75 100
Rank-sensitivity p;

Rank y

Figure 3. The bifurcation of the SpringRank, PageRank, and Rootdegree score functions model with
p2 = 0 and m = 1 update per time step. Points give the values of the rank vector y averaged over
the last 1000 time steps of the 5 x 10°-steps simulation with # = 8 nodes. The solid line indicates the
separation of the nodes into two groups by numerically solving the equation f(s, A) = 0, the red
curve indicates linear stability and the gray curve indicates linear instability. According to Theorem 1,
the vertical line gives the critical value p{. The parameters po = 0, m = 1, ¢ = 0.995, B, = 0.85,
Bs=1078.
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3. Experiment Result

We compare models using four datasets to explore the network structure of financial
institutions and address the issue of different hierarchical relationships between financial
and economic networks. One is an airline network between different economic cities, one
is an international trade network, one is an international investment network, and one
is a network of economic capabilities among friends of universities. The d~" irline
networks between different economic cities are obtained from the 2017 "Open A ne
Airport Database” provided by the openflights.org website (http://or_nflights.org/a. .
html (accessed on 10 March 2022)). The airline network consisting of ¢ ~mic cities and ¢
routes reflects the intensity of urban connectivity, and the influenc~ of a 1. an be reflecte 1
by its position in the airline network of major countries. Th_ av.ation nc  ork refle _ts
the strength of connectivity between different economic cit s and is. an impor tp<ch to
study the structure of urban networks. In the study, we'c <t the & .:tion data etween
the top 300 economic cities. The number of flights be’ veen ¢ “~r at cities ¢ ‘nstitutes the
adjacency matrix of the network, when city i has a flight to ¢ j withir'ame ¢, i — j
produces interaction.

International trade data are derived fr .n th. Yirection of Tra ¢ Statistics (DOTS)
published by the International Monetary Fund, whic  -ontains trade volumes between
individual countries and major tradi='g portners from . 1 to 2016 [34]. International
trade in this context refers to the <.oss-border exchange . economic organizations or
governments with capital, goods, & «d services, etc. To avoid'singularities in the data results,
the 206 countries that conduct th most trade exports are selected for the study, and the
network adjacency matrix is const. -ted with trade d .ta. The i — j interaction is generated
if country i and country j trade in t.  t. The inter ational investment data are taken from
the Coordinated Portf 'io Investment _ " _15) database provided by the International
Monetary Fund. The . ~e is a voluntary collection sponsored by the International
Monetary Fund that co. ects aa nortfolio investments, including equity transactions
and debt securities, for it livi‘.ual cou .ries and economies, and this paper uses data from
2001 to 20*“ Again, to av .d singularities in the data results, the 206 countries or regions
that corauct . > most trar sactions are selected for the study, and the i — j interaction
is ge’ crated if ountry i rec “ves investments from country j within time t. The college
studer tiend’ ““~=dabhilitv. Gata was accessed through the KONECT Network database [35].
one wee  fter the s of a new semester, 17 fraternity members rank other brothers
according t. “eir financial ability and friendship level, where 1 denotes those who have
similar financic  “ulity to themselves and interact better with them; 16 denotes those who

ve a greater c.iference in financial ability to themselves and interact less well with them.
W. > brother i ranks friend j in his top five at time ¢, it is considered that brother i regards
mem. s his good friend, i.e., i — j interaction occurs between brother members.

N xt, the four network datasets are investigated using three score functions, SpringRank,
PageRank, and RootDegree, respectively. Several key characteristics of the networks

re reflected by parameter estimation, optimization to obtain log-likelihood values, and
standard errors (Table 1). Similar behaviors were found for the different score functions
in the four network datasets: p; > 0 and py < 0. It can be shown that there is a general
pattern in the time-dependent network hierarchy: the interaction between nodes does
move toward higher levels, but will be more likely to support nodes that are not very
different from their own levels rather than directly interacting with higher-level nodes
directly, while the interaction between nodes will differ depending on the data set. In
the economic airline network, because different cities have different economic levels,
geographic locations, and airline transit capabilities, we find that the network exhibits
distinct hierarchical characteristics, and cities with relatively low economies can improve
their hierarchical position in the network by establishing links with high-ranking economic
cities. In international trade networks and international investment networks, because
the influence of economically strong countries is very important and trade services and
investment are limited, it is relatively difficult for economically weaker countries to trade
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and invest, but the situation will improve with gradual economic development. Good
friendships will be found in the network of economic capabilities in higher education where
people with similar economic capabilities will build good friendships.

Table 1. Parameter estimates and likelihood scores for the four datasets described in the main text

using SpringRank, PageRank, and RootDegree score functions. The values in parenth= = are the
standard errors of the parameter estimates (obtained by inverting the Fisher in/_rmatior.  ‘rix
calculated from the values), the highest log-likelihood £ is indicated in bol<, and N is the v 1
number of interactions in the network. The trajectory of the inferred paramet’ s shown in Figure
SpringRank PageRan’ otDegree i
P 0.91 (0.01) 0.965.02) 0. 20D
avf;‘i’on 61 2.99 (0.03) 0L 0.01) 1.28 ( Jl)
(N =1879) 02 —1.12 (0.00) -0.07 « — 18(0.04)
c —14,906 ~ —15106 —14,308
¢ 0.67 (0.12) 0.59 (0.09) 0.97 (0.11)
T:;:[Ie 01 3.03 (0.13) 82 (0.06) 0.84 (0.05)
(N =5524) 02 —174(0.11) - 9.07) —0.12 (0.02)
L —965 —1,78 —1153
1) 0.40 (0.05) 0.13 (0.03) 0.42 (0.06)
Invelsrtlrtnent 01 2.86 (0.12) 0.82 (0.05) 0.62 (0.03)
(N =4958) ) - °(0.11) —0.12 (0.01) —0.06 (0.02)
—Yo, —1036 —958
5 271 (0.14) 0.81 (0.18) 0.56 (0.15)
F r;i‘d 6 2,019 1.21 (0.07) 0.95 (0.05)
(N = 02 —0.86 (0.17) —0.25 (0.05) —0.08 (0.02)
L —1829 —1876 —1852

Dific 2t data wuu nave different dependencies on different score functions, while
the score fu. ‘ons will produce different features for different data, and each dataset is
studied compa.  “ely according to the differences of the models. The RootDegree model

oreferred ove. SpringRank and PageRank in the economic urban airline network. Under
the  -onomic airline network dataset, the RootDegree score is a measure of the local city’s
airlinn. =snomy; the more airline routes a city has, the higher its score, independent of the
prestig - of the city where the local airline is located. The RootDegree score is consistent
with previous research findings that the airline economy plays an important role in local
roduction life, transportation, and air transport in the logistics sector [27]. In contrast, there
is a strong dependence on SpringRank scores for international trade networks, international
investment networks, and university economic capability networks, which suggests that
transmissive prestige plays an important role in the structure of economic networks. In
international trade networks and international investment networks, it is important not
only to trade with other countries and make business investments, but also which countries
to trade and make business investments with. This finding is consistent with the Hicket
study [27,28], which suggests that the behavior of different regional interactions indicates
their ability to make reasonable inferences about the location of hierarchical structures in
the network. Similarly, building relationships with higher ranked classmates in a college
friend’s affordability network may result in greater prestige than lower ranked classmates.
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(a) Eco aviation: SpringRank
$=0.91, p1=2.99, p,=-1.12

(b) Eco aviation: PageRank
$=0.96, p,=0.74, p,=-0.07

(c) Eco aviation: RootDegree
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Figure 4. Simulation of network model dynamics using the parameters ¢, p1, p2 in Table 1. Each
row represents one network data, the color traces in the figure represent the top 8 nodes in the

network, and the light gray ones represent the other remaining low rank nodes in the network. Other
parameters B, = 0.85, B =105

In addition to comparing different score functions, we also compare different models
corresponding to the memory factor ¢ under the data set. As introduced earlier our model
assumes that the effects of past support are decaying at a rate of ¢. t;,, = —log(2)/log(¢)
represents the half-life of the inferred dynamical system in terms of observation peri-
ods. When interpreting these estimated half-lives, the indirect effects of different indi-
vidual interactions can far outweigh their direct effects. In the Eco avaiation data, the
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preferred RootDegree score half-life is t1 ;, ~ 4 weeks. In both the international trade net-
work and the international investment network, SpringRank scores have a lower half-life of
t1 /2 ~ 2 years, indicating that although only one-third of trade and investment transactions
are directly “remembered” by the system after 4 years, these events affect 2 cycles of trade
and investment events. The half-life of SpringRank scores in the College Friends econmic
Capability Network is t1 /; ~ 1.5 weeks, indicating that the time to establish re'-**~nships
between classmates is much shorter than the entire semester.

As described in Theorem 1, the network is resilient in the long mer ory limit, and r
model will be separated by the critical value pj that separates the e/ 1 and hierarchic
states in the network. There are two aspects to note; first, when the « ‘mate ¢ is ver -
different from the long memory limit, there is no significant k'crerchical . cturein t e
network. Second, in each data set, the number of updates m ¢ the network use. = av-.age
number of updates per step. Using this value and Theorer'  an appr vimate criv .1 value
p§ can be calculated for the network system in the longememc  lin>".. The ne t comparison
between the data-derived preference estimates of p1<.nd the calc  >ted appro’ .mate critical
value of pf reveals the existence of network hier~ “hy states for a.. ur ecnomic systems
(Table 2), with little difference between the est’.nat. 21 and the appr  .mate critical value
of p{ using RootDegree as the score functic. . In the . nomic airlis.e network data with
RootDegree as the main model, the es .. ated value ¢ - is slightly below the critical
value, and conversely, in all three of .ts datasets, the estim. " value is slightly above the
critical value, which is more pror yunced in the national t.ade and national investment
networks. the RootDegree model | 1s a double steady state (Figure 2a), and in the economic
urban airline network, p; estime s are below the / ritical threshold, but are consistent
with the long-term hierarchical st.  ture of the ne’ work. Simulations using the inferred
parameters as showr in Figure 4 p. >~ _ualar long-term hierarchical structure to
that observed in the 1 ~k data. The rageRank model has a similar behavior to the
RootDegree model, witi a dou.  “=ble state in the network (Figure 2b). In the SpringRank
model, which obtained  naxiz:tum ... .thood values in both the country trade network,
country investment netw .\ and university economic capacity network, the estimates of
p1 clear!, exc  d the syste n critical threshold and tend to [2, 3]. In conclusion, all three
modr’s, Spring Rank, Pagei ~rx, and RootDegree, show that the system corresponding
toccac  ~conc nic network data is in a state of hierarchical structure with continuous

~dividu rermuoiec.

Table 2. Com; ‘sor-of the mean critical values p{ and p; estimates of the system calculated by

“heorem 1, with = peing the average number of interactions at each time step. As in Table 1, the
P meters corresponding to the highest log-likelihood are shown in bold, and the upper right *
indic s thet the estimate is two standard errors more than the critical value, while the lower right v
indicat. chat the estimate is two standard errors less than the critical value. The trajectories of the
inferred parameters are shown in Figure 4.

SpringRank PageRank RootDegree
05 2.01 1.15 1.35
Eco aviation
01 2.99 *(0.03) 0.74 (0.01) 1.28 (0.01)
05 2.05 1.17 0.56
Int Trade
01 3.03 *(0.13) 1.82 *(0.06) 0.84 *(0.05)
05 2.01 1.19 0.50
Int Investment
01 2.86 *(0.12) 0.82 ¢ (0.05) 0.62 *(0.03)
05 2.05 1.18 0.91

Friend eco
01 2.33 *(0.14) 1.21 *(0.07) 0.95 *(0.05)
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Different data have different best-fit scoring functions, while different scoring func-
tions lead to different network rank evolution states. As shown in Figure 4, the original
data assignment (Figure 4a) and the RootDegree model (Figure 4d) show strong consis-
tency in the urban economic airline network, with most of the airline routes being in the
higher-ranked economic cities. The PageRank and RootDegree models (Figure 5¢,d) pro-
duce smoother ranking trajectories compared to networks that purely describe == =< status
because the parameter estimation “memory factor” ¢ is relatively large 7 ".d the sc  ort
relationships are maintained for a longer period of time. That is, the e onomic city v. "
more flights is in a higher position in the network, ranking London fir" 1 score most of t.
time. The SpringRank model (Figure 5b) produces a different nature of . ‘=ctory, rankir ;
New York first most of the time. This rank variability reflects tb* seasitivity  “+he differr at
models to the economic city where the flight is located, ar . in particular th.  ~nsi* vity
of the SpringRank model to the location of New York, h< -ever this ‘s not cons cred in
the other models. In addition, the SpringRank mod-~l ran. Tolk; o, Paris, and Chicago
significantly higher than Atlanta and Beijing, desr .te the fact 2t these ec .nomic cities
have about the same number of flights.

N del b, anks y (SpringRank
0.150 - (a) No mode 010, v (S¢fing )

0.06 A
0.04 -

0.024 x

0.00-

0.10 H

0.08 A

0.06 A

0.04 A

0.02{ =75

0.00- - T T T .

0 1 2 3 4

B London Tokyo New York [ Paris
I Chicago | Los Angeles [ Beijing B Atlanta

Figure 5. Visualization of the evolutionary ranking function of the economic city aviation network.
(a): The scores of each economic city, for visualization purposes, are shown as moving averages
with a width of 8 years. (b): The SpringRank score function is used to infer the rank vector y as a
function of time. (c,d): As in (b), using PageRank and Rootdegree score functions, respectively. The
parameters of panels (b—d) are shown in Table 1.

4. Conclusions

We propose a mathematically analytic and statistically inferred model of network
dynamic evolution to address the problem of shaping and sustaining hierarchical structures
among economic networks. When the support for high-ranking nodes in the network
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Ref

exceeds a certain critical value, the equality state relationship is broken and the hierarchical
structure emerges. Meanwhile, the transition between equality and hierarchical states in the
network depends on the structure of the score function and the preferences of the network
for different nodes. The findings suggest that the network evolution generated through
transmissive prestige is sufficient to lead to the emergence of hierarchical structures in
the network.

Importantly, the likelihood function is introduced in order to allow a/_ood sta.  ‘cal
inference of the node preference behavior and memory factors in the network data. n
the economic network dataset presented in Section 3, it is clear that =° rsistent pattern
network rank evolution exists (01 > 0 and p, < 0), and while inter-net. -k support re] -
tionships flow to higher ranked nodes (p; > 0), the real possible ssu ciations  *weennoc s
are those that are similar to themselves in rank (o < 0), and~uach support rela.  shir’ are
not directly associated to the highest level, but rather ove® ‘me up a »w levels.

Our model also has some limitations. For better mode. . v assume the existence
of the same preference support parameters for eact nocz in the  ~twork, w’.le requiring
each node to have knowledge of the network ¢” bal, which is . “ely .1 a real system.
According to the idea of Li [36,37]. Our model niay  licate other ave. s for further work.
The relationship between time-series netwo. ‘s and cc lation centrality measures [29,36]
is also of good research interest, as the »-'_..orks may prc  <e different evolutionary states
when different correlation centralitvineasures are applied ~ ’ie same economic network
dataset. In addition, it is of good r' search value to predict + ie important nodes in the risk
propagation process of economic  etworks [28,38]. Extending existing economic network-
based models [25], so that their pz meters can be sta istically learned from the data, while
different modeling frameworks ca. = compared f ¢ validation.
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