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Abstract: The interdependence of financial institutions is primarily responsible for creating a systemic
hierarchy in the industry. In this paper, an Adaptive Hierarchical Network Model is proposed to study
the problem of hierarchical relationships arising from different individuals in the economic domain.
In the presented dynamically evolving network model, new directed edges are generated depending
on the existing nodes and the hierarchical structures among the network, and these edges decay over
time. When the preference of nodes in the network for higher ranks exceeds a certain threshold value,
the equality state in the network becomes unstable and rank states emerge. Meanwhile, we select
four real data sets for model evaluation and observe the resilience in the network hierarchy evolution
and the differences formed by different patterns of hierarchy preference mechanisms, which help us
better understand data science and network dynamics evolution.

Keywords: complex network; network dynamics; data science; network evolution

1. Introduction

The financial and economic development of various regions differs depending on
their historical development and geographical setting. The movement of people and
the development of commodity trade have promoted economic finance among different
regions [1]. In some cases, the economic and financial system is likely to have a certain
lag in economic and financial development due to the different levels of different regions
and inefficient allocation of resources [2,3]. At the beginning of 2020, the outbreak of
the new crown epidemic had a certain devastating effect on the economic and financial
development of different countries and regions. Even in some areas, the economy and
finance were in a “pause” phase, significantly affecting people’s lives [2]. The data from
different countries, regions, and cities reflect different degrees of impact [4–6]. The complex
network is used to depict the problems shown by the data promptly and construct different
levels of differential structures to avoid economic and financial losses to the maximum
extent possible [7]. The extreme network structure in each industry commodity is the only
supplier of goods to other industry commodities. Ozsoylev et al. [8] consider the timing of
trading in financial investments and foreign exchange markets as synchronous, describing
the importance of investors grasp of important timing.

An important question is how hierarchical structures are formed in the economic and
financial spheres and how they are stabilized through interactions between individuals [9].
Numerous studies have shown that the “winner effect” in human societies is also present
in economic networks, i.e., people’s recognition of favorable activities increases their
likelihood of winning in future activities. In human societies, winning a competition or
battle leads to more support for individuals in future activities [10]. At the same time,
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the “winner effect” has a significant effect on the interaction between different financial
institutions in economic networks.

Literature Review

In the past few years, more and more scholars have started to study economic systems
from the perspective of networks [4,8]. Describing an economic system as a network, the
economic units in the system (e.g., individuals, firms, countries) are defined as nodes, and
the interactions between different units are described as the connected edges between them.
The trend of the network structure over time can provide information about the way the
economic network system evolves. Hierarchical structures were first applied to study the
social behavior of biological groups, which survive and develop through inter-hierarchical
relations of superiority and inferiority [4]. At the same time, the economic and financial
field demonstrates a robust hierarchical structure, where individuals from different levels
of institutions play different roles in the economic network [5]. Researchers have used
different methods to comparatively analyze the propagation of systematic financial risk
under different scenarios and found a strong hierarchical structure. Garas [11] and Huang
et al. [12–14] modeled the business cycle dynamics for systemic riskiness to assess the
likelihood of failure of financial institutions at different levels and argue that the failure of
a single entity in it triggers a series of failures in the system, i.e., the failure of one or more
financial institutions leads to the propagation of systematic financial risk on a larger scale.
Battiston et al. [15,16] introduce degree centrality in networks to compare different financial
institutions and propose a new centrality measure DebtRank, which further extends the
idea of centrality in networks, the impact of different levels of nodes on the network can be
seen more clearly. Vodenska et al. [17–19] proposed a BankRank centrality metric based
on the DebtRank idea and study the debt crisis providing evidence of the contagion of the
2007 financial crisis in equity and bond markets in emerging economies around the world.

Gai et al. [20] introduce the concentration and complexity of interbank structures
into the hierarchical structure of the network, showing that different levels of financial
structures increase the risk of the banking system when the network is subject to shocks.
The changes in the structure of the world trade network over time are also analyzed. The
study shows that as countries trade more and more closely with each other, there is an
increasing heterogeneity in the choice of trading partners, so that it is very difficult to iden-
tify a representative country in the international trading system. Gale and Allen et al. [21]
introduced an infectious disease model among viruses into the financial system network,
treating financial structures with different levels of importance as different levels, and
found that the propagation of financial risk depends on the inter-network different levels
of inter-rank connectivity [22]. Moreover, a complete financial network structures are more
stable than an incomplete network. In addition, network connectivity-based metrics explain
stock market returns during financial crises: if the country in crisis is well integrated into
the trade network, the crisis is more likely to spread; however, countries affected by a crisis
shock that are well integrated into the network are, in turn, better able to eliminate the
impact. When a financial crisis hits a specific part of the global trade network, the use of
cascading and propagation issues in the network can help explain and understand the
process of financial crisis propagation. Langfield and Fricke et al. [23] used a maximum
entropy estimation method to compare the riskiness of financial networks. Cont [24] in-
troduces a “contagion index” to measure the importance of financial institutions, i.e., the
higher the rank, the greater the “contagion index” and analyzes the risk of contagion rank
in the network and applies it to the contagion effect of the global financial crisis during
1997–2012, suggesting that financial institutions can more easily improve risk sharing by
diversifying shocks.

At the same time, the rapid growth of financial data is becoming more and more
important to reflect the connection between data through the web [25]. Different financial
institutions are becoming more and more closely connected, and the financial structure has
become dynamically diverse. Page et al. [18] propose the classical PageRank algorithm
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to measure people’s interest in different web pages, which can help us better understand
people’s attention to different financial institutions. Applying it to the financial system, the
attention of different individual units can be better identified. De et al. [26] propose the
SpringRank algorithm to infer the hierarchical structure of different nodes in the network
based on the physical model. Extending their study to economic networks so that the
variability of individual interactions of different units in economic networks can be better
studied. Hickey et al. [27] study the hierarchical structure in social networks and investigate
the stability of networks as well as the phenomenon of clustering, which can be applied
to different hierarchical financial networks to ensure that the networks do not get out
of control. Sayama et al. [28] propose a two-layer temporal network model to enable a
better understanding of the evolutionary nature of networks. Lu et al. [29–31] study the
key nodes in heterogeneous networks and apply their application to different disciplines,
providing a theoretical basis for identifying key nodes in financial networks [32,33].

Based on the above literature, the current research needs to address the following
questions: (1) The phenomenon of ranking in economic networks is seen everywhere,
while there is very little research on what factors lead to the emergence of ranking in
networks. (2) Whether the rank differences exhibited by the same economic network
dataset are consistent across node rankings, and also whether the most appropriate node
scoring function exists for different economic network data. (3) In the economic network
node interaction, what is the hierarchical position of the nodes that really generate the
association in the network. Therefore, in order to better explore the network structure of
economic finance and to solve the problem of shaping and sustaining different hierarchical
relationships among networks. We have conducted the following work:

1. In this paper, we propose a long-term effective network hierarchy evolution model.
The model emphasizes the importance of information interactions among different
financial institutions.

2. This paper introduces parameters to control individual behavior and determines the
hierarchy of nodes in the network through a function matrix.

3. This paper proposes an egalitarian theory under long memory to determine the net-
work elasticity and obtain the critical threshold of the system to ensure the hierarchical
structure among networks.

The rest paper is structured as follows. The second part describes in detail the proposed
network hierarchy evolution model as well as the systematic egalitarian theory; the third
part verifies the correctness of the proposed theory through the simulation of real network
data; the fourth part concludes the paper.

2. Materials and Methods

In economic networks, different institutions are more inclined to establish connections
with highly visible or authoritative institutions. The interaction between institutions forms
the theme of the network data, and the relationship between the data keeps changing
over time. Competition and cooperation among financial institutions are key to their
visibility, and the higher the visibility, the higher their value and the higher their relative
rank in the network. Hickey et al. showed by examining hierarchical structures that
dominance and prestige are two essential ways to form social status in social networks [27].
Similarly, hierarchical structures exist among financial institutions in economic and financial
networks, which play a significant role in economic development.

2.1. Related Definitions

Definition 1. (Degree k) For any given network, the degree k of a node is defined as the number of
edges connected to it.

Definition 2. (Adjacency matrix A) With a directed network G = {V, E}, let aij be the case of
connected edges from node i to j. If there exists i→ j, aij = 1; otherwise, aij = 0. Call A = (aij) as
the network adjacency matrix.
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Definition 3. (Diagonal matrix D) let Din and Dout be diagonal matrices whose coefficients are
the weighted-in and weighted-out degrees of the network, respectively Din

ii = ΣjAij, Dout
ii = ΣjAji.

Definition 4. (Support ω) In an economic network, different units (e.g., individuals, firms, coun-
tries) interact with each other, and if there exists a directed edge i→ j between two different units,
we conceptualize the directed edge as support, i.e., j is supported by i.

Definition 5. (Support matrix ω(t)) The interaction between nodes in the network changes over
time, and the newly generated support relationship at moment t is defined as the support ω(t) in
the network.

2.2. Network Dynamic Evolution Model

The nodes in the network represent the individuals in the data and the connected
edges illustrate the interactions between different individuals. In our proposed adaptive
hierarchical network evolution model, nodes represent different economic and financial
individuals, and directed edges represent interactions between different individuals. As
time changes, new interaction information is generated between individuals, and new
directed edges are generated based on the existing nodes in the network and the current
hierarchy, after which these edges change with time. We represent the directed edges i→ j
as recognized support, i.e., the rank of individual j is higher than that of individual i. A
directed weighted network represents the interaction information between n nodes, and
the adjacency matrix A ∈ Rn∗n constitutes all the nodes in the network. aij is the weight of
i→ j in the network, representing the degree of support between two different nodes. The
adjacency matrix A keeps changing with time according to the expression (1), where ω(t)
is the support matrix representing the newly generated support relationship at the moment
t. The “memory factor” ϕ ∈ [0, 1] reflects the maintenance time of the support relationship,
and the smaller m means that the expenditure relationship is more likely to be “forgotten”,
based on which the proposed dynamic evolution model takes the general form of:

A(t + 1) = ϕA(t) + (1− ϕ)ω(t), (1)

where the new support relationship ω(t) depends on the ever support experience. The
score S of i nodes is calculated by the score calculation function F : A → s in the related
node ranking algorithm, and thus, the ranking order of each node is obtained. In the
adjacency matrix in the directed weighted network, Din and Dout be diagonal matrices
whose coefficients are the weighted-in and weighted-out degrees of the network. Next, we
use three score functions:

• SpringRank: SpringRank is the latest research ranking algorithm by De et al. [34] The
algorithm uses win-lose to quickly find the latent ranking in large networks, which has
good adaptability to large systems, and most of the economic systems studied in this
paper are large systems based on time series. Its treatment of the connections between
network nodes as scalable physical springs is a rank recursive implication, where the
rank of the supported individual is one rank higher than the rank of the supporting
individual. Mathematically defined, SpringRank assigns a value to each node in the
network, where the score s is a unique solution to a complex linear system [26].[

Din + Dout −
(

A + AT
)
+ βsI

]
s =

[
Din −Dout

]
e, (2)

where the unit matrix I and the regularization parameter βs > 0 is a constraint added
to the solution system to reduce the influence of noise on the system solution and to
ensure the uniqueness of the resulting fraction s, where e is the vector of ones.

• PageRank: PageRank is a classical ranking algorithm proposed by Page et al. [18],
which is widely used in website promotion. In the economic system, if there is a
connected edge between two units, that is, it is considered to produce support and
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there will be no other link interference information, which can well avoid the trouble
caused by PageRank because it does not need to identify the connection characteristics,
while at the same time, it can rank the importance of the system globally.
Define score s as the PageRank vector of AT , which is the the unique solution to the
complex system

βpAT(Dout)−1
+
(
1− βp

)
n−1eeTs = s (3)

up to scalar multiplication. Standardize the score vector such that eTs = n, where e
is the unit vector. In the definition, the passing parameter βp ∈ [0, 1] and we use the
constant βp = 0.85 in our study.

• RootDegree: Its only considers the number of neighboring nodes supported and does
not have transferability. The score s is the square root of the weighted number of

support node i, i.e., si =
√

Din
ii .

It can be seen that all three score functions can be viewed as rank ranking or centrality
measures. However, unlike the SpringRank and PageRank scores, the RootDegree score
is only related to neighboring nodes, and the impact of the score will not depend on the
current hierarchy in which the individual is located.

After the score s is known, a new support relation ω exists in the network is obtained
using a random utility model, a standard framework of discrete choice theory, which has
recently been widely used in dynamic hierarchical models [4,12,19]. We consider a utility
function of the form uij(s) = ∑k

`=1 ρ`φ
`
ij(s) , where each φ` is a smooth feature map; ρ` is

a preference parameter indicating relative importance of the `th feature; and φ`
ij(s) is the

ijth entry of φ`(s). We use a special case with linear feature map φ1
ij(s) = sj, and quadratic

feature map, φ2
ij(s) = (si − sj)

2. To this point, a new support relationship is created

uij(s) = ρ1sj + ρ2
(
si − sj

)2, (4)

where we generally assume that ρ1 > 0, ρ2 < 0. The parameter ρ1 represents the “prestige
preference”, where a positive value of ρ1 indicates a preference for a high scorer; ρ2
represents the “proximity preference”, where a negative value of ρ2 indicates a preference
for an individual with a similar score to oneself. In addition, the probability of the final
support relationship i→ j can be expressed by the polynomial

pij(s) =
euij(s)

∑n
j=1 euij(s)

. (5)

We obtain m ∈ N supports in the updated matrix ω, where ωij gives the number of times
i supports j within a time step. Expressions (1) and (5) represent the key features of our
model. First, the dynamics in expression (1) indicate that the past support relationships are
decaying at rate ϕ. Second, expression (5) shows that the likelihood of a node receiving
more support in a given time step depends on the probability of the distribution of support
received earlier. For ease of understanding, the concept of inter-individual support is
translated into the concept of rank in the network, i.e., the more support an individual
receives, the higher the rank it will be in the network.

Figure 1 is a schematic diagram of the dynamics of our model, reflecting the relative
change in rank at different nodes over a time horizon. The horizontal axis t represents the
moment change, and the vertical axis s represents the rank score; the higher the score rank
will be on the vertical axis. The dashed line ϕ represents the new support relationship at
time t, and the solid line represents the pre-existing support relationship in the system.
The lighter the color, the less important the relationship is and the more likely it is to
be “forgotten”. At t = 1, the model is initialized and the support received by different
individuals is recorded in the network adjacency matrix A. The scoring function takes the
adjacency matrix A as input and the score vector s as output. A new support relation ω is
then obtained according to expression (5), and this new relationship is weighted by 1− ϕ



Entropy 2022, 24, 702 6 of 19

and combined with the previous support relation weighted by ϕ. As time changes, this
process is repeated, and the new support relations in the network gradually replace the old
support in the system and update the score vector s. It can be observed that most of the
support is a “short” leap, which is a pervasive pattern in most network data.

Figure 1. Schematic diagram of our model dynamics. t = 1 initializes the nodes, different colors
represent different network nodes, a set of pre-know support matrices are recorded in A (solid arrows)
and the node scores s = are calculated (vertical axis). Afterwards, the new support relations obtained
in the network are added (dashed lines). At the next time period t = 2, the old support interactions
in the system decay by a factor of ϕ (gray arrow). The new support and the decayed old support
relationship generate a new score function, which is then executed in the next time period according
to this step.

To facilitate the observation of the behavior among nodes in the network, the concept of
“rank vector” γ is introduced, whose jth element γj = n−1 ∑i pij represents the possibility
of new support to the jth node. If all the γj in the network are equal, then the system state
is balanced at this point, otherwise there will be differences.

Figure 2 shows the rank variation of the dynamics with different parameters when
using the SpringRank score function. The left side of the figure shows the variation of rank
vectors for different ρ1 and ρ2, and different colors indicate the rank of different nodes.
The right side shows the adjacency matrix at t = 4000. It can be seen from subplots (c) and
(g) that the hierarchical differentiation is more obvious in subplot (g). When ρ1 is small,
the system as a whole is approximately egalitarian, and for larger ρ1, there is a more clear
hierarchical structure. However, the network system is elastic, and later we will find the
critical value of ρ1 that brings a huge change to the network hierarchy evolution under
different score functions. In addition, the impact of ρ2 is more reflected in the stability of
node ranking, as can be seen from Figure 2e,g that smaller ρ2 can reduce the fluctuation
brought by the rank evolution in the network, making the network state smoother.
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Figure 2. Representative dynamics of our proposed model. The population of n = 8 nodes is
simulated using the SpringRank score function changing at 4000 time steps with m = 1 updates per
time step, varying the system preference parameters ρ1 and ρ2. Panels (a,c,e,g) represent the rank
vector γ simulated over time, different colors tracks the ranks of different nodes. Panels (b,d,f,h)
represent the adjacency matrix A at t = 4000. Parameters: ϕ = 0.995. βs = 10−8.

2.3. Parameter Estimated

In order to be able to statistically infer the hierarchical structure in the network, for our
model, a likelihood function is proposed that can support maximum likelihood parameter es-
timation and also allow direct comparison of different score functions. {A(t)} = {A(t)}τ

t=0
is used to represent the time series of the matrix at a fixed time t. With the maximum
likelihood model, the parameters ρ are learned from the observed series of support matri-
ces {ω(t)}, ω(t) depending on the state sequence matrix {A(t)} just through the nearest
state A(τ). Thus, we can decompose the observed probability of a set of parameters to be
determined as

P({ω(t)}; A(0), ϕ, ρ) =
τ

∏
t=0

P(ω(t); A(t), ρ). (6)

The expression (6) is an implicit function and the right-hand side of the equation ϕ has
vanished while ω(τ − 1) and A(τ − 1) depend on ω. Let ki = Wi, and Ki = eTki. We get,

P(ω(t); A(τ), λ) =
n

∏
i=1

(
Ki

∏n
j=1 kij!

n

∏
j=1

(
γij(t)

)kij

)
. (7)

Integrating the terms of ϕ or ρ whose values do not depend as C(t) and then taking the
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logarithm of the expression, we get

log P(ω(t); A(t), ρ) =
n

∑
i=1

n

∑
j=1

kij(t) log γij(t) + C(t). (8)

The logarithmic probability of the entire sequence expression is

L(ϕ, ρ; {ω(t)}, A(0)) = log P({ω(t)}; A(0), ϕ, ρ) =
τ

∑
t=0

n

∑
i=1

n

∑
j=1

kij(t) log γij(t) + C. (9)

It can be seen that the dependence of ρ is expressed through γij. Both ϕ̂ and ρ̂ are
chosen as values for the parameter estimates:.

ϕ̂, ρ̂ = argmaxL(ϕ, ρ; {ω(t)}, A(0)). (10)

The standard theory of maximum likelihood for exponential distributions shows that
L is a convex function for ρ for any determined ϕ. This suggests that ρ̂ can be solved by stan-
dard first or second-order optimization methods when ϕ̂ is known. let L∗(ϕ; {ω(t)}, A(0))
be the optimized logarithm for a fixed ϕ, and later optimize L∗ for ϕ to complete the
maximum likelihood scheme. The global maximum is found by running multiple times
using different initial values of ϕ. Our model uses three parameters to fit thousands of
observations, so overfitting is not a problem when training the data to evaluate the model.

2.4. Linear Stability

The behavior observed in Figure 1 suggests that there are mechanisms of different
nature in the model under the ρ1 “prestige preference”. When ρ1 is small, the stronger
institutions in the financial network do not exhibit a strong competitive advantage and
the network as a whole is approximately egalitarian. However, for larger ρ1, stronger
individual institutions show a strong competitive advantage to limit the network to a stable
hierarchical structure. We define a function f in the memory factor ϕ→ 1 to characterize
the critical value of ρ1 for different scoring functions to bring about a large change in the
overall network hierarchy evolution.

f(s, A) = lim
ϕ→1

E[σ(ϕA + (1− ρ)ω)]− s
1− ϕ

, (11)

where the expectation is with respect to ϕ. If f(s, A) = 0 for all A, then the score vector
s is the key point of expectation in the model. Our choice of SpringRank, PageRank
and RootDegree score functions allows us to derive conditions for the stability of grade
evolution in the long memory limit.

We consider the eigenfunctions of the model, where ρl ∈ R denotes the relatively
important feature parameter φl : Rn → Rn×n is the total feature mapping of the network
and φl

ij(s) is the entropy of φl(s). Equation (4) is a special representation of the linear

feature φ1
ij(s) = sj and the quadratic feature φ2

ij(s) = (si − sj)
2, while defining the network

update rate matrix G = [n−1 pij]. Our goal is to obtain the stability of the system by first
considering the Jacobi matrix of the rank vector γ in the system at a fixed point s0 = θe.
Based on the previously defined “rank vector” γ = n−1GTe = n−1 ∑i γi and applying
differentiation, we have:

∂γ(s0)

∂s
= ∑

i

(
Γi − γiγ

T
i

) k

∑
`=1

ρ`
∂φ`

i
∂s

, (12)

where Γi and φi are the ith row of the jth feature mapping obtained by the network at s0.
When s0 = θe and G = n−1E , there is Γi − n−1I and γi = n−1e . Thus, we have
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∂γ(s0)

∂s
= n−1

(
I− n−1E

) n

∑
i=1

k

∑
`=1

ρ`
∂φ`

i (s0)

∂s
, M(s0; ρ) (13)

After that, this matrix is applied to our main results. As the time step t increases, we
use δs = s(t + 1)− s(t) and δA = A(t + 1)−A(t) to denote the increment of s and A in
the network.

• SpringRank Scores

We develop the computation from the introduced properties of the score function. A
SpringRank score vector s of a regularized β ∈ R matrix A is a solution of a linear system
of equations [

Di + Do −
(

A + AT
)
+ βI

]
s = di − do (14)

where di = eTA, do = ATe. Equation (2) is invertible when β > 0, i.e., e is the only solution
to the equation. Therefore, assuming β > 0, define Lβ = Di + Do −

(
A + AT)+ βI and

Λ = Di −Do. In the SpringRank function mapping, the vector s0 = 0 is a fixed point of f
and is the only mean fixed point in the dynamics. This fixed point point is linearly stable in
the long memory limit if and only if the matrix M(0; ρ)− 2n−1(I− n−1E

)
eigenvalue is

strictly less than βn
m .

Starting from the analytic form of f, the deterministic approximation f of the SpringRank
vector is

f(s, A) = s + L−1
β

(
−βs−m

(
n−1LGs−

(
n−1e− γ

)))
(15)

where LG = Γ + n−1I−
(
G + GT). We need to compute J(s0), the Jacobi matrix of f at

s0 = 0. The fixed point is stable when J(s0) has strictly negative eigenvalues. Calculating
the derivative of (15).

∂ f (s)
∂s

= I− L−1
β

(
βI + m

(
n−1 ∂(LGs)

∂s
− ∂γ

∂s

))
= I− L−1

β

(
βI + m

(
n−1

[
LG + Σ

∂γ

∂s
− ∂γ

∂s

(
ST +

(
eTs
)

I
)]
− ∂γ

∂s

)) (16)

Evaluating this expression LG at s = 0 and G(0) = n−1E gives:

J(0) = −L−1
β

(
βI + m

(
n−1LG −

∂γ(0)
∂s

))
= −L−1

β

[
βI + mn−1

(
I− n−1E

)(
2I−

n

∑
i=1

k

∑
`=1

ρ`
∂φ`

i (s0)

∂s

)] (17)

Since Lβ is positive definite symmetric, L−1
β is also symmetric. Therefore, the stability

of the average immobile point in the SpringRank vector is determined by the eigenvalues
of the matrix in parentheses. Multiplying by nm−1, a sufficient condition to obtain the
matrix is (

I− n−1E
)(

2I−
n

∑
i=1

k

∑
`=1

ρ`
∂φ`

i (s0)

∂s

)
= M(0; ρ)− 2n−1

(
I− n−1E

)
, (18)

there are characteristic values not greater than β
m .

In particular, we have M(0; ρ) = ρn−1(I− n−1E
)

so require the matrix:

ρn−1
(

I− n−1E
)
− 2n−1

(
I− n−1E

)
= n−1(ρ− 2)

(
I− n−1E

)
(19)

have eigenvalues smaller than β
m , so that the eigenvalues of the matrix can be calculated

corresponding to the vector e.
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Then, any vector v ⊥ e is also an eigenvector with eigenvalue n−1(ρ− 2). We therefore
require n−1(β− 2) < β

m , or ρ < 2 + βn
m to complete the argument.

Therefore, in the SpringRank Linear model, s0 = 0 is a linearly stable fixed point of f
if and only if ρ < 2 + βn

m .

• PageRank Scores: The PageRank score is the solution s of the linear system.[
βAT(Do)−1 + (1− β)n−1E

]
s = s, (20)

where Do = diag(Ae). We directly use the PageRank model with linear features, scaling
the parameter ρ, assuming that s is normalized so that sTe = n and does not affect the
analysis. Uniqueness is a direct consequence of normalization: if s = θe, sTe = n, then
θ = 1.

Similarly, we next obtain a necessary condition describing the roots of f. At any fixed
point of f, we have Do = mI. Therefore it can be assumed that f is defined by s.[

βm−1nAT + (1− β)n−1E
]
s = s (21)

As the number of time steps t increases.[
βm−1n

(
AT + δAT

)
+ (1− β)n−1E

]
(s + δs) = s + δs (22)[

βm−1nAT + (1− β)n−1E
]
δs + βm−1n

(
δAT

)
s + o(1− ϕ) = δs, (23)

where the term o(1− ϕ) includes the term involving the product (δAT)(δs) and relies on
δs being a smoothing function of A. In the case of long time t.[

I− βm−1nAT − (1− β)n−1E
]
δs = βm−1n

(
δAT

)
s (24)

This expression gives an implicit representation of f via the relation f(s, A) = limϕ→1
E[δs]
1−ϕ .

We can therefore enforce f(s, A) = 0 by setting E[δs] = 0, obtaining the necessary condition
E[δAT ]s = 0 for roots of f.

0 = E
[
δAT

]
s = (1− ϕ)

(
GT −AT

)
s (25)

Combining (21) and rearranging yields the nonlinear system.[
GT + β−1(1− β)n−2E

]
s = β−1n−1s (26)

Then, the maximum eigenvalue of the matrix is β−1n−1. Solving (26) by numerical iteration,
followed by applying the standard eigenvalue solution s and updating G using the new
value s. To derive the linear stability criterion, we derive the derivative of s in (24) to obtain[

I− βm−1nAT − (1− β)n−1E
]
J(s) = βm−1n

∂

∂s
[GTs−ATs]

= βm−1n
∂

∂s

[
GTs− β−1mn−1s + β−1(1− β)mn−2Es

]
= βm−1n

∂

∂s

[
GTs− β−1mn−1s

]
.

(27)

Then we evaluate at the linearly stable solution s0 = e, this becomes[
I− βm−1nAT − (1− β)n−1E

]
J(s0) = βm−1n−1E + βM(s0; ρ)− I. (28)
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When β < 1,
[
I− βm−1n−1E

]−1
= I + β(m− β)−1n−1E this matrix has a unique eigenvec-

tor e and eigenvalues 1 + β(m− β)−1, while there are M(s0; ρ) = ρn−1(I− n−1E
)

in the
PageRank model, then we get:

J(s0) = βm−1
(

1 + β(m− β)−1
)

E + βρ
[
I + β(m− β)−1n−1E

](
I− n−1E

)
− I (29)

The eigenvalues of J(s0) can now be obtained with the eigenvector e eigenvalue −1.
The eigenvalue of any vector orthogonal to e is βρ− 1 when and only when ρ < 1

β . Thus,
we obtain that in the PageRank-Linear model, the average root is linearly stable when and
only when ρ < 1

β .

• RootDegree Scores

We first derive the functional form of f:

E[s(t + 1) | A(t)] = E[A(t + 1) | A(t)]Te

= ϕA(t)e + (1− ϕ)E[ω(t)]Te

= ϕA(t)e + (1− ϕ)mn−1G(t)Te.

(30)

We then bring the expression into Equation (11), and n−1G(t)e = γ(t) to obtain:

f(s) = mn−1E[G]e−A(t)e = mγ− s. (31)

We can determine that s0 is indeed the unique average root of f . Assume that s = se, and
then that

f(s) = mγ(s)− s =
(

mn−1 − s
)

e. (32)

When s = m/n, the equation is equal to zero. We calculate the derivative

∂f(s)
∂s

= mM(s; ρ)− I. (33)

This matrix has strictly negative eigenvalues, as long as the eigenvalue M(s0; ρ) is
strictly less than 1/m. Next, the operation of the square root is considered as part of the
identity to facilitate our understanding of the computation. Assuming that sj is the entry
degree of node j and φj(s) =

√sj, we get

M(s0; ρ) =
1
2

n−1
√

d
ρ
(

I− n−1E
)

. (34)

It can be seen that the eigenvalues of this matrix are still zero and related to the
direction e. For any direction v ⊥ e, there exists an eigenvalue 1

2
n−1
√

d
ρ. We have:

1
m

>
1
2

n−1
√

d
ρ. (35)

and get

ρ < 2
√

d
n
m

= 2
√

n
m

. (36)

Thus, when and only when ρ < 2
√

n
m , s0 = m

n e is a linearly stable immobile point of
the function f, we obtain the critical value of the giant change brought by the evolution of
the rank when using the RootDegree scoring function.

Thus, we obtain the system critical value ρc by using the algebraic structure of the
score function and the stability conditions for SpringRank, PageRank and RootDegree
in the long-remembered time limit of averaging. An interesting phenomenon is that the
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“proximity preference” ρ2 does not determine the initial state of the network hierarchy, only
ρ1 plays a role in the stability of the network hierarchy.

Theorem 1. For the three scoring functions SpringRank, PageRank and Rootdegree, f has a unique
linear stable root if and only if ρ1 < ρc

1 ,where

ρc
1 =


2 + βs

n
m SpringRank

1/βp PageRank

2
√

n
m RootDegree

Figure 3 illustrates the network rank stability prediction in the case of n = 8 nodes. To
better explore the effect of ρ1 on network stability, the average value over the last 1000 time
steps is simulated by making ρ2 = 0. The curves show the variation of the model under
long memory. We divided the stability points into 2 groups, each with the same rank. For
ρ1 < ρc

1, the ranks in the network are stable; conversely, at ρ1 > ρc
1, the network changes to

unequal stable fixed points. Interestingly, in the PageRank and RootDegree models, there is
a stable inequality state where a node receives support from almost all nodes (Figure 3a,b).
It can also be seen that a network is in two stable (equality and inequality) equilibrium states,
where nodes in both equality and inequality states are gaining support from other nodes,
and which state the network eventually converges to depends on the initial conditions
of the system. The SpringRank model shows different behavioral characteristics from
the other two functions. At ρc

1, the node ranks in the network are staggered, after which
multiple high-ranking nodes become unstable as ρ1 increases, until finally only very few
high-ranking nodes remain. Although the system stability depends on the initial conditions
of the network, it is likely that the system has more selectable stable states under this model.
From this, it can be inferred that the SpringRank model is suitable for network systems
with multiple different initial conditions and different rank states, which can be verified in
the subsequent data.
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Figure 3. The bifurcation of the SpringRank, PageRank, and Rootdegree score functions model with
ρ2 = 0 and m = 1 update per time step. Points give the values of the rank vector γ averaged over
the last 1000 time steps of the 5× 105-steps simulation with n = 8 nodes. The solid line indicates the
separation of the nodes into two groups by numerically solving the equation f(s, A) = 0, the red
curve indicates linear stability and the gray curve indicates linear instability. According to Theorem 1,
the vertical line gives the critical value ρc

1. The parameters ρ2 = 0, m = 1, ϕ = 0.995, βp = 0.85,
βs = 10−8.
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3. Experiment Result

We compare models using four datasets to explore the network structure of financial
institutions and address the issue of different hierarchical relationships between financial
and economic networks. One is an airline network between different economic cities, one
is an international trade network, one is an international investment network, and one
is a network of economic capabilities among friends of universities. The data on airline
networks between different economic cities are obtained from the 2016 “Open Airline
Airport Database” provided by the openflights.org website (http://openflights.org/data.
html (accessed on 10 March 2022)). The airline network consisting of economic cities and air
routes reflects the intensity of urban connectivity, and the influence of a city can be reflected
by its position in the airline network of major countries. The aviation network reflects
the strength of connectivity between different economic cities and is an important path to
study the structure of urban networks. In the study, we select the aviation data between
the top 300 economic cities. The number of flights between different cities constitutes the
adjacency matrix of the network, when city i has a flight to city j within time t, i → j
produces interaction.

International trade data are derived from the Direction of Trade Statistics (DOTS)
published by the International Monetary Fund, which contains trade volumes between
individual countries and major trading partners from 2001 to 2016 [34]. International
trade in this context refers to the cross-border exchange of economic organizations or
governments with capital, goods, and services, etc. To avoid singularities in the data results,
the 206 countries that conduct the most trade exports are selected for the study, and the
network adjacency matrix is constructed with trade data. The i→ j interaction is generated
if country i and country j trade in time t. The international investment data are taken from
the Coordinated Portfolio Investment Survey (CPIS) database provided by the International
Monetary Fund. The database is a voluntary collection sponsored by the International
Monetary Fund that collects data on portfolio investments, including equity transactions
and debt securities, for individual countries and economies, and this paper uses data from
2001 to 2016. Again, to avoid singularities in the data results, the 206 countries or regions
that conduct the most transactions are selected for the study, and the i → j interaction
is generated if country i receives investments from country j within time t. The college
student friend affordability data was accessed through the KONECT Network database [35].
One week after the start of a new semester, 17 fraternity members rank other brothers
according to their financial ability and friendship level, where 1 denotes those who have
similar financial ability to themselves and interact better with them; 16 denotes those who
have a greater difference in financial ability to themselves and interact less well with them.
When brother i ranks friend j in his top five at time t , it is considered that brother i regards
member j as his good friend, i.e., i→ j interaction occurs between brother members.

Next, the four network datasets are investigated using three score functions, SpringRank,
PageRank, and RootDegree, respectively. Several key characteristics of the networks
are reflected by parameter estimation, optimization to obtain log-likelihood values, and
standard errors (Table 1). Similar behaviors were found for the different score functions
in the four network datasets: ρ1 > 0 and ρ2 < 0. It can be shown that there is a general
pattern in the time-dependent network hierarchy: the interaction between nodes does
move toward higher levels, but will be more likely to support nodes that are not very
different from their own levels rather than directly interacting with higher-level nodes
directly, while the interaction between nodes will differ depending on the data set. In
the economic airline network, because different cities have different economic levels,
geographic locations, and airline transit capabilities, we find that the network exhibits
distinct hierarchical characteristics, and cities with relatively low economies can improve
their hierarchical position in the network by establishing links with high-ranking economic
cities. In international trade networks and international investment networks, because
the influence of economically strong countries is very important and trade services and
investment are limited, it is relatively difficult for economically weaker countries to trade

http://openflights.org/data.html
http://openflights.org/data.html
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and invest, but the situation will improve with gradual economic development. Good
friendships will be found in the network of economic capabilities in higher education where
people with similar economic capabilities will build good friendships.

Table 1. Parameter estimates and likelihood scores for the four datasets described in the main text
using SpringRank, PageRank, and RootDegree score functions. The values in parentheses are the
standard errors of the parameter estimates (obtained by inverting the Fisher information matrix
calculated from the values), the highest log-likelihood L is indicated in bold, and N is the total
number of interactions in the network. The trajectory of the inferred parameters is shown in Figure 4.

SpringRank PageRank RootDegree

Eco
aviation

(N = 1879)

ϕ̂ 0.91 (0.01) 0.96 (0.02) 0.87 (0.01)

ρ̂1 2.99 (0.03) 0.74 (0.01) 1.28 (0.01)

ρ̂2 −1.12 (0.00) −0.07 (0.02) −0.18 (0.04)

L −14,906 −15,106 −14,308

Int
Trade

(N = 5524)

ϕ̂ 0.67 (0.12) 0.59 (0.09) 0.97 (0.11)

ρ̂1 3.03 (0.13) 1.82 (0.06) 0.84 (0.05)

ρ̂2 −1.74 (0.11) −0.5 (0.03) −0.12 (0.02)

L −965 −1078 −1153

Int
Investment
(N = 4958)

ϕ̂ 0.40 (0.05) 0.13 (0.03) 0.42 (0.06)

ρ̂1 2.86 (0.12) 0.82 (0.05) 0.62 (0.03)

ρ̂2 −1.46 (0.11) −0.12 (0.01) −0.06 (0.02)

L −937 −1036 −958

Friend
eco

(N = 1028)

ϕ̂ 0.71 (0.14) 0.81 (0.18) 0.56 (0.15)

ρ̂1 2.33 (0.14) 1.21 (0.07) 0.95 (0.05)

ρ̂2 −0.86 (0.17) −0.25 (0.05) −0.08 (0.02)

L −1829 −1876 −1852

Different data will have different dependencies on different score functions, while
the score functions will produce different features for different data, and each dataset is
studied comparatively according to the differences of the models. The RootDegree model
is preferred over SpringRank and PageRank in the economic urban airline network. Under
the economic airline network dataset, the RootDegree score is a measure of the local city’s
airline economy; the more airline routes a city has, the higher its score, independent of the
prestige of the city where the local airline is located. The RootDegree score is consistent
with previous research findings that the airline economy plays an important role in local
production life, transportation, and air transport in the logistics sector [27]. In contrast, there
is a strong dependence on SpringRank scores for international trade networks, international
investment networks, and university economic capability networks, which suggests that
transmissive prestige plays an important role in the structure of economic networks. In
international trade networks and international investment networks, it is important not
only to trade with other countries and make business investments, but also which countries
to trade and make business investments with. This finding is consistent with the Hicket
study [27,28], which suggests that the behavior of different regional interactions indicates
their ability to make reasonable inferences about the location of hierarchical structures in
the network. Similarly, building relationships with higher ranked classmates in a college
friend’s affordability network may result in greater prestige than lower ranked classmates.
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Figure 4. Simulation of network model dynamics using the parameters ϕ, ρ1, ρ2 in Table 1. Each
row represents one network data, the color traces in the figure represent the top 8 nodes in the
network, and the light gray ones represent the other remaining low rank nodes in the network. Other
parameters βp = 0.85, βs = 10−8.

In addition to comparing different score functions, we also compare different models
corresponding to the memory factor ϕ under the data set. As introduced earlier our model
assumes that the effects of past support are decaying at a rate of ϕ. t1/2 = −log(2)/log(ϕ̂)
represents the half-life of the inferred dynamical system in terms of observation peri-
ods. When interpreting these estimated half-lives, the indirect effects of different indi-
vidual interactions can far outweigh their direct effects. In the Eco avaiation data, the
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preferred RootDegree score half-life is t1/2 ≈ 4 weeks. In both the international trade net-
work and the international investment network, SpringRank scores have a lower half-life of
t1/2 ≈ 2 years, indicating that although only one-third of trade and investment transactions
are directly “remembered” by the system after 4 years, these events affect 2 cycles of trade
and investment events. The half-life of SpringRank scores in the College Friends econmic
Capability Network is t1/2 ≈ 1.5 weeks, indicating that the time to establish relationships
between classmates is much shorter than the entire semester.

As described in Theorem 1, the network is resilient in the long memory limit, and our
model will be separated by the critical value ρc

1 that separates the equal and hierarchical
states in the network. There are two aspects to note; first, when the estimate ϕ̂ is very
different from the long memory limit, there is no significant hierarchical structure in the
network. Second, in each data set, the number of updates m of the network uses the average
number of updates per step. Using this value and Theorem 1, an approximate critical value
ρc

1 can be calculated for the network system in the long memory limit. The next comparison
between the data-derived preference estimates of ρ1 and the calculated approximate critical
value of ρc

1 reveals the existence of network hierarchy states for all four economic systems
(Table 2), with little difference between the estimated ρ1 and the approximate critical value
of ρc

1 using RootDegree as the score function. In the economic airline network data with
RootDegree as the main model, the estimated value of ρ1 is slightly below the critical
value, and conversely, in all three of its datasets, the estimated value is slightly above the
critical value, which is more pronounced in the national trade and national investment
networks. the RootDegree model has a double steady state (Figure 2a), and in the economic
urban airline network, ρ1 estimates are below the critical threshold, but are consistent
with the long-term hierarchical structure of the network. Simulations using the inferred
parameters as shown in Figure 4 produce a similar long-term hierarchical structure to
that observed in the network data. The PageRank model has a similar behavior to the
RootDegree model, with a double stable state in the network (Figure 2b). In the SpringRank
model, which obtained maximum likelihood values in both the country trade network,
country investment network and university economic capacity network, the estimates of
ρ1 clearly exceed the system critical threshold and tend to [2, 3]. In conclusion, all three
models, SpringRank, PageRank, and RootDegree, show that the system corresponding
to each economic network data is in a state of hierarchical structure with continuous
individual reinforcement.

Table 2. Comparison of the mean critical values ρc
1 and ρ1 estimates of the system calculated by

Theorem 1, with m being the average number of interactions at each time step. As in Table 1, the
parameters corresponding to the highest log-likelihood are shown in bold, and the upper right *
indicates that the estimate is two standard errors more than the critical value, while the lower right O
indicates that the estimate is two standard errors less than the critical value. The trajectories of the
inferred parameters are shown in Figure 4.

SpringRank PageRank RootDegree

Eco aviation
ρc

1 2.01 1.15 1.35

ρ̂1 2.99 *(0.03) 0.74 O(0.01) 1.28 O(0.01)

Int Trade
ρc

1 2.05 1.17 0.56

ρ̂1 3.03 *(0.13) 1.82 *(0.06) 0.84 *(0.05)

Int Investment
ρc

1 2.01 1.19 0.50

ρ̂1 2.86 *(0.12) 0.82 O(0.05) 0.62 *(0.03)

Friend eco
ρc

1 2.05 1.18 0.91

ρ̂1 2.33 *(0.14) 1.21 *(0.07) 0.95 *(0.05)
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Different data have different best-fit scoring functions, while different scoring func-
tions lead to different network rank evolution states. As shown in Figure 4, the original
data assignment (Figure 4a) and the RootDegree model (Figure 4d) show strong consis-
tency in the urban economic airline network, with most of the airline routes being in the
higher-ranked economic cities. The PageRank and RootDegree models (Figure 5c,d) pro-
duce smoother ranking trajectories compared to networks that purely describe rank status
because the parameter estimation “memory factor” ϕ is relatively large and the support
relationships are maintained for a longer period of time. That is, the economic city with
more flights is in a higher position in the network, ranking London first in score most of the
time. The SpringRank model (Figure 5b) produces a different nature of trajectory, ranking
New York first most of the time. This rank variability reflects the sensitivity of the different
models to the economic city where the flight is located, and in particular the sensitivity
of the SpringRank model to the location of New York, however this is not considered in
the other models. In addition, the SpringRank model ranks Tokyo, Paris, and Chicago
significantly higher than Atlanta and Beijing, despite the fact that these economic cities
have about the same number of flights.
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Figure 5. Visualization of the evolutionary ranking function of the economic city aviation network.
(a): The scores of each economic city, for visualization purposes, are shown as moving averages
with a width of 8 years. (b): The SpringRank score function is used to infer the rank vector γ as a
function of time. (c,d): As in (b), using PageRank and Rootdegree score functions, respectively. The
parameters of panels (b–d) are shown in Table 1.

4. Conclusions

We propose a mathematically analytic and statistically inferred model of network
dynamic evolution to address the problem of shaping and sustaining hierarchical structures
among economic networks. When the support for high-ranking nodes in the network
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exceeds a certain critical value, the equality state relationship is broken and the hierarchical
structure emerges. Meanwhile, the transition between equality and hierarchical states in the
network depends on the structure of the score function and the preferences of the network
for different nodes. The findings suggest that the network evolution generated through
transmissive prestige is sufficient to lead to the emergence of hierarchical structures in
the network.

Importantly, the likelihood function is introduced in order to allow a good statistical
inference of the node preference behavior and memory factors in the network data. In
the economic network dataset presented in Section 3, it is clear that a persistent pattern of
network rank evolution exists (ρ1 > 0 and ρ2 < 0), and while inter-network support rela-
tionships flow to higher ranked nodes (ρ1 > 0), the real possible associations between nodes
are those that are similar to themselves in rank (ρ2 < 0), and such support relationships are
not directly associated to the highest level, but rather over time up a few levels.

Our model also has some limitations. For better modeling, we assume the existence
of the same preference support parameters for each node in the network, while requiring
each node to have knowledge of the network global, which is unlikely in a real system.
According to the idea of Li [36,37]. Our model may indicate other avenues for further work.
The relationship between time-series networks and correlation centrality measures [29,36]
is also of good research interest, as the networks may produce different evolutionary states
when different correlation centrality measures are applied to the same economic network
dataset. In addition, it is of good research value to predict the important nodes in the risk
propagation process of economic networks [28,38]. Extending existing economic network-
based models [25], so that their parameters can be statistically learned from the data, while
different modeling frameworks can be compared for validation.
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