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Abstract: In this work, we outline the development of a thermodynamically consistent microscopic
model for a suspension of aggregating particles under arbitrary, inertia-less deformation. As a proof-
of-concept, we show how the combination of a simplified population-balance-based description of
the aggregating particle microstructure along with the use of the single-generator bracket description
of nonequilibrium thermodynamics, which leads naturally to the formulation of the model equations.
Notable elements of the model are a lognormal distribution for the aggregate size population,
a population balance-based model of the aggregation and breakup processes and a conformation
tensor-based viscoelastic description of the elastic network of the particle aggregates. The resulting
example model is evaluated in steady and transient shear forces and elongational flows and shown
to offer predictions that are consistent with observed rheological behavior of typical systems of
aggregating particles. Additionally, an expression for the total entropy production is also provided
that allows one to judge the thermodynamic consistency and to evaluate the importance of the various
dissipative phenomena involved in given flow processes.

Keywords: thixotropy; viscoelasticity; shear thinning; population balance; aggregation;
breakage; TEVP

1. Introduction

Unstable colloidal suspensions exhibit aggregation due to interparticle attraction,
which plays a key role in their complex physical properties. This aggregation often results
in the formation of fractal agglomerates than can span several orders of magnitude in
terms of length scale [1–3] (illustrated in Figure 1) and which undergo restructuring when
subjected to flow [2–4]. This evolution of the structure at mesoscopic length scales manifests
macroscopically as time- and structure-dependent flow behavior [2,3]. The material may
develop a yield stress, requiring a finite stress to initiate flow. The elastic modulus and vis-
cosity, which are functionals of the extent of the particle network and size distribution [5–7],
may also change with time when the material is flowing, a phenomenon known in the
literature as thixotropy [8–14].

Historically, a variety of models have been developed [3,12,13,15–19] to describe the
rheology of such materials and their flow dynamics. These models have the common
feature of connecting the time evolution of structural variables with rheological proper-
ties of interest. The most prominent are models based on viscosity [20] and structural
parameters [21,22] (many are also summarized in reviews [10,13]). In the viscosity models,
a direct connection to a system constituent (such as hematocrit for blood) is established for
a key rheological parameter, in this case the viscosity [20]. In the structure-based modeling
approach, the structure is characterized by a scalar structural parameter, usually bound
between 0 and 1, with unstructured and fully structured states as the extremes. A connec-
tion between the rheology and material flow history is then subsequently established by
coupling rheological variables to the structural parameter [21,22]. As originally envisioned,
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the structural parameter is proposed to represent the degree of physical bond formation
between agglomerates, analogous to the chemical bond formation during a reaction [11,23].
The evolution equation is, thus, aptly named structural kinetics. The aggregation and
breakage of structures under shear forces have been the focus of studies in the context of
population balance. For reference, see works from Spicer and Pratsinis, where the authors
examine the aggregation and breakage kinetics [24] and the emergent size distribution [25].
However, with the possible exception of the recent work by Mwasame and co-workers [2,3]
who proposed a mesoscale population balance model to connect the aggregation dynamics
with thixotropy and yield stress, and Jamali et al. [26] who described the microstructural
changes in shear flow using a fabric tensor, it has been difficult to make a clear association
between the macroscopic stress and physically observable features in structures.
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Figure 1. Schematic indicating the spans of length scales involved in fractal agglomerates. Such
structures are commonly observed in dispersions such as carbon black in mineral oil [1,27] and fumed
silica in paraffin oil [28,29].

Several models, following the work of de Souza Mendes [30,31], attempt to combine
the viscoelasticity, thixotropy and yielding phenomena under the umbrella of thixotropic
elasto-viscoplastic (TEVP) behavior to connect their origin to the underlying fluid structure.
Dimitriou and McKinley [32] introduced the concept of isotropic hardening (IH) and kine-
matic hardening (KH) to TEVP modeling to address viscoplasticity in a more fundamental
manner by adapting concepts from the plasticity literature, such as back stress, as well as
the decomposition of strain into reversible and irreversible components. Kinematic hard-
ening has been customarily used to describe the stress arising from structural formations
in structural parameter models [17,33]. In a recent study by Dimitriou and McKinley [34]
and Varchanis et al. [35], these advancements were extended to tensorial descriptions
of TEVP materials that are valid for general flows exhibiting both extensional and shear
characteristics. In parallel, elastic-hardening-based structural thixotropic models have also
been developed and successfully used to describe the thixotropic characteristics of blood
rheology [36,37]. Blood, another example of an aggregating colloidal system, has long been
known to possess a non-Newtonian rheology exhibiting thixotropic as well as viscoelastic
characteristics (see recent reviews [38,39]). Two most recent developments in thixotropic
modeling relevant to the present work include the development of a population-balance-
based approach [40] and tensorial forms of previous structural kinetics models [41].

Despite the success of the structural kinetics modeling approach in terms of prediction
and ease of implementation, there remain significant areas for improvement. The asso-
ciated governing equations are purely phenomenological and constructed to satisfy the
rheometrically observed transient and steady-state shear flow features without a direct
connection to an experimentally identifiable internal microstructure. In addition, recent
studies have called into question the thermodynamic consistency of structural kinetics
models. Larson [12] has pointed out the thermodynamic infeasibility of the existence of
purely elastic thixotropic materials (also known as thixo-elastic materials). Larson argues
that because the breakage term in the structure kinetic equation depends on the total rate of
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strain, there is a possibility of thixo-elastic materials violating the second law of thermody-
namics. If a thixo-elastic system can operate in a closed thermodynamic cycle, the stiffening
of such a material (increasing elastic modulus) with time means that the amount of work
recovered in the reverse process can exceed the amount of work performed on the system in
the forward process due to the time-varying structure and associated rheological properties.
This problem was recently analyzed in detail by Joshi [19], whereby the author suggested a
resolution of this violation by use of an alternative ‘viscous strain rate’ form of structural
kinetics instead of the more widely used ‘total strain rate’ form.

Alternatively, Stephanou and Georgiou [42] have offered an approach to guarantee
thermodynamic consistency in structural thixotropic models by generating the governing
equations directly from the Hamiltonian function (Helmholtz free energy functional of the
system) using the single-generator bracket formulation of nonequilibrium thermodynamics
(SGBF-NET) [43]. Although these authors still employ a phenomenological structural
kinetics model, their work brings forward some key new developments, including a
thermodynamically consistent presentation of the structural kinetics equations and a unified
framework for viscoelasticity and viscoplasticity expressed in terms of another structural
parameter cast as a conformation tensor density [42]. The SGBF-NET theory, originally
developed by Beris and Edwards [43–45], has the benefit of allowing one to check the
thermodynamic consistency of the governing equations via its formula. It represents one of
several recently developed formulations of nonequilibrium thermodynamics [46–50], with
the main advantages being the simplicity of the dissipation representation. In addition
to the first and second laws of thermodynamics, this framework imposes constraints
from Onsager–Casimir reciprocal relationships [51–53] to ensure time-reversal symmetry
near equilibrium. In addition to providing a methodology to check for thermodynamic
consistency, this method of derivation simultaneously reduces the number and nature of
phenomenological transport parameters. This framework has been useful in generating
continuum-level descriptions of numerous systems with disparate physics (e.g., see the
monograph by Beris and Edwards [43] and the more recent reviews [44,45]).

Ever since its inception, the development of better models to describe mesoscale
dynamics has always been a significant thrust of inquiry among the nonequilibrium ther-
modynamics community [43–46,48–50,54–56]. More recently, there has been an increase in
efforts to describe the entropy changes involved during fluctuations, nucleation, growth
and self-assembly at the mesoscale level [56–59]. Nonequilibrium thermodynamics has
been proven to be a useful tool in identifying degrees of freedom required to model the
mesoscale dynamics [60]. In the present work, we try to accomplish a more systematic
connection between a well-defined microstructure and nonequilibrium thermodynamics
for the particular case of a thixotropic aggregating particle suspension. To achieve this goal,
we employ the SGBF-NET framework to unify a conformation-based viscoelastic tensorial
model with a population-balance-based kinetics model, thereby providing rigorous cou-
pling of the structural variables and the viscoelastic material properties. In doing so, we
achieve a new theoretical framework combining viscoelastic modeling of thixotropy [61,62]
with a population-based structural analysis [3,40], all within a nonequilibrium thermody-
namic framework. In doing so, we assure the thermodynamic consistency of the resulting
model. We further analyze the model predictions, providing evidence for the validity of
the model in describing thixotropy and viscoelasticity in various rheological shear flow
steady-state and transient tests.

The manuscript is organized as follows. In the next section (Section 2), the derivation
of the model equations developed within the SGBF-NET framework is summarized. This
is presented systematically, starting with the description of the state variables, the Hamilto-
nian functional and the Poisson and Dissipation brackets. As an illustration of the model,
predictions for both steady and transient flows are provided and discussed in the context
of the literature in Section 3. In Section 4, the corresponding expression for the entropy
production is presented, which enables evaluating thermodynamic consistency. Finally,
in Section 5, we present our conclusions.
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2. Model Development

Within the SGBF-NET model presented by Beris and Edwards [43], there are four
steps needed to develop the governing model equations. Those are: (1) the selection of the
system state variables, x, which are typically field quantities depending on space and time;
(2) the description of the extended free energy, the Hamiltonian function, as a functional
involving the system state variables, x, H[x]; (3) the formulation of the Poisson bracket,
{·, ·}, describing the reversible dynamics; (4) the formulation of the dissipation bracket,
[·, ·], describing the irreversible dynamics. Accordingly, one can describe the time evolution
for any arbitrary functional F[x] as [43]:

dF
dt

= {F, H}+ [F, H]. (1)

Application of the above relationships and a comparison with the expression obtained
through differentiation of the following parts:

dF
dt

=
∫

Ω

δF
δx
· ∂x

∂t
dV, (2)

leads to the governing equations for the state variables (as in [43]).

2.1. State Variables

Macroscopic fluid properties, such as viscosity, elastic moduli and relaxation times,
depend on the agglomerate size distribution. Under deformation, the evolution of the
agglomerate size distribution results in complex rheological signatures, such as shear
thinning, thixotropy and viscoelasticity. Capturing these dynamics requires an appropriate
choice of state variables.

It is critically important to select state variables that compactly but accurately rep-
resent this size distribution, because the aggregating suspensions generally consist of a
distribution of time- or rate-dependent agglomerate sizes. Other than directly tracking
the size distribution function, one common method to obtain a more compact, closed-
form description for continuous probability density functions is by using a finite number
of moments:

Mk =

∞∫
0

vk n(v, t)
np

dv, (3)

where v is the number of primary particles involved in the agglomerate, n(v, t) is the
particle number distribution density and np is the (constant here) number density of
primary particles that generate the agglomerates (analogous to monomers in a polymeric
system). Based on this definition, the zeroth moment is simply the fraction of all the
particles (agglomerates and primary) over the total number of primary particles and is
primarily connected with the method of normalization of the particle number density. The
size distribution of fractal agglomerates that form in suspensions with sufficiently high
numbers of primary particles is self-preserving [63,64]. The more moments are added
to the solution space, the more accurate the description of the size distribution will be.
Alternatively, if one uses a known particle size distribution, using a few moments might
be enough to determine all of the others. Therefore, the aggregate sizes can be defined as
x =

{
M0, M1, · · · , Mχ−1

}
, where the (finite) number of moments χ is chosen such that the

dynamics and size distribution of the colloidal suspension are adequately characterized.
A common challenge in using a moment distribution is the need for a closure approxi-

mation to enable the calculation of any arbitrary properties of the distribution, including
moments not explicitly represented (see [65] for a discussion on moment methods and clo-
sures). In the following, we use a lognormal closure, although the method developed here
can be used with any other closure rule. The lognormal distribution [66] is especially well
suited to describe the particle size distribution [3] and has found successful applications in
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describing size distributions in particulate systems [67,68]. Mathematically, the lognormal
distribution arises when a process is a series of independent accumulated changes or events.
In the context of a particle population, these independent events can be thought of as a
series of aggregation steps required to obtain a particle of a certain size. Because each of
these events is considered independent, their probabilities are multiplicative and additive
on a logarithmic scale. Application of the central limit theorem on the logarithm of these
probabilities results in the lognormal distribution. This result is also supported by the
solution of the population balance equation following the aggregation kernels for Brownian
motion and shear flow derived by Smoluchowski [69].

For a random variable distributed on the (0, ∞) support and constrained by a mean
and standard deviation, the lognormal distribution is the maximum entropy distribution
and can be fully defined using the first three moments [70]. To rigorously satisfy mass
(or the volume of primary particles) conservation requirements, the distribution can be
normalized by the first moment, M1 by setting its value to 1. Under these considerations,
it is possible to keep in the system-state vector just the zeroth and second moments that
can in turn be used to parameterize the lognormal distribution:

n(v) =
M0np

vσ
√

2π
exp

(
− (ln v− ln v0)

2

2σ2

)
, (4)

where the normalized mean size parameter v0 is expressed as:

v0 =
1√

M03M2
, (5)

and the variance parameter σ2 is given as:

σ2 = ln(M2M0). (6)

The remaining system variables are the overall fluid momentum density, m, used to
characterize the overall fluid motion, and a dimensionless conformation tensor density, c

=
,

used to characterize the elastic deformation of the network formed by the agglomerates.
For simplicity, in this work we are assuming c

=
to be a dimensionless relative deformation of

agglomerates with respect to the equilibrium configuration. As such, it still depends on the
aggregate size distribution; moreover, the way it affects the energetics is through an elastic
modulus that it is itself a strong function of the aggregate size distribution. It is through
this coupling that thixotropy is primarily introduced in this model. Macroscopically, under
slowly varying flow conditions, c

=
is related to the finger strain tensor B

=
= E

=
· E
=

T , where E
=

is

the deformation–strain tensor of the agglomerate network. Thus, for a simple, aggregating,
homogeneous (i.e., constant np) and incompressible (i.e., constant ρ) colloidal system under

isothermal flows, the state vector can be defined as x ≡
{

m, M0, M2, c
=

}
.

2.2. Hamiltonian

The single-generator description of nonequilibrium thermodynamics uses the Hamil-
tonian functional, H(x), written as a functional of the system state variables, x. Recently,
Stephanou et al. [42] used the single-generator formalism to model the dynamics of macro-
molecular and colloidal solutions. In line with their approach, one can express the extra
(in addition to the equilibrium contributions) free energy component of the Hamiltonian
function using the kinetics, Ken(x), and the nonequilibrium Helmholtz free energy, A(x),
of the system as follows:

H = Ken(x) + A(x), (7)
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where the kinetic energy is given by:

Ken(x) =
∫
Ω

m ·m
2ρ

dV. (8)

The Helmholtz free energy on the other hand is slightly more complicated, as it has
contributions from both the elastic Helmholtz free energy (entropy-driven) stored in the
agglomerate network and the Helmholtz free energy of mixing (mixing-entropy-driven)
involved in the formation of flocs or agglomerates, shown as follows:

A(x) =
∫

a(x) dV =
∫

[ael(x) + amix(x)] dV, (9)

where ael(x), amix(x) are the elastic and mixing Helmholtz free energy densities, respec-
tively. In turn, the elastic Helmholtz free energy density can be expressed in terms of the
dimensionless conformation tensor, c

=
, following the upper-convected Maxwell (UCM)

model [43–45] as:

ael(x) =
G(φa)

2

[
tr
(

c
=
− I

=

)
− ln detc

=

]
, (10)

where G(φa) is the modulus of elasticity arising from agglomerates and φa is the rel-
ative agglomerate size/volume parameter that depends on moments of the distribu-
tion. The mixing Helmholtz free energy density is connected to the entropy of mixing
as amix(x) = −T∆smix. For a population of flocs, the mixing entropy is defined as [55]:

∆smix = −kBnp M0

∞∫
0

n(v, t)
np M0

ln
n(v, t)
np M0

dv. (11)

We can use the lognormal distribution function, as defined in Equation (4), to calculate
the entropy of mixing as stated above from the equivalent form:

∆smix = −kBnp M0E
[

ln
n(v, t)
np M0

]
(12)

where E[.] stands for the expectation value calculated based on the normalized form of the
lognormal distribution for n(v,t)

npM0
. Upon simplification and expressing the result in terms of

the moments of the lognormal distribution (see Appendix A for derivation) yields:

∆smix = kBnp M0

[
1
2
+

1
2

ln
(

2π ln M2M0

M2M0

)
− ln M0

]
, (13)

which can also be alternatively written in terms of the σ2 parameter as follows:

∆smix = kBnp M0

[
1
2
+

1
2

ln
(

2πσ2

exp σ2

)
− ln M0

]
. (14)

Using the aforementioned expressions, the full Hamiltonian can now be constructed as:

H(x) =
∫
Ω

m ·m
2ρ

dV +
∫ [G(φa)

2

[
tr
(~

c
=
− δ

=

)
− ln det

~
c
=

]
− kBTnp M0

[
1
2
+

1
2

ln
(

2πσ2

exp σ2

)
− ln M0

]]
dV (15)

2.3. Poisson Bracket

Once the system variables are specified and their physical and tensorial characteristics
have been identified, we can construct the Poisson bracket, as each system variable con-
tributes according to its physical nature and tensorial character [43]. The Poisson bracket
for this choice of system variables is defined for two arbitrary functionals, F, G, as:
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{F, G} = −
∫ [

δF
δmγ
∇β

(
mγ

δG
δmβ

)
− δG

δmγ
∇β

(
mγ

δF
δmβ

)]
dV −

∫ [
δF

δcαβ
∇γ

(
cαβ

δG
δmβ

)
− δG

δcαβ
∇γ

(
cαβ

δF
δmβ

)]
dV

+
∫

cγα

[
δF

δcαβ
∇γ

(
δG

δmβ

)
− δG

δcαβ
∇γ

(
δF

δmβ

)]
dV +

∫
cγβ

[
δF

δcαβ
∇β

(
δG

δmα

)
− δG

δcαβ
∇β

(
δF

δmα

)]
dV

− ∑
i=0,2

∫ [
δF

δMi
∇β

(
Mi

δG
δmβ

)
− δG

δMi
∇β

(
Mi

δF
δmβ

)]
dV.

(16)

Note that for convenience, here and in the following, we use Einstein’s repeated indices
summation convention, i.e., whenever repeated Greek letter subscripts appear, those also
imply a summation from 1 to 3. The Poisson bracket is an antisymmetric bilinear functional
with respect to the functionals F, G, involving Volterra derivatives of those with respect to
the state variable—see Appendix B for a brief definition and evaluation. It also satisfies
the Jacobi identity [43]. As defined above, it involves contributions needed to specify
the reversible dynamics for the momentum density (first integral on the right hand side),
the upper-convected derivative of a contravariant second order tensor, the conformation
tensor c

=
(next three terms) and the material derivatives of three scalars, as well as two

moments (M0, M2) of the size distribution of the aggregate particles (last term).

2.4. Dissipation Bracket

The primitive part of the dissipation bracket (i.e., without the entropy correction) is
defined here as a symmetric bilinear form of functionals F, G in terms of the variables
involved. Keeping the lowest order terms while also respecting the symmetries involved
and the physical meaning of the variables involved (i.e., whether they are equilibrium or
nonequilibrium variables) gives:

[F, G]p = −
∫

δF
δcαβ

Λ(c)
αβγε

δG
δcγε

dV −
∫
∇α

(
δF

δmβ

)
Qαβγε∇γ

(
δG
δmε

)
dV

− ∑
i=0,2

∫
δF

δMi
Λ(a)

Mi
δG

δMi
dV − ∑

i=0,2

∫
Λ(b)

Miαβ

(
δF

δcαβ

δG
δMi

+ δF
δMi

δG
δcαβ

)
dV.

(17)

In the above expression, the fourth-order transport properties of the viscosity ma-
trix, Qαβγε, and phenomenological parameters, Λ(c)

αβγε, Λ(a)
Mi

, Λ(b)
Miαβ, are introduced and

their relations to the system variables become apparent. By requiring the equivalence of
Equation (1) to Equation (2) for arbitrary functionals F and using the definitions provided
in Equations (16) and (17), the governing equations for the evolution in time of the system
variables can now be derived. The dissipation bracket contains the symmetric contributions
signifying the coupled dynamics of various system-state variables. There can potentially
be additional terms arising from the coupling between M0 and M2, but for simplicity of
analysis, they have been left out.

2.5. Governing Equations

Following the four steps outlined above, the governing equations for the time evolution
of the state variables are determined by requiring the equivalence of Equations (1) and (2)
for an arbitrary functional F. Note that the pressure, P, is introduced as a Lagrange mul-
tiplier to the momentum equation as a result of enforcing the divergence-free constraint
of the momentum density (and thereby also the Volterra derivatives with respect to the
momentum density) due to the incompressibility assumption—see [43] for further details.

First, the momentum equation is obtained using both elastic and viscous stress contri-
butions to the extra stress σ

=
as:

ρ
Dvα

∂t
= ∇β

(
2cβγ

δH
δcαγ

)
+∇β

(
Qαβγε∇γ

δH
δmε

)
︸ ︷︷ ︸

∇β σαβ

−∇αP. (18)
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Similarly, the evolution of conformation tensor is given as follows:

∂cαβ

∂t
+ vγ∇γ cαβ − cγα∇γvβ − cγβ∇γvα = −Λ(c)

αβγε

δH
δcγε

− ∑
i=0,2

Λ(b)
Miαβ

δH
δMi

, (19)

or more simply:
∇
c αβ = −Λ(c)

αβγε

δH
δcγε

− ∑
i=0,2

Λ(b)
Miαβ

δH
δMi

. (20)

where the overscript
∇◦ on the left-hand side of Equation (20) represents the upper-convected

derivative:
∇
c αβ ≡

∂cαβ

∂t
+ vγ∇γ cαβ − cγα∇γvβ − cγβ∇γvα. (21)

Note that from our selection of the Poisson bracket, Equation (16), the upper-convected
derivative naturally emerges. This corresponds to the most natural description of polymeric
viscoelasticity [71] and is the one most appropriate for the physical interpretation of the
conformation tensor as a relative deformation. Finally, the evolution equations for the
microstructural moments (Mi, i = 0, 2) are obtained as:

DMi
dt

= −Λ(a)
Mi

δH
δMi

+ Λ(b)
Miαβ

δH
δcαβ

; i = 0, 2. (22)

The Volterra functional derivatives that appear in the above expressions are summarized
in Appendix B. More specifically, when substituted in the above equation, Equation (22),
the two equations describing the two moments of the size distribution become:

DM0
dt = −Λ(a)

M0

[
− 1

2 npkBT
(
−2− 2 ln M0 + ln

(
2πσ2

exp σ2

)
+ 1

σ2

)
+ ∂G(φa)

∂M0

(
tr
(
c− I

)
− ln detc

)]
+G(φa)

2 Λ
(b)
M0
·
(

I
=
− c

=
−1
)

,
(23)

DM2

dt
= −Λ(a)

M2

[
−1

2
npkBT

M0
(
1− σ2)

M2σ2 +
∂G(φa)

∂M2

(
tr
(

c
=
− I

=

)
− ln detc

=

)]
+

G(φa)

2
Λ
=

(b)
M2
·
(

I
=
− c

=

−1
)

. (24)

Using entropy maximization, the static (no flow) equilibrium values for the zeroths
and second moment of the distribution can be evaluated as:

Meq
0 =

√
2π
e ,

Meq
2 = e2

√
2π

.
(25)

It is useful now to construct a dimensionless parameter, φa, to characterize the volume
of agglomerates, defined as the 3/d f moment of the distribution (d f being the fractal
dimension), which can be obtained easily from the lognormal closure:

Mk = M0vk
0 exp

(
k2σ2

2

)
⇒ φa = M0v

3/d f
0 exp

(
9σ2

2d2
f

)
. (26)

At equilibrium, φa is purely a function of the fractal dimension:

φ
eq
a = (2π)

1
2−

3
2d f exp

(
9

2d2
f
+

3
2d f
− 1

)
, (27)

which reduces to φ
eq
a = 1 when the fractal dimension d f = 3. Although this dimension-

less volume parameter follows similar scaling as the agglomerate volume fraction, it is
important to note that this model does not incorporate any excluded volume effects, such



Entropy 2022, 24, 717 9 of 28

as arrested dynamics and jamming, whereby the volume fraction plays a more critical role
and offers a better description of the microstructure.

2.6. Transport Coefficients

The transport coefficients appearing in this model offer quite a bit of flexibility regard-
ing their functional form and dependence on other state variables. In our case, using the
extended White–Metzner model [43,72] a description of the relaxation time, τR(trc

=
, φa) that

depends on the trace of conformation tensor and agglomerate size, one can construct the
fourth order tensor Λ(c)

αβγε as:

Λ(c)
αβγε =

2
τR(trc

=
, φa)G(φa)

(
cαγδβε + cαεδβγ + cβγδαε + cβεδαγ

)
. (28)

This choice represents the simplest one able to describe the Maxwell-based shear
thinning viscoelasticity. More involved expressions are also available [43–45]. We chose
that one for its simplicity; other more involved expressions can be used in the future,
depending on the needs, to model specific data. The tensors that couple the moments of the
distribution and the conformation tensor are assumed to have a simple linear dependence
on the conformation tensor, leading to:

Λ(b)
M0αβ =

2

npkBTτ
(b)
M0

cαβ; Λ(b)
M2αβ =

2M2

npkBTτ
(b)
M2

M0

cαβ. (29)

In physical terms, the relaxation parameters Λ(b)
M0αβ, Λ(b)

M2αβ connect changes in the
microstructure to viscoelastic time scales. It is to be noted that many other functional forms
of the phenomenological constants are admissible, provided they do not violate properties
of the dissipation bracket. This flexibility allows one to accommodate a more realistic
microstructure dependence, while ensuring that the resulting model will be thermodynam-
ically consistent. The relaxation parameters Λ(a)

Mi
can be defined as:

Λ(a)
M0

=
2

npkBTτ
(a)
M0

M2
0; Λ(a)

M2
=

2M2

npkBTτ
(a)
M2

M0

M2. (30)

Finally, the fourth-order viscous dissipation tensor is assumed to correspond to that of
an isotropic Newtonian viscous fluid [43] with a dependence on the agglomerate size:

Qαβγε = η(φa)
(
δαγδβε + δαεδβγ

)
. (31)

2.7. Final Form of Governing Equations

After substituting the above expressions for the transport coefficients, we can obtain
the final form of the governing equations as:

∇
c αβ = −


1

τ
(b)
M0

(
2 + 2 ln M0 − ln

(
2πσ2

exp σ2

)
− 1

σ2

)
+ 1

τ
(b)
M2

(σ2−1)
σ2

+ 2
npkBT

(
1

τ
(b)
M0

∂G(φa)
∂M0

+ M2

τ
(b)
M2

M0

∂G(φa)
∂M2

)(
tr
(

c
=
− I

=

)
− ln detc

=

)
cαβ −

1
τR(trc, φa)

(
cαβ − δαβ

)
, (32)

DM0

dt
= −

M2
0

τ
(a)
M0

 2 + 2 ln M0 − ln
(

2πσ2

exp σ2

)
− 1

σ2

+ 2
npkBT

∂G(φa)
∂M0

(
tr
(

c
=
− I

=

)
− ln detc

=

) +
1

τ
(b)
M0

G(φa)

npkBT
tr
(

c
=
− I

=

)
, (33)
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DM2

dt
= − M2

τ
(a)
M2

 (σ2−1)
σ2

+ 2
npkBT

M2
M0

∂G(φa)
∂M2

(
tr
(

c
=
− I

=

)
− ln detc

=

) +
M2

τ
(b)
M2

M0

G(φa)

npkBT
tr
(
c− I

)
,

(34)
along with the following expression for the extra stress tensor σ

=
:

σ
=
= G(φa)

(
c
=
− I

=

)
+ η(φa)

.
γ
=

. (35)

For the relaxation time τR(trc
=

, φa), we assume that it can be modeled through an

extended White–Metzner power law with respect to the conformation tensor [43,72]:

τR(trc
=

, φa) = τ
eq
R f (φa)

( trc
=

3

)−k

≡
τ

eq
R η̃(φa)(

1− φa
φmax

)( trc
=

3

)−k

, (36)

where η̃(φa) = η(φa)/ηs, and the exponent k determines the degree of shear thinning. If
k is positive, the relaxation time will increase with deformation as the agglomerates will
not be able to form strong connections [72]. Physically, this is a result of agglomerates not
being able to form stronger bonds in flow conditions. The equilibrium relaxation time,
τ

eq
R = ηS/G0, is the ratio of the solvent viscosity to the equilibrium elastic modulus, G0.

The evolution equation for the conformation tensor, Equation (32), describes the upper-
convected derivative of the conformation tensor in terms of two primary contributions,
with the first one (first bracket in Equation (32)) arising from the last (fourth) integral
contribution to the dissipation bracket, Equation (17), coupling structural moments with
the viscoelasticity, while the second one arises from the White–Metzner relaxation time
weighting of the deviation from the equilibrium configuration, (cαβ− δαβ)/τR(trc

=
, φa). The

ratio of weighting factors of cαβ determines which of these terms dominates at any instant in

time. Around equilibrium, the dimensionless constants τ
(b)
M0

/τ
eq
R and τ

(b)
M2

/τ
eq
R can be used

to estimate this ratio. For lower values of τ
(b)
M0

/τ
eq
R and τ

(b)
M2

/τ
eq
R , the first term dominates,

indicating that faster breakage diminishes strong viscoelastic effects that emerge from
agglomerate networks, and the nonlinear effects become prominent resulting in a departure
from linear viscoelasticity. Likewise, at higher values of τ

(b)
M0

/τ
eq
R and τ

(b)
M2

/τ
eq
R , the network

contribution to the viscoelastic effects becomes prominent and the fluid follows linear
viscoelastic scaling. The dynamics of mesoscale structure evolution and viscoelasticity
are governed by separate timescales, making this model distinct from nonlinear time-
dependent viscoelastic models with structural parameters, such as the one proposed by
Acierno et al. [73], which are not considered to be true thixotropy models [12].

The structural moment evolution equations, Equations (33) and (34), have similar
forms in their right hand sides consisting of aggregation and breakage terms that depend on
the moments as well as on the conformation tensor. The first term (involving a bracket) is
weighted by a time constant τ

(a)
Mi

and governs the aggregation. The first and second rows in
the bracketed term in Equation (33) correspond to the contributions from Brownian aggre-
gation and deformation-driven aggregation, respectively (same applies to Equation (34)).
The last term in Equations (33) and (34) is weighted by the time constant τ

(b)
Mi

and describes
the breakup of agglomerates.

It is important to note here that in Equations (33) and (34), the breakage terms are
scaled with tr

(
c− I

)
instead of the shear rate

.
γ as proposed in other studies [12,16,22].

It has been shown that breakage terms that scale with
.
γ also admit thixo-elastic materials

in their framework. Larson [12] has shown thixo-elastic materials to be in violation of
the second law of thermodynamics. In contrast, the breakage rate in this model is related
to the elastic stress developed in the fluid. This idea is consistent with the mechanistic
understanding of the breakage process (see the recent work by Joshi [19]). The elastic energy
available to the agglomerates from the developed internal stress increases the probability
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of rearrangements and breakage. The primary particles and small clusters have enough
available energy to break out of the interparticle potential’s attraction.

The governing equations involve nonlinear dependences that may prove difficult
to resolve for all parameter values. Therefore, to simplify our analysis, we chose simple
relationships for the elastic modulus and viscosity functions. The elastic modulus is
established in the literature to be related to the concentration of primary particles in the
agglomerates, and for a fractal structure, numerous scaling laws have been proposed in
the literature, depending on the nature of interactions between the flocs. More commonly,
the scaling law proposed by Shih et al. [5] is used. Marangoni [7] proposed a similar scaling
law derived from a thermodynamic approach by relating the elasticity to the free energy
changes arising from floc–floc interactions. The elastic modulus was found to scale as:

G(φa) = G0φ

3
3−d f
a (37)

for an agglomerate that forms three-dimensional networks. For the viscosity, the Maron–
Pierce equation [74]:

η(φa) = ηs

(
1− φa

φmax

)−2
, (38)

was used. More complex relations for viscosity have been developed over the years for
dense suspensions with polydisperse particles, such as in the study by Mwasame et al. [75].
However, for simplicity of illustration, this common form with a constant maximum
agglomerate volume is assumed.

The primary emphasis of this work is (a) establishing the theoretical foundation
in NET for modeling a distribution of agglomerate sizes and (b) providing a route to
independently incorporate developed models in a thermodynamically consistent manner.
For a homogeneous system, the model has a total of 10 parameters: five time constants,
τ
(a)
M0

, τ
(a)
M2

, τ
(b)
M0

, τ
(b)
M2

, τ
eq
R ; two elasticity moduli, npkBT, G0; and three dimensionless numbers,

φmax, d f , k. For simplicity, we assume common aggregation and breakage times for the

moments here τ
(a)
M0

= τ
(a)
M2
≡ τa, τ

(b)
M0

= τ
(b)
M2
≡ τb and a typical scaling for the maximum

strength of the elastic modulus G0 = npkBT, which reduces the total to seven parameters.
In the following, we offer examples of the model predictions for steady and transient shear
and extensional flows as obtained with indicative sets of model parameters.

3. Model Predictions

The model parameters are selected to illustrate behavior that aligns with physically
observable systems. For simplicity, we fix the fractal dimension to that commonly observed
for reaction limited aggregation, d f = 2.1 [33]. We also assign a maximum value to the
maximum agglomerate volume parameter, φmax = 2.7, to set a threshold where there is a
significant increase in viscosity of the suspension as the agglomerate volume approaches
this value. Note that φa can be greater than unity, as it is an effective volume swept out by
the agglomerates, and as such represents a volume containing both fluid and particles. For
instance, when d f = 3, the volume occupied by the agglomerates is compact and reaches
the equilibrium value of φa = 1. On the other hand, when the fractal dimension is lower,
φa can be larger, reflecting the effective volume swept out by agglomerates that have a
comparatively open structure. The connection of this agglomerate volume to the actual
physical volume of the particle phase (or any other measurable physical property of the
particle phase) is readily achieved through the particle agglomerate distribution function
itself, which is defined by the moments for any state of the system. As a further simplifi-
cation for purposes of illustration, we use G0 and τ

eq
R to scale the stress and time results,

respectively. These choices leave just three parameters to vary: the exponent k (which is
already dimensionless) and two characteristic times, which can be conveniently substituted
by the dimensionless time constants, λba ≡ τb/τa and λRa ≡ τ

eq
R /τa, to demonstrate the

model behavior for homogeneous steady and transient flows. These simplifications allow
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the presentation of the results for a generic thixotropic aggregating colloidal system. In par-
ticular, no effort is made to optimize the transport functions and fit the material parameters
to any particular experimentally determined real system behavior.

3.1. Steady Shear Flow

The governing equations, Equations (32)–(35), are solved by assuming homogenous
flow under simple shear conditions, with flow kinematics given by v =

{ .
γy, 0, 0

}
, where

.
γ is the constant shear rate. This is nondimensionalized as Wi = τ

eq
R

.
γ. Simple shear flow

only requires the solution of four differential equations, namely
.
c11,

.
c12,

.
M0,

.
M2, given by

Equations (32)–(34), simplifying the analysis. The c22 component of the conformation tensor
remains at its equilibrium value of unity. The MATLAB ordinary differential equation
solver ode23s is for the steady state following a shear start-up transient, simultaneously
confirming the stability of the presented results.

The shear stress and first normal stress difference are shown in Figure 2. As can
be expected for viscoelastic materials, at very low Wi, Wi ≤ 0.01, a purely Maxwellian
viscoelastic behavior is observed, characterized by a linearly increasing stress and a quadrat-
ically increasing first normal stress difference [76]. However, we can also see an apparent
yield stress if we only examine the limiting behavior at a small but finite shear rate [61,62].
Indeed, for Wi > 0.01, we can see all characteristics of a typical viscoplastic colloidal
suspension behavior. If the low shear viscoelastic regime is neglected, measurements for
Wi > 0.1 only would suggest the possibility of yield stress. If experimental information
obtained at lower shear rate values is available suggesting the presence of a real yield
stress, this can be introduced through a more complicated model, for example following
the previous work by Beris et al. [77], although this is left for future work. At higher Wi
values, the first normal stress difference grows linearly with the shear rate and remains
positive. This is due to the dependence of the elastic modulus on the size distribution and
the overall coupling of the size distribution with the conformation tensor. This nonlinear
transition from Maxwellian to viscoplastic behavior is also evident in the viscosity plot
shown in Figure 3a. As shown, around this critical value of Wi ≈ 0.01 shear thinning of
the viscosity is apparent with increasing Wi, followed by an even more dramatic reduction
in elastic modulus, G(φa) as the elasticity of the system is significantly disrupted by the
breakage of agglomerates, which is also consistent with the significant reduction observed
in φa.

The changes in the agglomerate distribution with increasing steady shear rate are
plotted in Figure 3b, presented as the behavior of the zeroth and second moments of the
agglomerate size distribution with increasing Wi. The zeroth moment, M0, represents the
number of agglomerates per unit volume. As the structure breaks down, the number of
agglomerates is expected to rise, as evident in the model predictions, and due to their
fractal nature, as their average size decreases their effective volume decreases as well.
The second moment of the distribution, which is related to the width of the distribution,
is expected to decrease because at higher deformation rates, the agglomerate distribution
asymptotically approaches monodispersity. In this highly simplified model illustration,
the highest agglomerate polydispersity is evident at equilibrium, and this evolves toward
a monodisperse suspension of primary clusters at high shear rates.
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Of further interest is how the results change with a systematic change of one of the
three main parameters of the model. Figure 4 is a plot of the shear stress and normal
stress difference vs. Weissenberg numbers for various White–Metzner power law scaling
values in Equation (36), shown as k. By changing the exponent k, we can affect the effective
viscoelastic relaxation time. This has a small, systematic effect on the higher shear stress
(Figure 4a), but a much more significant effect on the first normal stress difference, which
reduces by several orders of magnitude, as shown in Figure 4b. The reason for the apparent
insensitivity of the total shear stress is that this is dominated by the viscous contribution,
whereas k controls the elastic contribution; inversely, the normal stress difference arises
as a result of elastic effects. Such model predictions of parameter sensitivity can aid in
parameter estimation when fitting to experimental data.
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Similar observations regarding changes in the model predictions with the model
parameter λba are shown in Figure 5 and with λRa shown in Figure 6. As can be seen,
the highest sensitivity is experienced again by the normal stress difference. The parameter
ranges for λba and λRa are chosen to obtain reasonable thixotropic transient behavior,
such that the difference between aggregation and breakage rates are within a few orders
of magnitude for the range of Weissenberg numbers chosen, and they are limited from
thermodynamic constraints, as explained in detail in Section 4. Of interest is the observation
that a departure from the linear viscoelastic quadratic behavior for low Wi is observed for
the lowest value used for the model parameter λba in Figure 5b. This is attributed to the fact
that as this parameter decreases the nontraditional viscoelastic relaxation term becomes
important (first term on the right hand side of Equation (32)).
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3.2. Transient Shear Flow

Transient features of the model behavior help to distinguish thixotropy from pure
shear thinning and time-dependent viscoelasticity. Therefore, transients are also im-
portant from a modeling standpoint. The present model predictions follow expected
trends for typical transient experiments [11]. Plotted in Figure 7 are the shear stress
(Figure 7a) and its elastic and viscous components (Figure 7b), along with the evolu-
tion of zeroth (Figure 7c) and second (Figure 7d) moments of the distribution when the
fluid is subjected to a start-up of shear deformation from a quiescent equilibrium state
(M0 = Meq

0 =
√

2π/e; M2 = Meq
2 = e2/

√
2π; c11 = 1; c22 = 0). In Figure 7a, the results

are scaled with the corresponding steady-state values (Figure 2). For low Wi values,
the stress growth follows that of viscoelastic fluid, i.e., an instantaneous buildup of stress
due to viscous contribution, followed by a long transient as it takes a finite time for the
fluid to relax its stress and for the breakdown in its structure to take place. The viscoelastic
contribution to the stress (tracked through the conformation tensor) develops as the ag-
glomerates deform with time under the applied deformation rate (Figure 7b). The evolution
behavior is in line with that of the upper-convected Maxwell model but with nonlinear
effects as a result of the more complex effective relaxation time due to the presence of
multiple internal characteristic times affecting the time evolution of both the structure
and deformation within the material in a complex nonlinear fashion. The model does not
exhibit an explicit yielding behavior and always predicts small but significant viscous stress,
even over short time periods. This is in agreement with experimentally observed yielding
behavior in colloidal systems, where finite initial viscous responses result in sublinear
initial stress growth [78]. The viscoelastic component of stress very closely follows the
viscoelastic model with the structural parameters developed by Acierno et al. [73]. The
structure breakdown is delayed for lower deformation rates because of the competing
aggregation process that dominates the evolution of the agglomerate size (Figure 7c). The
second moment of the distribution, which accounts for the variance in agglomerate sizes,
reduces to a lower value for higher Wi, as shown in Figure 7d. The time required to attain
a steady state is also seen to follow a similar trend, where the system attains a steady state
much earlier at higher deformation rates. Physically, this occurs because agglomerates have
greater mobility at higher deformation rates, allowing them to undergo rearrangement
more quickly. A steady state is attained when the breakage and aggregation processes
achieve dynamic equilibrium.

The next investigation is the opposite of shear start-up, stress relaxation. As shown in
Figure 8a, when the flow is stopped from steady state at fixed Wi the stress does not decay
instantly because the fluid stores some elastic energy in the agglomerates and this requires
finite time to relax (White–Metzner relaxation time), but as this relaxes the aggregation
terms grow the agglomerate back toward the equilibrium distribution. Consequently,
as the external deformation rate is set to zero and the stress relaxes, the material stiffens
with time because of restructuring and aggregation that manifests as an increase in the
elastic modulus, as shown in Figure 8b. The competition between the lowering of elastic
deformation and increase in elastic modulus result occasionally in a nonmonotonic stress
relaxation behavior, as seen in Figure 8a for Wi = 3. This phenomenon has been reported
experimentally by Hendricks et al. [79] shown to be admissible thermodynamically under
structure kinetic formalism by Joshi [19]. It is to be noted that Hendricks et al. study
these effects in a polymeric solution where the effects of restructuring are much stronger
when compared to a particulate suspension (as seen in Figure 8a where the overshoot is
significantly smaller in magnitude compared to the initial value of stress).
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Figure 7. Model predictions for steady shear start-up transients from a quiescent condition subjected
to different shear rates. The different curves correspond to increasing Wi values, increasing from the
bottom to top curves, with values as indicated in the insert legend: (a) shear stresses, scaled by their
final steady-state values; (b) total shear stress along with viscoelastic and viscous components for
indicated Wi values; (c) zeroth and (d) second moments of the agglomerate size distribution. The
model parameters are: λba = 100, λRa = 0.5, k = 0.

Another transient feature that distinguishes thixotropy is the hysteresis observed in
shear stress when the fluid is subjected to a ramp-up in deformation rate, followed by a
ramp down at the same rate, such that:

Wi(t) =

{
Wimax

t
tm

0 ≤ t < tm

Wimax

(
2− t

tm

)
tm ≤ t ≤ 2tm

, (39)

where tm is the time when the deformation rate and Wi are at their maximum values. This
procedure, also known as the triangular ramp test, results in the characteristic hysteresis
loops, as seen in Figure 9. The loops for shear stress, shown in Figure 9a,c, as well as
those for the first normal stress difference, shown in Figure 9b,d, are distinctly asymmetric,
as a result of the changes taking place in the underlying structure that imparts elastic–
viscoplastic–thixotropic behavior to the system. In Figure 9a, the Weissenberg number
predominantly lies in the viscoelastic regime where the fluid retains a significant amount
of stress even after the ramp cycle is completed. In the case of higher Wimax, the shear
stress is higher during the ramp-up compared to ramp down because of the breakage of
agglomerates, as shown in Figure 9c. Importantly, ramp conditions can generate curves
with crossing of the stress, which are often observed in real systems under conditions
where the kinetics of the structure breakdown and build-up are comparable to the ramp
rate. Qualitatively, the results indicate that the model can capture a variety of transient
behaviors that correspond to the hysteresis loops reported in the literature [10,12,22].
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Figure 8. Model predictions of relaxation upon cessation of steady shear flow from an initial deforma-
tion rate indicated by Weissenberg number, with the curves corresponding to decreasing Wi values
from bottom to top, with values as indicated in the insert legend. The fluid is initially subjected
to steady shear from a quiescent state and allowed to attain steady state. Once that is attained,
the deformation rate is set to zero. The evolution of the (a) shear stress and (b) elastic modulus after
flow cessation is reported as a function of the time since the time t = tm when the flow is stopped.
The model parameters are: λba = 100, λRa = 0.5, k = 0.
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Wimax = 5 in (b,d). The model parameters are: λba = 5, λRa = 0.5, k = 0.
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The simplest evidence we can provide for thixotropy in the model is by performing an
intermittent shear rate step test, where a shear rate is applied as depicted (as Wi) with an
orange line in Figure 10a. From a high value of 7.5, it decreases to a low value of 0.5 at a
dimensionless time of 100 before increasing to an intermediate value of 5 at a dimensionless
time of 200. In addition to following the total stress over time, as shown in Figure 10a,
where one can see a doubly nonmonotonic behavior, it is also interesting to follow its elastic
and viscous contributions, shown in Figure 10b, which clearly explain the local minimum
in the intermediate time range of 100–200 as being due to the elastic contribution arising
from the evolving time microstructure, a concrete thixotropic phenomenon.
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Figure 10. (a) Stress response of the model for parameters λba = 100, λRa = 5, k = 0 for an
intermittent shear rate step test, where a shear rate corresponding to Wi = 7.5 is applied on a fluid
at equilibrium, followed by a step down in shear rate to Wi = 0.5 at t/τa = 100, and finally a step
up in shear rate to Wi = 5 at t/τa = 200. The applied deformation rate is depicted by the dotted
orange line. The component-wise contribution to the total shear stress (scaled by its steady-state
value) is shown in (b). The dashed blue line depicts the contribution from the viscoelastic term and
the dotted red line is the viscous contribution, showing the inelastic thixotropy independent of the
viscoelastic term.

3.3. Uniaxial Elongational Deformation

The uniaxial elongation corresponds (in an x, y, z Cartesian coordinate system) to the
flow, such that v =

{ .
εx,− 1

2
.
εy,− 1

2
.
εz
}

, where
.
ε is the rate of elongation. To evaluate the tran-

sients in uniaxial elongation, Equations (32)–(34) are solved for the diagonal components
of the conformation tensor c11, c22, c33 and the moments of the distribution, M0, M2. Due
to symmetry, c22 and c33 are identical. Figure 11a shows the first normal stress responses
in a start-up of uniaxial elongation from a quiescent equilibrium state for different values
of Wi, which is defined here as Wi = τ

eq
R

.
ε. The stress growth is linear initially, indicating

strong elastic behavior, approaching a stationary state followed by a yielding behavior,
characterized by superlinear initial growth before subsiding to reach a steady state. The
second yielding occurs as the structure changes, as is clearly evident in Figure 11b.

Note that a separate set of model parameters is used in the calculations reported
in Figure 11 to show the most interesting model behavior. For most physical systems,
the elongational yielding will be nearly instantaneous, as the material develops a much
greater magnitude of stress in elongation compared to shear. Similar to the shear flow cases
presented in Figure 4b, it is anticipated that changes to the exponent k may be critical in
significantly shaping the stress predictions for elongational flow as well.
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are: λba = 2, λRa = 0.3, k = 0.

4. Entropy Generation and Thermodynamic Consistency

The SGBF-NET framework used to construct this model can also be used as an equa-
tion for the entropy production, which is an outcome of using the framework for the
model derivation. Although the use of this framework itself does not thermodynamically
guarantee consistency, it makes it convenient to determine the parameter ranges where
the model makes thermodynamically consistent predictions, i.e., satisfies the criterion of
non-negative entropy production. Because this is not always easy to evaluate analytically in
a way that is valid for all occasions, it becomes important to perform numerical evaluations
of selected flow cases (which of course provide a necessary but not sufficient condition for
thermodynamic admissibility).

In the SGBF-NET model, the entropy correction [F, H]ec is related to the primary
dissipation bracket [F, H]p ≡

∫
Ω

Ξ(F, H) dV in the following manner [43]:

[F, H]ec = −
∫
Ω

1
δH
δs

δF
δs

Ξ(H, H) dV, (40)

with δH
δs = T. Using the procedure described in Appendix B, the total rate of entropy produc-

tion can be obtained from the primitive dissipation bracket described in Equation (17) as:

σs =
1
T



Tσs,v︷ ︸︸ ︷
Q :: ∇v∇v +

Tσs,c︷ ︸︸ ︷(
G(φa)

2

)2(
I− c−1

)
: Λ(c) :

(
I− c−1

)
+

Tσs,M0︷ ︸︸ ︷
Λ(a)

M0

(
δH

δM0

)2
+

Tσs,M2︷ ︸︸ ︷
Λ(a)

M2

(
δH

δM2

)2

+
G(φa)

2

(
Λ

(b)
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︸ ︷︷ ︸
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+
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Calculation of the entropy production allows an illustration of the thermodynamic
consistency of the proposed model. Following the notations shown in Equation (41), the first
term, σs,v, representing the viscous entropy production, is always non-negative provided
the viscosity is non-negative. The second term, σs,c, representing entropy production due
to elastic relaxation, can be simplified to:

Tσs,c ≡
(

G(φa)

2

)2(
I− c−1

)
Λc
(

I− c−1
)
=

G(φa)

2τR(trc, φa)

(
trc− 6 + trc−1

)
. (42)

Because the conformation tensor is always a positive semi-definite, the resulting ex-
pression is always non-negative (the relaxation time is always positive). Similarly, the third
and fourth terms, σs,Mi , i = 0, 2, representing the entropy production due to moment
relaxation, are also always non-negative for the choices made here for the correspond-
ing transport coefficients. On the other hand, the fifth and sixth terms, σs,cMi , i = 0, 2,
representing mixed elastic moment relaxation-induced entropy production terms, are in
principle indeterminate signs. The only limitation that can be imposed from the ther-
modynamic consistency is that their contributions together with those of direct entropy
production contributions due to relaxation elasticity, σs,c, and due to the corresponding
moment relaxations, σs,Mi , i = 0, 2, should each be non-negative

σs,ti ≡ σs,c + σs,Mi + σs,cMi ≥ 0, i = 0, 2. (43)

The numerical evidence shows that these terms are indeed non-negative for the choice
of the transport coefficients made here in the start-up of shear flows for all Wi values used,
as seen in Figure 12a. However, note that taken on their own, the mixing terms are not
individually required to be non-negative (as seen in Figure 12b).
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Figure 12. (a) Model predictions for the entropy production corresponding to the total relaxation
terms, Tσs,ti , i = 0, 2, in Equation (43) plotted for simple shear start-up from the quiescent state for
various Weissenberg numbers. The different curves correspond to increasing Wi values, increasing
from the bottom to top curves, with values as indicated in the insert legend. The contributions from
the fifth and sixth terms in the entropy production (mixing terms) are explicitly plotted (b). It is clear
that these contributions are not always non-negative; however, their additive contribution to the
total relaxation terms, Tσs,ti , i = 0, 2, in Equation (43) is always positive. The model parameters are
λba = 100, λRa = 0.5, k = 0.
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For a more general investigation of the non-negative character of the entropy produc-
tion, applicable for general flows or more general expressions of the Hamiltonian function,
the SGBF allows one to examine the primitive dissipation bracket, and in particular the
character of the two matrices that define it, namely the coupling Volterra derivatives of the
viscous tensor Q with respect to odd variables (velocity gradients) and the super matrix

coupling the Volterra derivatives of all even variables (in this case, the six independent
components of the conformation tensor and the two moments), as shown in Equation (17).
Note that odd and even variables (referring to symmetry upon time inversion) do not cou-
ple with each other (i.e., the Curie principle [80]); therefore, their effects can be examined
separately. For non-negative entropy production, it suffices that the Q tensor and super

matrix are non-negative. It is easy to show that for the Q tensor, due to the simplicity of

the isotropic description proposed for it in Equation (31), the thermodynamic restrictions
translate to a shear viscosity that is required to be non-negative. It is more difficult to show
the super matrix coupling for all structural variables, as this must satisfy the necessary
and sufficient condition of Sylvester’s criterion for positive semi-definiteness, where all
possible principal minors must be non-negative. However, some necessary conditions can
still be examined. For example, all diagonal terms (these are all non-negative, as one easily
can see in the previous explanation) and some of the principal minors (denoted withM)
can be examined in an approximate fashion; we can show that the generic coupling of c

=
with either M0 or M2 after an order of magnitude analysis around the static equilibrium
leads to:

Meq
c,M0
∼ ‖Λ(c)‖‖Λ(a)

M0
‖ − ‖Λ

=

(b)
M0
‖

2

Meq
c,M2
∼ ‖Λ(c)‖‖Λ(a)

M2
‖ − ‖Λ

=

(b)
M2
‖

2 (44)

For the order of magnitude analysis, the elastic modulus can be assumed to be
G(φa) ∼ npkBT. After simplification from Equation (44), we get:

Meq
c,M0
≈ M2

0

τ
eq
R τ

(a)
M0

− 1(
τ
(b)
M0

)2 ≥ 0⇒ λ2
ba M2

0 ≥ λRa

Meq
c,M0
≈ M0

τ
eq
R τ

(a)
M2

− 1(
τ
(b)
M2

)2 ≥ 0⇒ λ2
ba M0 ≥ λRa

(45)

Far from equilibrium, M0 assumes a large value assuring that these constraints are
satisfied. The parameter ranges selected for investigation in the previous sections obey
these constraints at equilibrium and the corresponding numerical experiments indicate
non-negative entropy generation.

The entropy expression can also be used to judge the evolution and the importance
of various dissipative phenomena during transients. The entropy production rates corre-
sponding to the six terms in the Equation (41) are shown for a simple shear flow start-up
case in Figure 13. Note that of all the contributions, only the fifth one is occasionally nega-
tive (indicated with a dashed line). However, as noted, the total entropy production still
satisfies all thermodynamic requirements, ensuring that the resulting system of equations
is thermodynamically consistent for the parameters chosen. It is also of interest to note that
most of the entropy production is due to the viscous contribution.
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Figure 13. Model predictions for individual contributions to the entropy production, as indicated
in Equation (41) for the simple shear start-up test for Wi = 5. The dissipation is by far dominated
by the viscous effects, whereas the contribution from the structural moments is smaller by several
orders of magnitude. Negative values are indicated with a dashed line. Model parameters are:
λba = 100, λRa = 0.5, k = 0.

5. Summary and Outlook

A thermodynamically consistent modeling approach was applied to a particle-level
physical description of an aggregating suspension that systematically extracts the macro-
scopic rheological behavior from the underlying physics of the aggregation and breakage.
The approach relates the entropy and free energy change involved in the evolution of
agglomerate sizes with the rate equation of aggregation and breakage, which is in turn
used to describe the evolution of elasticity, plasticity and thixotropy. The approach uses the
SGBF-NET developed by Beris and Edwards [43] and the governing equations for suitable
transport coefficients such as those suggested here, which are thermodynamically consis-
tent, i.e., they obey the first and the second law of thermodynamics and follow additional
constraints given by Onsager–Casimir reciprocal relations. Importantly, the rate processes
dependent upon the flow are explicitly dependent upon the conformational stress and not
the shear rate, as is required for thermodynamic consistency, which sets this work apart
from other thixotropy models, potentially leading to enhanced model stability.

The framework is applied to a simplified set of independent system variables for a
suspension of agglomerates described by a lognormal distribution to generate a set of
closed equations that describe the stress and agglomerate structure valid for arbitrary,
noninertial flows. The resultant equations have a total of 10 parameters that can be related
to the physical properties of the system. Although developed here based on a generic
simplified physical picture for illustration purposes, these model equations can be readily
extended to include more complex underlying physical processes beyond the aggregation
and breakage processes considered here, as well as more complex distributions for any
specific system of interest based on available relevant experimental data. Inversely, one can
possibly simplify the present model by assuming a uniform distribution that only involves
the zeroth-order moment of the distribution. This will lead to only one differential equation
for the particle size distribution that may be simpler to solve; however, the important thing
to note is that such simplicity may be at the expense of a more appropriate and physically
meaningful description of the system.

The examples of model behavior for a highly simplified set of parameter values show
the rich behavior in qualitative agreement with general trends and key signatures observed
in thixotropic elasto-viscoplastic materials via experimentation. Another benefit of this
approach is that because it uses physically achievable measures of structure (such as the
agglomerate volume and fractal dimension), it allows one to incorporate independently de-
rived structural models and relationships instead of relying on phenomenology. Moreover,
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it potentially allows for an independent verification of the structural modeling character-
istics, as they are in principle experimentally testable. The functional forms and scaling
in the rate equation can be directly paired with population balance models for thermo-
dynamically consistent modeling of mesoscale aggregation and breakage dynamics [2,3].
This methodology also provides a clear path to incorporate nonhomogeneous effects, such
as stress-induced migration, because the model uses the densities and concentrations of
agglomerates that can be modeled to vary spatially.

There are additional phenomena such as dynamic arrest [81] and anisotropy [82] that
become prominent in densely packed systems. The dimensionless agglomerate volume,
φa, introduced in this work can be related to spatial packing; however, capturing the
exact nature of this phenomenon remains challenging to address from a thermodynamic
perspective and is an issue worthy of further investigation in the future.
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Appendix A. Entropy of Lognormal Distribution

For a lognormally distributed quantity, the entropy is defined as:

h(x) = −E[ln f (x)], (A1)

where f (x) is the lognormal density function:

f (x) =
1

xσ
√

2π
exp

[
− (ln x− ln x0)

2

2σ2

]
. (A2)

This equation can be rewritten in term of the standard normal variable Z using the
transformation, X = exp(ln x0 + σZ):

f (X) =
1

Xσ
√

2π
exp

(
−Z2

2

)
, (A3)

where Z is the standard normal variable. Substituting Equation (A3) in the definition of the
entropy given by (A1), we get:

h(x) = −E[ln f (x)]
= E

[
Z2

2 + ln
(

σ
√

2π
)
+ ln X

]
h(x) = E

[
Z2

2 + 1
2 ln
(
2πσ2)+ ln x0 + σZ

]
.

Because E[Z] = 0 and E
[
Z2] = 0:

h(x) =
1
2
+

1
2

ln
(

2πσ2
)
+ ln x0. (A4)
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Appendix B. Volterra Functional Derivatives

An arbitrary functional F in the bracket formula dependent on a continuous function
w can be expressed as:

F[w] =
∫
Ω

f (w,∇w,∇2w, . . .) dV. (A5)

With the formal definition of the Volterra functional derivative being:

lim
δw→0

(F[w + δw]− F[w]) =
∫

Ω

δF
δw

δw dV, (A6)

the Volterra functional derivative can be obtained as:

δF
δw

=
∂ f
∂w
−∇α

[
∂ f

∂(∇αw)

]
+∇α∇β

[
∂ f

∂
(
∇α∇βw

)] · · · . (A7)

This definition needs to be trivially modified if the variable function is a non-scalar
tensor. Moreover, if there are constraints imposed on the functions (as in the case of a
divergence-free momentum density for an incompressible fluid), the Volterra derivative
has to also satisfy the same constraints—see [43] for more details. Taking everything into
account, the Volterra derivatives of the Hamiltonian with respect to the system state vari-
ables can be easily calculated for the chosen state variables in the text and the Hamiltonian
function as:

δH
δmα

=
mα

ρ
≡ vα, (A8)

δH
δM0

= −
npkBT

2

(
−2− 2 ln M0 + ln

(
2πσ2

exp σ2

)
+

1
σ2

)
+

∂G(φa)

∂M0

(
tr
(

c
=
− I

=

)
− ln detc

)
, (A9)

δH
δM2

= −
npkBT

2
M0
(
1− σ2)

M2σ2 +
∂G(φa)

∂M2

(
tr
(

c
=
− I

=

)
− ln detc

=

)
, (A10)

δH
δcαβ

=
G(φa)

2

(
δαβ − c−1

αβ

)
. (A11)
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