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Abstract: Learning analysis provides a new opportunity for the development of online education,
and has received extensive attention from scholars at home and abroad. How to use data and
models to predict learners’ academic success or failure and give teaching feedback in a timely manner
is a core problem in the field of learning analytics. At present, many scholars use key learning
behaviors to improve the prediction effect by exploring the implicit relationship between learning
behavior data and grades. At the same time, it is very important to explore the association between
categories and prediction effects in learning behavior classification. This paper proposes a self-
adaptive feature fusion strategy based on learning behavior classification, aiming to mine the effective
E-learning behavior feature space and further improve the performance of the learning performance
prediction model. First, a behavior classification model (E-learning Behavior Classification Model,
EBC Model) based on interaction objects and learning process is constructed; second, the feature space
is preliminarily reduced by entropy weight method and variance filtering method; finally, combined
with EBC Model and a self-adaptive feature fusion strategy to build a learning performance predictor.
The experiment uses the British Open University Learning Analysis Dataset (OULAD). Through the
experimental analysis, an effective feature space is obtained, that is, the basic interactive behavior (BI)
and knowledge interaction behavior (KI) of learning behavior category has the strongest correlation
with learning performance.And it is proved that the self-adaptive feature fusion strategy proposed in
this paper can effectively improve the performance of the learning performance predictor, and the
performance index of accuracy(ACC), F1-score(F1) and kappa(K) reach 98.44%, 0.9893, 0.9600. This
study constructs E-learning performance predictors and mines the effective feature space from a new
perspective, and provides some auxiliary references for online learners and managers.

Keywords: E-learning performance; E-learning behavior classification; feature space; machine
learning; feature fusion

1. Introduction

In the last decade, with the concept of ”lifelong learning” and ”individualized learn-
ing”, E-learning was widely developed worldwide due to its characteristics of massive
information, strong interaction, wide coverage, and no time and space restrictions [1], so it
provides convenience for learners. However, at the same time, compared with traditional
classrooms, in electronic learning, it is difficult for teachers to directly obtain student perfor-
mance in the course and provide timely feedback. They usually get information about the
failure of the course after the course is over. This leads to poor learning effects and lower
students’ confidence. Undergraduates may choose to drop out or postpone their studies in
these situations. One way to detect whether students will perform poorly in a course is
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to make early predictions of their grades [2]. At present, many scholars are committed to
the field of predictive modeling learning analysis and educational data mining. Learning
behavior data decomposes the originally complex learning behavior into operable and
obtainable data indicators [3], and deepens our understanding of learning process through
the analysis of learner-related data [4]. The purpose of learning performance prediction is
to predict and understand the academic performance of students in the learning trajectory,
help teachers to comprehensively understand students’ academic conditions, and imple-
ment targeted intervention plans based on the predicted results to improve the learning
experience of learners [5]. However, using this method also faces multiple challenges,
especially how to obtain, process and use data to build learning behavior models [6]. It
can be seen that predicting learners’ academic performance has become a key issue in the
field of learning analysis. When mining the prediction indicators of learning achievement
and academic risk, it focuses on demographic data, behavioral data, and students’ past
performance [7]. As demographic data involves the privacy of students, the deletion of
some information may affect the availability of data and the accuracy of the results, so there
are certain limitations. At present, there are many related studies published in the field of
student test score analysis, the purpose is to predict the ”high risk” of students withdrawing
from a particular course. Although good results have been achieved, there are still some
limitations. First, many studies tend to choose multi-dimensional, fine-grained behavioral
data [8–10] and have achieved good results. However, few people consider isolated learn-
ing behaviors as a whole, ignoring the internal connection of learning behaviors, or only
considering single or several behavioral data are used as prediction indicators [11,12], and it
is difficult to highlight the impact of core behaviors on learning performance. Second, when
using multi-dimensional data, irrelevant variables will affect the generalization ability of
the model and increase the computational cost of the model. With the huge increase in
E-learning platform data, these problems have gradually become prominent. Third, the in-
dex input method for constructing the model is single, and different types of features may
affect the accuracy of prediction [13]. However, few people consider the combination of
different types of student-related features to determine the best combination of model input
data. Fourth, using traditional preprocessing methods to construct learning performance
predictors also has some problems, such as prediction accuracy and computation time.
The high accuracy and low time-consuming rate of performance prediction can effectively
support teachers to track the performance of each student, and can further guarantee the
quality of online learning.

Addressing these limitations can help discover effective ways to improve learning
analytics research in higher education. To this end, this paper constructs a learning per-
formance predictor from a new perspective, that is, based on the E- learning behavior
classification model (EBC Model), the E-learning behavior is divided into four categories,
and different combinations of the four categories of behavior are used as input variables.
Prediction analysis and performance comparison of machine learning models to mine the
effective behavioral feature space. Then, the entropy weight method, variance filtering
method and self-adaptive feature fusion strategy are combined in the data preprocessing
stage to further improve the performance and efficiency of the predictor. The contributions
of this work can be summarized as follows:

1. On the basis of teaching theory, construct an E-learning behavior classification
model (EBC-Model) based on E-learning process and interactive objects, and provide a
reference for educational researchers to standardize the classification of behavior classes.

2. The class feature space is constructed based on the EBC Model. The feature space
is the set of behavior class features through combination and transformation. We use the
variance filtering method and the entropy weight method to filter the behavior features
to reduce the influence of low expressive features on the predictor. Then, a variety of
algorithms are used to analyze the feature subset with higher prediction effect in the feature
space, and then divide it into an effective feature space. It explores the feature space
that is more related to learning performance from a new perspective, and considers the
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internal correlation between behavioral features, which provides an auxiliary reference for
educators to focus on what behavioral features.

3. We propose a learning performance predictor based on a self-adaptive feature fusion
strategy. First, the features are visually clustered and two fusion strategies of different
clusters are observed. Then, the Euclidean distance between the students and the clusters
is calculated, and the feature fusion strategy is adaptively selected. Finally, it is verified by
experiments that the strategy can effectively improve the performance and efficiency of
the predictor.

This article is composed of 6 summaries, and the rest of the content is as follows:
Section 2 focuses on related research, focusing on the correlation between electronic learn-
ing behavior and performance, E-learning behavior classification and E-learning perfor-
mance prediction indicators, data processing methods and prediction model; Section 3
explains our proposed method and process; Section 4 describes two experimental designs,
which are the experimental designs for mining the effective E-learning behavior feature
space and verifying the effectiveness of feature fusion; Section 5 analyzes the results of the
two experiments separately; Section 6 gives conclusions and future directions.

2. Related Work
2.1. The Correlation between E-Learning Behavior and Performance

With the continuous advancement of educational information construction, electronic
learning has achieved a blowout development, and the analysis of learning behavior is
the focus of the field of learning analysis. Electronic learning behavior has been proved
to be closely related to learning performance [14,15]. Current research mainly focuses on
the online participation of the entire online learning system. Bolliger et al. [16] found that
there is an inevitable connection between student engagement, participation awareness
and learning results. Through sampling, Shen et al. [15] gradually regressed and found
that behaviors such as homework completion rate and video completion rate have an
important positive impact on the final online learning effect. Zheng et al. [17] found that
the number of logins is positively correlated with academic performance, and project-
based assignments and high-level knowledge activities are beneficial to learning results.
Qureshi et al. [18] used structural equation model evaluation to find that learners’ social
participation and social interaction affect students’ enthusiasm for collaborative learning
and participation, thereby affecting their academic performance. Mehmet et al. [19] found
that the interactive behavior of the learner and the instructional learning dashboard is
significantly related to the learner’s academic performance. In addition, existing studies
have also used cluster analysis to analyze the relationship between student interaction pat-
terns and learning achievement. Rebeca et al. [20] divides students into two task-oriented
groups (social or individual-centered) and two non- Task-oriented groups (procrastinators
or non-procrastinators) for better targeted teaching. Electronic learning behavior data is
used in many areas of learning analysis, including learner modeling, learning performance
prediction, etc. When exploring the relationship between electronic learning behaviors
and learning performance, research focuses on single or independent learning behaviors,
and the potential between behaviors. The underlying rules of the association structure are
not significant. Therefore, some scholars have begun to explore the internal connections
between behaviors to express the subtle and complex logical relationships in learning,
and apply them to learning analysis.

2.2. The Development of E-Learning Behavior Classification

Regarding the study of learning behavior classification, many scholars have ex-
pounded from the perspective of learning process and interactive objects. Moore [21]
defines the first interaction classification framework from the perspective of interactive
senders and receivers, including three basic interactive behaviors in Electronic learning:
student-student interaction, student–teacher interaction, and student–content interaction.
The interaction between students and students occurs in independent learning or in a group
environment. The interaction between teachers and students lies in the timely guidance



Entropy 2022, 24, 722 4 of 22

and intervention of teachers in learning to promote students’ deep learning. The interaction
between students and content is defined as the intellectual interaction between students
and content to change learners’ understanding, viewpoints and cognitive structure. Hill-
man et al. [22] further proposed the fourth type of learning behavior-student-student
interface interaction behavior, that is, the behavior of students using electronic tools and
navigation tools. Based on the lack of explanations for teaching activities in the above two
classifications, and in order to obtain a more general classification, Hirumi [23] divides
learning behaviors into learner-self interaction, learner-human and non-human interaction,
learner-teaching interactive. Sun [24] considers that the cognitive structure of students is
dynamically changing in the learning process, and divides the learner’s E-learning behavior
process into four stages: learning occurrence stage, knowledge acquisition stage, interac-
tive reflection stage, and learning consolidation stage. Wu et al. [25] divided E-learning
behaviors into independent learning behaviors, system interaction behaviors, resource
interaction behaviors, and social interaction behaviors based on the interrelationships
between learners and the three basic elements of the electronic learning space (learning
systems, learning resources, and people). There are four types of interactive behaviors.
Wu et al. [10] divides E-learning behaviors into four categories according to the interactive
subjects, namely student-student interaction, student–teacher interaction, student–content
interaction, and student–system interaction. To sum up, current studies only consider learn-
ers’ behaviors from a single perspective of learning objects or learning processes, and do not
combine complex learning processes with learners’ interactive behaviors, so as to show the
coordination and unity of dynamic changes in learning processes and interactive behaviors.

There is a significant correlation between E-learning behavior and learning perfor-
mance. Using learning behavior to predict performance is a current research hotspot.
However, the use of multi-dimensional data may affect the generalization ability of the
prediction model and there is a high computational cost. Constructing learning behavior
classification rules is conducive to mining the potential associations between behaviors,
and provides a standard for dividing learning behaviors, which is useful for promoting
the standardization and lightweight of E-learning performance prediction models are of
great significance.

2.3. E-Learning Performance Prediction
2.3.1. Prediction Indicators of E-Learning Performance

Learning performance indicators are generally divided into two types of commonly
used prediction indicators, propensity indicators and behavioral performance indicators.
Tendency indicators refer to the students’ own attributes (including gender, age, race, etc.)
and past experience [26]. After entering the learning environment, they will not change
with the progress of the learning process, so they are also called static indicators [27].
Marbouti et al. [28] use previous academic performance, homework and test scores as
prediction indicators to find the best prediction model. Musso et al. [5] use students’
demographic background factors, learning strategies, coping strategies, cognitive factors,
social support, and self-satisfaction. The construction of a prediction model found that
background information has the greatest predictive weight on whether a student will
drop out. These studies try to find the relationship between student attributes and past
performance and current learning performance. However, it has not considered that
many tendency indicators are not under the control of students and teachers. In addition,
demographic and psychometric data involve privacy and data availability is limited [29].
Therefore, more research should focus on using student activity data during the course.

Behavioral performance indicators refer to dynamic indicators in the learning process,
including searching for resources, watching videos, and forum discussions. As learning
progresses, the role of static indicators will gradually decay, and learning performance
indicators become the core prediction indicators. Current research focuses on the use of
learning analysis methods to explore the core learning behaviors that predict learning
performance. Some scholars analyzed the prediction indicators of the model from the
perspective of E-learning behavior classification. Li et al. [14] used 41 behaviors input



Entropy 2022, 24, 722 5 of 22

measurement indicators to perform regression analysis, and divided the single behavior
data into the behavior input classification. Finally, he found that homework engagement,
active communication and knowledge page browsing had higher correlation with course
performance. Wu et al. [25] used online course login times, online duration, resource
browsing times and other behaviors to construct six classifiers such as random forest
and J48 decision tree, and proposed the structure model of electronic learning space to
further divide behavioral indicators into categories. Finally, he concluded that independent
learning behavior has a strong predictive effect on academic performance. Some scholars
directly use the feature data in the E-learning platform to mine the different effects of specific
learning behaviors on the prediction model. For example, Shen et al. [15] used the learning
behavior data obtained on the MOOC platform to conduct sampling regression and found
that homework completion ratio and video completion ratio had an important positive
impact on learning effect. Zacharis [8] used 29 variables in the blended learning courses
supported by LMS on Moodle to find that reading and publishing information, content
creation, resource browsing, and completion of quizzes are more important predictors
through multiple regression methods. Macfadyen et al. [30] believe that forum posts, emails,
and quizzes are important predictors of students’ final grades.Brinton et al. [11] constructed
predictors of learning performance by using students’ video-watching behavior and test
performance on MOOC platform. Yu et al. [9] used behaviors such as interaction with peers,
download times and access to resources as predictors of academic performance. There
are also studies that use students’ homework submission behavior to predict students
with learning difficulties and judge the tendency of procrastination through students’
submission behavior to predict performance [31].

In general, many domestic and foreign scholars focus on completing quizzes, re-
source browsing, content creation, resource downloading, course visiting, watching videos,
submitting homework and other behavioral indicators to predict and improve students’
E-learning performance. In addition, some scholars consider the correlation between be-
havior and academic performance from the perspective of behavior classification, but few
studies use behavior categories as a predictor to build a predictor of learning performance.

2.3.2. Feature Engineering

Before applying student-related data to learning analysis, you must first consider the
availability of the data. Any type of error information stored in the basic data set for deploy-
ing learning analysis may have a huge negative impact on the accuracy of the model [32].
Therefore, it is particularly important to fully obtain and accurately process the relevant
data and student characteristics that affect the prediction performance. All data operations
in the process of transforming the original data into the training data of the model are
collectively referred to as feature engineering. Feature engineering is generally considered
to include three parts: data preprocessing, feature selection, and feature extraction.

Data preprocessing is the first and necessary step of feature engineering, including
cleaning and standardizing the original data with different dimensions, information re-
dundancy, anomalies, and missing data. Feature selection is used to screen meaningful
feature input training models [33]. An effective feature selection process can remove re-
dundant data and eliminate feature data that has a low impact on prediction, thus greatly
simplifying the structure of the prediction model, reducing the operation cost of the model,
and ultimately improving the performance of the model [34]. Variance filtering method,
chi-square test, the entropy weight method, correlation coefficient method, and information
gain method are usually used to remove redundant features [28]. Wu [10] and Hu [35] et al.
used correlation coefficient method and information gain method to extract meaningful
feature variables, and the results confirmed that the prediction performance of the model
has been greatly improved after feature selection. There are also some scholars who have
made improvements to traditional feature selection methods. To solve the problem that
traditional machine learning classification algorithms have low accuracy on unbalanced
data sets, Chen et al. [36] has proposed a feature selection method (RFG− χ2) based on
the random forest Gini index and chi-square test for optimal feature subset and applied to
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support vector machine algorithm model. Wang et al. [37] improved the feature selection
method of the random forest (RF) standard algorithm, and proposed an RF-based infrared
spectrum modeling method and compared it with partial least squares regression (PLS),
support vector machine (SVM) and standard RF algorithms. The results show that the
improved RF algorithm can improve the accuracy of the infrared spectrum model and
reduce the complexity of the model. Wang et al. [38] proposed automatic width search
and attention search adjustment methods to further accelerate feature selection based on
random wrappers.

Unlike feature selection that selects a better subset from the original feature data set,
feature extraction generates new attributes through the relationship between attributes and
changes the original feature space [39]. Common methods include principal component
analysis (PCA) [40] and independent component analysis (ICA) [41], linear discriminant
analysis (LDA). Considering that a single type of index may be one-sided, some studies have
also tried to use multi-dimensional features to complete academic predictions, but more
and more studies have confirmed that when machine learning modeling, multi-feature data
may bring lower prediction accuracy [42]; therefore, it is necessary to use feature extraction
methods to reduce feature dimensions to improve the prediction effect and reduce the
computational cost of the model [43].

Different machine learning techniques and algorithms can provide satisfactory results,
and the difference in performance may depend on the preprocessing process of the available
input data. Although there are studies that optimize data processing methods, they are
hardly used for learning prediction tasks. Therefore, in order to improve the performance
of the predictor, this paper uses a variety of feature engineering methods to process the
learning behavior feature data.

2.3.3. Prediction Model

With the continuous development of emerging disciplines such as learning analysis
and educational data mining, the use of computing tools and methods to collect and analyze
data has attracted widespread attention. Among them, the use of machine learning tech-
nology to process large and complex data in the educational environment for classification
tasks can be used for prediction analysis [44], such as student test score prediction. Tomase-
vic et al. [7] divide the methods of constructing prediction models into similarity-based,
model-based and probability-based methods.

Similarity-based methods identify similar patterns (for example, students with similar
past academic performance). The typical similarity-based method is K-Nearest Neighbour
(KNN). The test samples are classified according to the majority vote of their neighbors,
and the samples are assigned to the most common class among their nearest neighbors
accordingly. However, KNN needs to calculate a large number of sample distances, and is
not suitable for situations where sample data is not balanced. Therefore, a KNN algorithm
based on distance weighting is proposed, which assigns weights to k nearest neighbor data,
and increases the weight when the distance between the test sample and the designated
neighbor decreases [45].

The model-based method is driven by the implicit correlation estimation between the
input learning data. SVM is one of the typical representatives of the model-based method.
It is mainly used to solve the data classification problem in the field of pattern recognition
and belongs to a kind of the supervised learning algorithm. SVM can be regarded as the
problem of finding the effective separation hyperplane for separating data [46], and can
be used effectively for linear classification using the so-called kernel technique. When the
relationship between the specified category and the input features (that is, the output and
input variables) is nonlinear, the radial basis function (RBF) is usually combined as the
kernel function. Softmax classifier is also a model-based method, which is the extension
of Logistic Regression model on multiple classification problems. In multi-classification
problems, classification labels can take more than two values.

Finally, the third is probability method that uses the probability of the feature distri-
bution of the input data set to classify. One of the widely used probabilistic classification
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methods is the Bayesian classifier. Bayesian decision theory considers how to select the
effective category label based on these probabilities and misjudgment losses. Bayes is a
fast, highly scalable algorithm that can be used for binary and multicast classification [47].
In addition, Decision Tree (DT) is also a probability-based classification method. DT uses a
series of rules to classify data. It has many advantages, such as strong interpretability, fast
computational speed, high accuracy, insensitivity to missing values, and does not require
any domain knowledge and parameter assumptions. However, when dealing with data
with strong feature correlation or continuity fields, it is weak.

All three advanced methods and their typical techniques were used to find, “high
risk” of students who leave high school before finishing and carries on the evaluation of
examination results, in order to solve classification and regression. In order to compre-
hensively analyze the effective subsets of the feature space and verify the improvement of
the predictor performance, all the above classification models are selected for our work in
this paper.

3. Methods
3.1. Problem Definition

Through measurement, collection and analysis of learning behavior process data
to achieve learning performance prediction, after the beginning of the course can be
based on the predicted results for students to carry out certain teaching intervention,
but also play a role of supervision and early warning to students, reduce the risk of
course failure. Mining excellent indicators for predicting academic performance has always
been the focus of learning analysis. This study tries to explore which combination of
behavioral categories can better predict academic performance from the perspective of
learning behavior classification, and then excavates the effective behavioral feature space.
We assume that there are M students and that each student has an E-learning behavior
set A, A{a1, a2, . . . , aN} , where an is the label of E-learning behavior, n = 1, 2, . . . , N, N
is the number of E-learning behaviors. Set the corresponding standardized E-learning
behavior A′

{
a′1, a′2, . . . , a′N

}
according to A{a1, a2, . . . , aN}. Define the set of characteristic

values of E-learning behavior S{s1, s2, . . . , sN}, sn represents the overall eigenvalue of the
nth learning behavior.The entropy weight method and variance filtering method are used
to reduce the dimensionality of the set of eigenvalues S. Then, the E-learning classification
model (EBC Model) is used to divide learning behavior labels a′n into different behavior
classes. After the classification of behavior categories, Nb behavior classes will be generated,
and different behavior classes contain different learning behavior labels a′n. Define E as the
set of each behavior class, such as E1

{
a′1, a′3, . . . , a′i

}
, a′i represents the E-learning behavior

that meets the standard. In this paper, the feature fusion strategy is adopted to improve
the performance of the predictor. sE1 is defined as the eigenvalue of the behavior class
E1, and the eigenvalue set of the behavior class SE

{
sE1 , sE2 , . . . , sEN

}
. Table 1 shows the

notation interpretation.

3.2. Method

In this section, we will introduce the process of obtaining a new learning behavior
classification based on the EBC Model, and explain the process of preprocessing, feature
selection, feature fusion and model training based on the behavior classification data.
Figure 1 shows the main process of the work of this paper, including five core links:
(1) Data preprocessing: clean and standardize the original data of the data set. (2) Feature
selection: select the more relevant learning behaviors to reduce data redundancy and feature
dimensions. (3) Learning behavior classification: classify the original learning behavior
according to the E-learning classification model (EBC Model). (4) Feature fusion: a self-
adaptive feature fusion strategy is proposed to obtain categorical feature values. (5) Model
Training: construct a learning performance predictor based on a variety of machine learning
algorithms to explore the effective behavior feature space, and a self-adaptive feature fusion
strategy is used to improve the performance of the prediction model.
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Table 1. Definitions of related symbols.

Symbols Definition

A{a1, a2, . . . , aN} The original E-learning behavior sets A,
an is labels of E-learning behavior.

pmn
Original E-learning behavior data,
n represents the nth E-learning behavior, n = 1, · · · , N,
m represents the student user tag, m = 1, · · · , M.

p′mn Standardized E-learning behavior data.
A′{a′1, a′2, . . . . . . , a′N} Standard E-learning behavior set A′,

a′n is the label of standard E-learning behavior.
S{s1, s2, . . . , sN} Set of eigenvalues of learning behavior,

Sn represents the overall eigenvalue of the nth learning behavior.
En
{

a′1, a′3, . . . , a′i
} Learning behavior class En is composed of a′1, a′3, . . . , a′i ,

is part of the standard E-learning behavior set A′.

SE
{

sE1 , sE2 , . . . , sEN

} E-learning behavior category feature value set,
where SE1 represents the feature value after
the feature fusion of behavior category E1.

Figure 1. Framework of the proposed method.

3.2.1. Behavior Classification—E-Learning Behavior Classification Model (EBC Model)

The E-learning environment mainly includes three basic elements: learning system,
learning resources and learning community (teachers and peers). The interactive behavior
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of learners with the learning community, learning system, and learning resources is called
E-learning behavior. Constructing an E-learning behavior classification model is of great
significance to the collection and measurement of E-learning behavior, and the measurement
of E-learning behavior directly affects the analysis of learning behavior. Therefore, this
article proposes the E-learning Behavior Classification Model (EBC Model), which provides
a reference for standardized classification behavior.

As shown in Figure 2, in order to reflect the process of E-learning and the interaction
between learners and different objects, this article is based on the classification of Sun [24]
and Wu [25], and divides the interaction between learners and interactive objects in the
process of E-learning. For basic interaction behavior, knowledge interaction behavior, com-
munity interaction behavior and self-interaction behavior, each type of learning behavior
corresponds to a different learning stage. The following are the four learning behavior
categories classified according to the EBC Model:

Figure 2. E-learning behavior classification model-EBC Model.

Basic interactive behavior (BI): refers to the interactive behavior of learners and the
E-learning system, which occurs at the stage of learning, and reflects the degree of learning
input. It generally includes behaviors such as logging in to the learning platform, visit-
ing the main page of the course, and visiting the course activity interface. Knowledge
interaction behavior (KI): refers to the interaction behavior between learners and system
learning resources, which occurs in the knowledge acquisition stage, reflecting learners’
utilization and preference of learning resources, generally including searching, accessing,
downloading resources, watching videos, etc. behavior. Community interaction behavior
(CI): refers to the interactive behavior of learners, teachers, and peers. It occurs in the
interactive reflection stage and reflects the learner’s degree of learning interaction and
reflection. It is specifically manifested as participation in seminars, forum discussions,
collaborative communication and other behaviors. Self-interaction behavior (SI): refers
to the behavior of learners to process, encode, and memorize knowledge. It reflects the
achievement of learners’ goals. It occurs in the stage of learning consolidation and runs
through the entire process of learners’ self-construction of knowledge. The main explicit
behaviors include after-school testing and homework submission.

3.2.2. Data Preprocessing

(1) Data cleaning.

Due to various reasons, there may be duplicate records or duplicate fields, outliers,
and missing values in behavioral data. Duplicate items need to be removed, and then the
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abnormal behavior index value of each case is replaced with missing values, and finally the
respective missing values are filled in according to the average value of other students on
the corresponding behavior variables.

(2) Standardization.

The E-learning platform records multi-dimensional E-learning behaviors, and the
dimensions of different behavior variables are also different, resulting in large differences
between actual values, which do not have the meaning of direct comparison. In order to
facilitate subsequent analysis, this study uniformly converts the values of n preset learning
behaviors into standard scores (Z-Score), discards the case of not taking the exam (periodical
test or final exam), and replaces the remaining student behavior related data Scale and
normalize. Z-Score unifies data standards, improves data comparability, and weakens
data interpretability.

Define the original E-learning behavior data pmn, the standard learning behavior data
p′mn where m represents the student user tag, such as p21 represents the first type of learning
behavior data of the second student recorded by the E-learning platform. The calculation
formula of the standard E-learning behavior value p′mn is as follows:

p′mn =
pmn − µan

σan
(1)

Among them, an is the E-learning behavior label, µan represents the average value
of the nth E-learning behavior data, and σan represents the variance of the nth E-learning
behavior data.

3.2.3. Feature Selection

The feature selection method is to select high-quality features from the original features,
delete irrelevant and redundant features, and realize the process of reducing the feature
dimension of the data set. It can improve classification efficiency and accuracy, and has the
effect of denoising and preventing over-fitting. It is an important means to improve the
performance of machine learning algorithms.

(1) The entropy weight method determines the objective weight based on the vari-
ability of the index. Generally speaking, the smaller the information entropy of an index,
the greater the degree of variation of the representative index, and the more information it
provides, so it is used in feature selection. The greater the effect, the greater the weight,
and vice versa.

First, calculate the proportion of the behavior data of the ith student in the jth E-
learning behavior, the calculation formula of Qij is:

Qij =
pij

∑m
i=1 pij

(2)

where m represents m students, pij is the standardized E-learning behavior data. Then,
calculate the information entropy ej of E-learning behavior,

ej = − ln(m)−1
m

∑
i=1

Qij ln Qij (3)

and the weight of each behavior ωj is calculated through the information entropy,

ωj =
1− ej

∑n
j=1
(
1− ej

) (4)
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where n is the number of E-learning behaviors. Finally, calculate the comprehensive score
Fi of each E-learning behavior,

Fi =
n

∑
j=1

ωjkij (5)

where kij is the calculated relative deviation fuzzy matrix value.
This article selects the top eight E-learning behaviors with comprehensive scores,

and the experimental results are basically consistent with the results obtained by the
variance filtering method.

(2) Variance Threshold filters features through the variance of the features themselves.
For example, if the variance of a feature is small, it means that the samples have basically
no difference in this feature, so this feature has little effect on the distinction of samples.
Threshold represents the threshold of variance, that is, discarding all features with variance
less than Threshold. The calculation formula of the characteristic value Sn of the nth
learning behavior is as follows:

Sn =
∑m

1 (p′mn − µa′n)
2

m
(6)

Among them, µa′n represents the average value of the standardized E-learning behavior
data an, m = 1, · · · , M. Compare the elements in the traversal learning behavior feature
value set S with the variance threshold, and take the E-learning behavior feature value
greater than the threshold.

3.2.4. Feature Fusion

In order to solve the problem of low accuracy and high computational cost of tra-
ditional machine learning classification algorithms in the face of huge data sets, we use
feature fusion methods to further improve the performance of the predictor.

First, the behaviors are divided into different E-learning behavior clusters according to
the EBC Model, and n E-learning behavior clusters are generated. Any type of E-learning
behavior cluster contains different E-learning behaviors, such as En

{
a′1, a′3, . . . , a′i

}
etc.

Among them, a′i represents the E-learning behavior that complies with the E1 standard.
Then, feature fusion is performed on each E-learning behavior cluster to obtain the

corresponding E-learning behavior category feature value. Taking E1 as an example,
the calculation formula of its category eigenvalue is as follows:

SEn = λ ·max{s1, s2, . . . . . . , si}+ (1− λ) · ∑i
1 si
i

, λ =

{
0, Pass
1, Fail

(7)

Among them, si represents the feature value of a′i behavior, and SEn represents the E-
learning behavior category feature value of E1. λ represents the fusion mode of the student
behavior class.

The choice of λ is obtained by comparing the similarity of clusters. This paper classifies
students based on behavioral characteristics by K-means clustering. The key step in K-
means is to find the number of clusters with the best classification effect, namely K value.
First, calculate CH (Calinski-Harabaz) values at different K values, Calinski-Harbasz Score
calculates the score of the clustering results by evaluating the between-class variance and
within-class variance. It can be seen from Figure 3 that the CH value decreases as the K
value decreases. Therefore, the optimal K value should be 2.
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Figure 3. K kinds of clustering CH score chart.

Finally, principal component analysis (PCA) is performed on the characteristics of
students’ E-learning behaviors to reduce the dimension of students’ E-learning behavior
characteristics to two dimensions, and then perform visual analysis. Then, as can be seen
from Figure 4, it is found that the difference of the distance of the student features of the
red class is small, and the maximum value should be adopted for better fusion effect, that
is, λ = 1; the difference of the distance of the student features of the yellow class is large,
and the mean value should be adopted to achieve a better fusion effect, that is, λ = 0.

Figure 4. Visualizing clustering results.

In the clustering process, first define the eigenvectors of the behavior feature set of
students U{s1, s2, . . . , si}. Regarding how to measure the distance between students, we
choose the Euclidean distance as the distance calculation formula, as follows:

dist
(
si, sj

)
=

√√√√ M

∑
k=1

(
ci

k − cj
k

)2
,
(
si, sj ∈ U

)
(8)

Among them, dist
(
ui, uj

)
represents the Euclidean distance between students ui and uj,

and Ci
k represents the behavioral feature ck of learner ui. The process of K-means is to

randomly select K learners as cluster centers and iterate until the centers do not change.
In each iteration, the distance from each learner to the cluster center is calculated and the
learners are divided into the nearest clusters, and the cluster center is selected as the cluster
center point for the next iteration for each cluster.
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After t iterations, the learner is classified into K learner clusters by the K-means
algorithm, denoted as {P1, P2, . . . , PK}, where Pi represents the ith learner cluster. In this
paper, K = 2 is obtained through the analysis of Figures 3 and 4.

To compare the clustering similarity, define the predicted learner ut, calculate the
Euclidean distance between the center point of ut and PK, and divide it into the cluster with
the closest distance. PSi indicates which cluster Si belongs to. The formula is as follows:

Psi = {dist(si, Pi), dist(si, Pi)}, i ∈ [1, 2] (9)

The final value of λ is determined according to the value of PSi . If PSi belongs to the red
class in Figure 4, then λ = 1, and vice versa.

3.2.5. Model Training

Choose from seven classic machine learning methods in model training, including
SVC (R), SVC (L), Bayes, KNN (U), KNN (D), DT and Softmax. SE is used as the training
input data, mining the effective feature space and feature fusion are used to improve the
training effect.

4. Experimental Design

This experiment is based on our proposed E-learning classification model (EBC Model)
to construct a subset of feature behavior classes as the input variables of the model. By eval-
uating the performance of machine learning algorithms, comparing the prediction perfor-
mance of different feature subsets to mine the effective behavior feature space, and further
use feature fusion data processing methods to improve prediction performance. Data
mining and machine learning techniques can be applied to various learning analysis tasks.
In the case of student test score prediction, advanced classification methods are used to
analyze the “high risk” or “low risk” of students dropping out or failing the final exam.
The machine learning methods used include SVC (R), SVC (L), Bayes, KNN (U), KNN
(D), DT and Softmax. We design three sets of experiments. Experimental group one uses
un-dimensioned feature data to train the predictor, experimental group two uses the feature
data after dimensionality reduction to train the predictor, and experimental group three
uses the feature data after dimensionality reduction and feature fusion strategy to train
the predictor. In terms of performance evaluation indicators, we choose accuracy (ACC),
F1-score (F1) and kappa (K) and computation time (Time) as quantitative indicators.

We use Lenovo xiaoxin 14pro Laptop to build the experimental environment, the CPU
model is Intel Core i5 1135G7, the memory is 16G, the Windows 10 operating system,
and the Jupyter lab software are used for the experiment.

4.1. Data Source

Before comparing the effect of learning performance prediction on different input
combinations, it is first necessary to determine a suitable data set containing different
E-learning behavior data. The Open University Learning Analytics Dataset (OULAD) used
in this article to construct the research object is one of the most comprehensive and diverse
international public data sets related to student learning. The data set includes 7 course
modules from AAA to GGG, 22 courses in total, demographic data of 32,593 students
and interaction data between students and VLE. The development of this data set has
made a significant contribution to supporting research in the field of learning analysis,
through the collection and analysis of learner data to optimize learning resources and
provide personalized feedback. This experiment selects the DDD subject of STEM courses
in OULAD, and uses E-learning behavior data of 6272 learners who study DDD courses to
train the learning performance predictor. According to EBC Model, E-learning behaviors
are divided into their respective behavior categories, as shown in Table 2 .



Entropy 2022, 24, 722 14 of 22

Table 2. E-learning behavior and coding of DDD courses.

Number E-Learning
Behavior Behavior Interpretation Behavior

Coding
Behavior
Category Coding

01 homepage visit the homepage of the
learning platform H BI

02 page access the course page P BI
03 subpage access the course subpage S BI
04 glossary access glossary G KI
05 ouwiki query with Wikipedia W KI
06 resource search platform resources R KI
07 url access course URL link U KI
08 oucontent download platform resources T KI
09 forumng participate in Forum discussion F CI

10 oucollaborate participate in collaborative
communication C CI

11 ouelluminate participate in simulation seminars E CI
12 externalquiz complete extracurricular quizzes Q SI

4.2. Mining the Feature Space of Effective E-Learning Behavior
4.2.1. Experimental Program

Construct multiple predictors by controlling the input variables of the training data,
and enumerate 15 combinations of class eigenvalues. Experimental group one uses non-
dimension-reduced class eigenvalues to train the predictor, and experimental group two
uses dimensionality-reduced class eigenvalues to train the predictor. Analyze the perfor-
mance of experimental group one and experimental group two through evaluation indica-
tors (accuracy (ACC), F1-score (F1) and kappa (K), and mine the effective feature space.

4.2.2. Feature Selection

In this paper, the entropy weight method and the variance filtering method are used
to analyze the behavioral characteristics, as shown in Table 3, and the results obtained by
the two methods are basically the same. In order to ensure the diversity of features, at least
one feature is retained under each behavior class, and each behavior class is compressed
as much as possible. Therefore, we selected 8 characteristics as our research objectives,
excluding behavioral data with low correlation with learning performance. The feature
data of the E-learning behavior after feature selection is shown in Table 3.

Table 3. E-learning behavior feature data after feature selection.

Method Feature
& Feature Value Entropy Feature Feature Value Variance Filtering

Feature Feature Value Reserve

1 T (KI) 2.27 × 10−2 S (BI) 1.75 × 106 X
2 H (BI) 2.88 × 10−2 F (CI) 1.44 × 106 X
3 R (KI) 3.53 × 10−2 H (BI) 3.78 × 105 X
4 S (BI) 3.98 × 10−2 R (KI) 1.96 × 105 X
5 F (CI) 4.97 × 10−2 U (KI) 1.78 × 105 X
6 Q (SI) 5.40 × 10−2 T (KI) 5.93 × 104 X
7 U (KI) 6.52 × 10−2 W (KI) 2.43 × 104 X
8 W (KI) 6.70 × 10−2 Q (SI) 2.03 × 104 X
9 C (CI) 8.48 × 10−2 C (CI) 8.92 × 103 %

10 G (KI) 1.71 × 10−1 E (CI) 8.82 × 103 %

11 E (CI) 1.90× 10−1 G (KI) 4.71 × 103 %

12 P (BI) 1.92 × 10−1 P (BI) 7.76 × 101 %

4.2.3. Construct Input Variables for Training Data

In order to explore the effective learning behavior feature space and explore which of
the basic interaction behaviors, knowledge interaction behaviors, community interaction
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behaviors, and self-interaction behaviors are good for predicting students’ academic per-
formance, we use the exhaustive method to divide the four categories of the EBC Model
made 15 combinations to construct feature sets, namely F0-F14 (using the E-learning be-
havior data after feature reduction selection), and use them as input variables to construct
predictors, and comprehensively compared the performance indicators of each classifica-
tion predictor (accuracy (ACC), F1-score (F1), kappa (K), mining the best combination of
behavior category feature data. Table 4 shows the details of the complete behavior category
combination feature data.

Table 4. E-learning behavior feature set.

Feature Subset Behavior Category Coding Behavior Coding

F0 BI H, S
F1 KI W, R, U, T
F2 CI F
F3 SI Q
F4 BI, KI H, S, W, R, U, T
F5 BI, CI H, S, F
F6 BI, SI H, S, Q
F7 KI, CI W, R, U, T, F
F8 KI, SI W, R, U, T, Q
F9 CI, SI F,Q
F10 BI, KI, CI H, S, W, R, U, T, F
F11 BI, KI, SI H, S, W, R, U, T, Q
F12 BI, CI, SI H, S, F, Q
F13 KI, CI, SI W, R, U, T, F, Q
F14 BI, KI, CI, SI H, S, W, R, U, T, F, Q

4.3. Validation of Feature Fusion
4.3.1. Experimental Program

In order to further improve the performance of the predictor, we design experimental
group three to perform feature fusion on the class feature values after feature selection,
and then train the predictor. By comparing the predictor performance indicators (accuracy
(ACC), F1-score (F1), kappa (K) and computation time (Time)) of experimental group
three and experimental group two, it is judged whether the feature fusion strategy has an
improvement effect.

4.3.2. Feature Fusion

As shown in Table 4, taking F10 as an example, the input variables of experimental
group two have 7 eigenvalues H, S, W, R, U, T, F, in experimental group 3, we perform
eigenvalue fusion, according to Equation (7), the input variable is fused from 7 features into
BI, KI, CI. According to the above rules, a predictor for a combination of 14 other categories
is constructed.

4.4. Realization and Evaluation of the Predictor

The input data of the model uses the characteristic data contained in the input indi-
cators in Table 3, and the performance of 7 different classification methods is analyzed
and compared to find the best prediction indicators for predicting course performance.
This experiment selects 7 machine learning algorithms that are currently widely used in
classification tasks in the learning and prediction field: SVC (R), SVC (L), Bayes, KNN
(U), KNN (D), DT and Softmax. Select the commonly used indicators currently used to
evaluate predictors, including accuracy (ACC), F1-score (F1), kappa (K) and computation
time (Time).The three experimental groups adopt the method of five-fold cross-validation.
Each data sets is divided into the same five groups, and four of them are used in a cycle
as the training set, and the other is used as the test set for prediction. The experimental
results use the mean of five-fold cross-validation, and the output value of the predictor is
“qualified” or “unqualified”.
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5. Experimental Discussion and Analysis

This section gives the results of the above experiments, including the accuracy (ACC),
F1-score (F1), kappa (K) and computation time (Time) required for each experimental group
under 7 machine learning methods. Through the analysis of these data mining effective
behavior feature space, and verify the effectiveness of our feature fusion method.

5.1. Mining the Feature Space of Effective E-Learning Behavior

This paper designs an E-learning behavior feature set based on the EBC Model. In order
to explore the impact of different behavior feature subsets on the prediction effect of learning
performance, the performance of 7 different classification methods is used and compared.
The performance of the feature subset under the seven algorithms is shown in Figures 5–7.
The experiment adopts the five-fold cross-validation method, and the values of accuracy,
F1-score and kappa are the average values of the five-fold cross-validation. Figures 5–7
show the maximum, upper quartile, mean (red in the figure), lower quartile, and minimum
of the predicted effects of the seven algorithms.

Figure 5. Accuracy of behavioral feature subsets under 7 algorithms.

Figure 6. F1-score of behavioral feature subsets under 7 algorithms.
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Figure 7. Kappa coefficients of behavioral feature subsets under 7 algorithms.

In general, the three indicators all give similar experimental results. The accuracy of
all feature subsets is in the range of 80.10–91.92%, F1-score is in the range of 0.8495–0.9445,
and kappa is in the range of 0.4530–0.7960.In terms of the best performing feature subset,
F10 obtained the best prediction effect on SVC (L), 91.92%, 0.9445, 0.7960, respectively,
followed by F11 with 91.89%, 0.9443, 0.7949, respectively. In addition, F10, F11 performed
best on averages under 7 algorithms, with 90.73%, 90.57% accuracy, and 0.9363, 0.9360
F1-score and 0.7655, 0.7569 kappa, respectively. Therefore, we choose F10 and F11 as the
effective E-learning behavior feature space. Generally speaking, after feature selection, less
important behaviors have been eliminated. F14 with all behavior characteristics should be
the best predictor. However, the overall performance of F14 is not as good as F11. This may
be due to social interaction behaviors. The forum discussion behavior included in CI has
many distracting items, such as publishing forum information that is not related to learning,
and deviating from the learning theme during discussion. In addition, questions in the
forum do not require immediate answers, which may cause delays and affect learning. This
kind of hard-to-control learning behavior may not be the best predictor. F11 includes basic
interaction behavior, knowledge interaction behavior, and self-interaction behavior. F10
includes basic interaction behavior, knowledge interaction behavior and forum interaction
behavior. In addition, F4 includes basic interaction behavior and knowledge interaction
behavior. In online learning, basic interaction behaviors such as accessing platform pages
and course pages, and knowledge interaction behaviors such as searching for resources and
querying Wikipedia have a significant impact on E-learning performance. It can be seen
that the human-computer interaction behavior in E-learning can better reflect the learning
status of learners. Teachers should design questions suitable for different levels of learners
to promote students’ active thinking and communication.

5.2. Validation of Feature Fusion

Based on the experimental results of Experiment 1, this paper fuses features of the
effective E-learning behavior feature spaces F10 and F11 to improve the performance of
the predictor. Three experimental groups are designed and 6 species (42 types) learning
performance predictors are constructed based on 7 types of machine learning algorithms,
and analyze whether the feature fusion strategy can improve the prediction effect according
to the prediction effects of these predictors.In order to verify the stability of the algorithm,
the three experimental groups all adopt the five-fold cross-validation method, and the
values of accuracy, F1-score and kappa are all five. The average value of folded cross-
validation, the results are shown in Figures 8–10.
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Figure 8. Accuracy of the three groups of prediction models.

Figure 9. F1-score of the three groups of prediction models.

Figure 10. kappa of the three groups of prediction models.
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From Figures 8–10 comparing the indicators of experimental groups 1, 2, and 3, it can
be concluded that, in general, F10 and F11 have the best predictive effect in experimental
group 3, which verifies the effectiveness of the feature fusion method.The feature subset
F10 in group 3 shows the highest prediction performance, the accuracy, F1-score and kappa
of SVC (R) are 98.44%, 0.9893 and 0.9600, respectively. The data of experimental group 1
without any processing obtained the worst experimental results. The average accuracy,
F1-score, and kappa values of F10 and F11 under the 7 algorithms were 82.65%, 0.8809,
0.5624 and 81.95%, 0.8764, 0.5432, respectively. The accuracy of experimental group 2
was improved after feature selection, obtaining 90.73%, 0.9363, 0.7655 and 90.57%, 0.9360,
0.7569, respectively. The experimental group 3 uses the feature fusion strategy to further
integrate the behaviors of the same category in the feature subset based on the idea of
behavior classification, and the indicators under the 7 machine learning algorithms obtain
the average accuracy, average F1-score, and average kappa values of F10 and F11 are
96.73%, 0.9775, 0.9177 and 96.89%, 0.9786, 0.9216, respectively. Compared with group 2,
group 3 increased by 6.61%, 4.40%, 19.88% and 6.98%, 4.55%, 21.76%, respectively.

In order to comprehensively compare and analyze the prediction performance of the
three groups of experiments, Table 5 gives the average ACC, F1-score, kappa and total
computation time of the 15 feature subsets in group 1, group 2, and group 3 under 7
classification algorithms. The results in bold represent the best predicted performance
for each row (that is, each algorithm) in the table. The results show that the prediction
performance of group 2 after feature selection is significantly better than that of group 1,
and group 3 further improves the prediction effect of group 2. Table 5 also presents the
average performance of the 7 algorithms. Compared with group 1, the accuracy of group 2
is from 81.30% to 89.09%, the F1-score is from 0.872 to 0.925, and the kappa is from 0.523
to 0.724. Group 3 is further improved relative to Group 2, with an accuracy of 94.59%,
F1-score of 0.963, and kappa of 0.862. In terms of total computation time, most methods
obtained the shortest total computation time in group 3, which shows that the method
proposed in this paper can effectively improve the computational speed of the model while
optimizing the prediction effect.

It can be seen that the performance improvement strategy proposed in this paper has
achieved excellent results in real scenarios. The use of feature fusion strategy to build a
learning performance predictor can not only reduce the dimension of feature data, but also
the prediction performance is significantly better than the traditional methods that only
use data preprocessing or only use feature selection strategy on the basis of preprocessing
to build a learning performance predictor.

Table 5. The average accuracy (ACC, %), F1-score (F1), kappa (K), and total computation time (T) of
the three sets of prediction models.

Method
Group 1 Group 2 Group 3

ACC F1 K T ACC F1 K T ACC F1 K T

SVC (R) 83.17% 0.887 0.563 3.620 90.14% 0.932 0.751 4.497 96.08% 0.973 0.899 3.982
SVC (L) 81.65% 0.873 0.537 2.032 89.70% 0.927 0.749 1.852 95.14% 0.966 0.882 1.573
BAYES 81.67% 0.877 0.523 3.254 89.51% 0.928 0.735 1.501 95.28% 0.968 0.877 1.511
KNN (U) 80.20% 0.863 0.510 1.767 88.63% 0.923 0.706 0.449 94.68% 0.964 0.863 0.390
KNN (D) 79.92% 0.860 0.504 0.688 88.37% 0.921 0.701 0.121 93.99% 0.959 0.846 0.066
DT 80.90% 0.873 0.495 0.038 87.43% 0.914 0.677 0.018 91.75% 0.944 0.786 0.016
SOFTMAX 81.58% 0.873 0.532 0.116 89.82% 0.929 0.750 0.097 95.19% 0.967 0.880 0.065
AVE 81.30% 0.872 0.523 1.645 89.09% 0.925 0.724 1.219 94.59% 0.963 0.862 1.086

5.3. Experimental Efficiency

In order to verify that the method proposed in this paper can effectively reduce the
computational cost of the model, we recorded the average computation time of the three
groups of prediction models for all input indicators, as shown in Figure 11. As can be
seen from the figure, group 2 and group 3 are greatly improved compared to group 1.
The average calculation time of F0–F14 of group 1 is in the interval of 0.0864 s to 0.1351 s,
group 2 is in the interval of 0.0749 s to 0.0888 s, and group 3 is in the interval of 0.0657 s
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to 0.0813 s. The average of the total time required for the prediction of all feature subsets
under each algorithm in the three groups of experiments is1.6450 s, 1.2194 s, 1.0862 s,
respectively. The computational speed of group 2 is 25.87% higher than that of group 1,
and the computational speed of group 3 is 10.92% higher than that of group 2. The results
show that our work can optimize the model structure, reduce the complexity of the model,
and increase the speed of computation.

Figure 11. Computation time of the three groups of prediction models.

6. Conclusions

Learning analysis aims to explore data-based learning diagnosis, prediction and
intervention, which can help better understand and optimize the learning process and
learning environment. In the context of solving the problem of predicting student test
scores, this article attempts to find the most important behavior categories for learning
performance prediction through different machine learning techniques from the perspective
of behavior classification. This article proposes an E-learning behavior classification model
(EBC Model) on the basis of summarizing existing research. The input data of the model
considers the combination of behavior categories based on the EBC Model. In addition,
different from traditional data processing methods, a new learning behavior feature fusion
strategy is proposed, and its effectiveness is comprehensively analyzed and compared
using machine learning technology. Through the data analysis of OULAD, this research
digs out the effective E-learning behavior feature space as the basic interaction behavior and
knowledge interaction behavior. Compared with interpersonal interaction (learners interact
with peers, teachers, and themselves), human-computer interaction (learners interact with
the system and learning content) has a greater impact on performance, which shows that
online education does not have high requirements for students’ collaborative learning. The
initiative of students to use the E-learning platform needs to be strengthened. Secondly,
the experiment verified that the feature fusion strategy proposed in this paper reduces
the dimension of feature data, can simplify the prediction model, extract more effective
behavioral data for the model, and obtain better prediction results. This article made a
new attempt based on the EBC Model, and the conclusions reached are slightly different
from previous related studies. Most scholars believe that social interaction behaviors are
significantly related to academic performance. The reason for the different conclusions
may be that the density distribution of behavioral data in different data sets is different,
and the measurement of student behavior is different, which affects the prediction effect
of learning performance. At the same time, the research results show that the use of our
data processing method can predict students’ course performance with high precision, and
can provide a more reliable method for education practitioners to analyze the connection
between educational phenomena and results.

Our future goal is to further optimize the EBC Model, consider multi-feature learner
data, migrate the model to other E-learning platforms to build predictors, use the re-
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sults of learning predictions to further build a learning diagnosis model, and carry out
corresponding level interventions according to the level of prediction.
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