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Abstract: Probabilities of the outcomes of consecutive quantum measurements can be obtained by
construction probability amplitudes, thus implying the unitary evolution of the measured system,
broken each time a measurement is made. In practice, the experimenter needs to know all past
outcomes at the end of the experiment, and that requires the presence of probes carrying the corre-
sponding records. With this in mind, we consider two different ways to extend the description of a
quantum system beyond what is actually measured and recorded. One is to look for quantities whose
values can be ascertained without altering the existing probabilities. Such “elements of reality” can
be found, yet they suffer from the same drawback as their EPR counterparts. The probes designed to
measure non-commuting operators frustrate each other if set up to work jointly, so no simultaneous
values of such quantities can be established consistently. The other possibility is to investigate the
system’s response to weekly coupled probes. Such weak probes are shown either to reduce to a
small fraction the number of cases where the corresponding values are still accurately measured,
or lead only to the evaluation of the system’s probability amplitudes, or their combinations. It is
difficult, we conclude, to see in quantum mechanics anything other than a formalism for predicting
the likelihoods of the recorded outcomes of actually performed observations.

Keywords: quantum measurements; unitary evolutions; quantum elements of reality

PACS: 03.65.Ta; 03.65.AA; 03.65.UD

1. Introduction

In [1], Feynman gave a brief yet surprisingly thorough description of quantum be-
haviour. Quantum systems are intrinsically stochastic, calculation of probabilities must
rely on complex valued probability amplitudes, and it is unlikely that one will be able to
get a further insight into the mechanism behind the formalism. One may ask two separate
questions about the view expressed in [1]. Firstly, is it consistent? There have been recent
suggestions [2] that quantum mechanics may be self-contradictory, and that its flaws can
be detected from within the theory, i.e., by considering certain thought experiments. In [3],
we have, argued that the proposed “contradictions” are easily resolved if Feynman’s de-
scription is adopted. Secondly, one can ask if the rules can be explained further? There
have been proposals of “new physics” based on such concepts as time symmetry, weak
measurements, and weak values (see [4–6], and Refs. therein). Recently, we have shown
the weak values to be but Feynman’s probability amplitudes, or their combinations [7,8].
The ensuing paradoxes occur if the amplitudes are used inappropriately, e.g., as a proof of
the system’s presence at a particular location [9], a practice known for quite some time to
be unwise (see [10] and Ch. 6 pp. 144–145 of [11]). It is probably fair to say that Feynman’s
conclusions have not been successfully challenged to date, and we will continue to rely on
them in what follows.

The approach of [1] is particularly convenient for describing situations where several
measurements are made one after another on the same quantum system. Such consecutive
or sequential measurements have been studied by various authors over a number of
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years [12–16], and we will continue to study them here. The simplest case involves just
two observations, of which the first prepares the measured system in a known state, and
the second yields the value of the measured quantity “in that state.” Adding intermediate
measurements between these two significantly changes the situation, as it brings in a
new type of interference the measurements can now destroy. Below we will discuss two
particular issues which arise in the analysis of such sequential measurements. One is the
break down of the unitary evolution of the measured system, which occurs each time a
measurement is made. Another is the possibility of extending the description of the system
beyond what is actually being measured. This can be done, e.g., by looking for “elements of
reality”, i.e., the properties or values which can be ascertained without changing anything
else in the system’s evolution. This can also be done by studying a system’s response
to weekly coupled inaccurate measuring devices. It is not our purpose here to dispute
the findings made by the authors using alternative approaches (see, for example, [5]).
Rather we we want to see how the above issues can be addressed in conventional quantum
mechanics, as presented in [1].

The rest of the paper is organised as follows. In Section 2, we recall the basic rules and
discuss the broken unitary evolution of the measured system, In Section 3, we note that,
in order to be able to gather the statistics, the experimenter would need the records of the
previous outcomes. The system’s broken evolution can then be traded for an unbroken
unitary evolution of a composite {system + the probes which carry the records}. In Section 4,
we discuss two different (and indeed well known) types of the probes. In Section 5, we
discuss the quantities whose additional measurements would not alter the likelihoods of all
other outcomes. However, like their EPR counterparts, these “elements of reality” cannot
be observed simultaneously. In Section 6, we illustrate this on a simple two-level example.
In Section 7, we look at what would happen in an attempt to measure two of such quantities
jointly. Section 8 asks if something new can be learnt about the system by minimising the
perturbation incurred by the probes. Section 9 contains a summary of our conclusions.

2. Feynman’s Rules of Quantum Motion: Broken Unitary Evolutions

Consider a system (S) with which the theory associates N-dimensional Hilbert space
HS. The L + 1 quantities Q̂` to be measured at the times t0. . . < t`. . . < tL are repre-
sented by Hermitian operators Q̂` acting in HS, each with M` ≤ N distinct real valued
eigenvalues Q`

m`

Q̂` =
M`

∑
m`=1

Q`
m`

N

∑
n`

∆(Q`
m`
− 〈q`n`

|Q̂`|q`n`
〉)|q`n`

〉〈q`n`
| ≡

M`

∑
m`=1

Q`
m`

π̂`
m`

, (1)

where |q`n`
〉, (〈q`n`

|q`n′`〉 = δn`n′`
, n` = 1, . . .N) are the measurement bases, ∆(X − Y) = 1 if

X = Y, and 0 otherwise, and π̂m`
is the projector onto the eigen-subspace, corresponding

to an eigenvalue Q`
m`

. The first operator Q̂0 is assumed to have only non-degenerate
eigenvalues, i.e., Q̂0 = ∑N

n0=1 Q0
n0
|q0

n0
〉〈q0

n0
|. This is needed to initialise the system, in order

to proceed with the calculation.
The possible outcomes of the experiment are, therefore, the sequences of the observed

values QL
mL

..Q0
n0

, and one wishes to predict the probabilities (frequencies) with which a
particular real path {QL

mL
. . .← Q`

m`
. . .← Q0

n0
}would occur after many trials. Following [1],

one can obtain these obtained by constructing first the system’s virtual paths {qL
nL

. . . ←
q`n`

. . . ← q0
n0
}, connecting the corresponding states in HS, and ascribing to each path a

probability amplitude (we use h̄ = 1)

A(qL
nL

. . .← q`n`
. . .← q0

n0
) =

L−1

∏
`=0
〈q`+1

n`+1
|ÛS(t`+1, t`)|q`n`

〉, (2)
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where ÛS(t`+1, t`) = exp[−i
∫ t`+1

t`
ĤS(t′)dt′] is the system’s evolution operator (the time

ordered product is assumed if the system’s hamiltonian operators ĤS(t′) do not commute
at different times, [ĤS(t′), ĤS(t′′)] 6= 0). We will assume that all Hermitian operators
Q̂` = (Q̂`)† can be measured in this way. We will also allow for all unitary evolutions,
Û†

S(t`+1, t`) = Û−1
S (t`+1, t`).

Combining the virtual paths according to the degeneracies of the intermediate eigen-
values Q`

m`
, 1 ≤ ` ≤ L− 1, yields elementary paths, endowed with both the amplitudes

A(qL
nL

. . .← Q`
m`

. . .← q0
n0
) = (3)

N

∑
n1 ...nL−1=1

L−1

∏
`=1

∆(Q`
m`
− 〈qn`

|Q̂`|qn`
〉)A(qL

nL
. . .← q`n`

. . .← q0
n0
).

and the probabilities,

p(qL
nL

. . .← Q`
m`

. . .← q0
n0
) = |A(qL

nL
. . .← Q`

m`
. . .← q0

n0
)|2 (4)

We note that the amplitudes in Equation (3) depend only on the projectors π̂`
m`

in Equation (2),
and not on the corresponding eigenvalues Q`

m`
. To stress this, we are able to write

A(qL
nL

. . .← Q`
m`

. . .← q0
n0
) = A(qL

nL
. . .← π̂`

m`
. . .← q0

n0
). (5)

Finally, summing p(qL
nL

. . .← Q`
m`

. . .← q0
n0
) over the degeneracies of the last operator Q̂L,

yields the desired probabilities for the real paths,

P(QL
mL

. . .← Q`
m`

. . .← Q0
n0
) =

N

∑
nL

∆(QL
mL
− 〈qL

nL
|Q̂L|qL

nL
〉)p(qL

nL
. . .← π̂`

m`
. . .← q0

n0
). (6)

Note that there is no interference between the paths leading to different (i.e., orthogonal)
final states |qL

nL
〉, even if they correspond to the same eigenvalue QL

mL
[1]. This is necessary,

since an additional (L+ 2)-nd measurement of an operator Q̂L+1 = ∑N
nL=1 QL+1

nL+1
|qL

nL+1
〉〈qL

nL+1
|

immediately after t = tL would destroy any interference between the paths ending in dif-
ferent |qL

nL
〉s at t = tL. Since future measurements are not supposed to alter the results

already obtained, one never adds the amplitudes for the final orthogonal states [1]. Note
that the same argument cannot be repeated for the past measurements at t` < tL.

It may be convenient to cast Equation (6) in an equivalent form,

P(QL
mL

. . .← Q`
m`

. . .← q0
n0
) = 〈Φ(π̂L

mL
. . .← π̂`

m`
. . .← q0

n0
|Φ(π̂L

mL
. . .← π̂`

m`
. . .← q0

n0
)〉, (7)

where

|Φ(π̂L
mL

. . .← π̂`
m`

. . .← q0
n0
〉 =

L

∏
`=1

π̂`
m`
(t`, t0)|q0

n0
〉, (8)

π̂`
m`
(t`, t0) ≡ Û−1

S (t`, t0)π̂
`
m`

ÛS(t`, t0),

and a unitary evolution of the initial state |q0
n0
〉 with the system’s evolution operator Ûs is

seen to be interrupted at each t = t`. check that the probabilities in Equation (6) sum, as
they should, to unity.

It is worth bearing in mind the Uncertainty Principle which, we recall, states that [1]
“one cannot design equipment in any way to determine which of two alternatives is taken, without,
at the same time, destroying the pattern of interference”. In particular, this means that if two or
more virtual paths in Equation (2) are allowed to interfere, it must be absolutely impossible
to find out which one was followed by the system. Moreover, one will not even be able to
say that, in a given trial, one of them was followed, while the others were not (see [10] and
Ch. 6 pp. 144–145 of [11]).
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With the basic rules laid out, and an example given in Figure 1, we will turn to
practical realisations of an experiment involving several consecutive measurements of the
kind just described.

|q01>	

|q11>	 |q12>	 |q13>	

|q21>	 |q23>	|q22>	

Q0
1	

Q1
1	 Q1

2	

Q2
1	 Q2

2	

a)	 b)	

Time	

t0	

t1	

t2	

Figure 1. Three measurements, L = 3, are made on a three-level system, N = 3. The first one,
yields an outcome Q0

1 and prepares the system in a state |q0
1〉. Two other operators have degenerate

eigenvalues, Q̂1|q1
1,2〉 = Q1

1|q1
1,2〉, (M1 = 2), and Q̂2|q2

2,3〉 = Q2
2|q1

2,3〉, (M2 = 2). (a) Nine virtual paths
in Equation (3). (b) Four real paths (i.e., the observed sequences Q2

m2
← Q1

m1
← Q0

1), m1, m2 = 1, 2.
Different colours are used to relate the virtual paths to the observed outcomes.

3. The Need for Records: Unbroken Unitary Evolutions

In an experiment, described in Section 2, there are N ×M1 ×M2. . . . . .×ML possible
sequences of observed outcomes. At the end of each trial, the experimenter identifies the
real path followed by the system, path = {QL

mL
. . . ← Q`

m`
. . . ← Q0

n0
}, and increases by

1 the count in the corresponding part of their inventory, K(path) → K(path) + 1. After
K >> 1 trials, the ratios K(path)/K will approach the probabilities in Equation (6), from
which all the quantities of interest, such as averages or correlations, can be obtained later.

There is one practical point. In order to identify the path, an Observer must have
readable records of all past outcomes once the experiment is finished, i.e., just after t = tL.
There are two reasons for that. Firstly, quantum systems are rarely visible to the naked
eye, so something accessible to the experimenter’s senses is clearly needed. Secondly,
and more importantly, the condition of the system changes throughout the process [cf.
Equation (8)], and its final state simply cannot provide all necessary information. In other
words, one requires L probes which copy the system’s state at t = t`, ` = 0, 1, . . .L and
retain this information till the end of the trial. It is easy to see what such probes must do.
The experiment begins by coupling the first probe to a previously unobserved system at
t = t0. To proceed with the calculation, we may assume that just t0 the initial state of a
composite system + probes is

|ΨS+Probes(0)〉 = |q0
n0
〉|D0(n0)〉. . .|D`(0)〉. . .|DL(0)〉 ≡ |q0

n0
〉|ΨProbes(0)〉 (9)

where |D`(0)〉 is the initial state of the `-th probe which, if found changed into |D`(m`)〉,
〈D`(m`)|D`(m′`)〉 = δm`m′`

, would tell the experimenter that the outcome at t = t` was Q`
m`

.

Note that the first probe D0 has already been coupled to a previously unobserved system
and produced a reading n0, thus preparing the system in a state |q0

n0
〉.

The composite would undergo unitary evolution with an (yet unknown) evolution
operator ÛS+Probes(tL, t0). The rules of the previous section still apply, albeit in a larger
Hilbert space, and with only two (L = 1) measurements, of which the first one prepares the
entire composite in the state (9). For simplicity, we let the last operator have non-degenerate
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eigenvalues, ML = N. By (6), the probability to have an outcome QL
nL

. . .← Q`
m`

. . .← Q0
n0

is

P̃(QL
nL

. . .← Q`
m`

. . .← Q0
n0
) = (10)

N

∑
n′L=1

∣∣∣〈qL
n′L
|〈ΨProbes(nL, . . .m`. . .n0)|ÛS+Probes(tL, t0)|ΨS+Probes(0)〉

∣∣∣2
where

|ΨProbes(nL, . . .m`. . .n0)〉 = |DL(nL)〉
L−1

∏
`=1
|D`(m`)〉|D0(n0)〉 (11)

We want the probabilities in Equation (10) (the ones the experimenter measures) and the
probabilities in Equation (6) (the ones the theory predicts) to agree. Consider again the
scenarios {qL

nL
. . .← Q`

n`
. . .← q0

n0
} in Equation (3). In the absence of the probes they lead to

the same final state, |qL
nL
〉, interfere, and cannot be told apart, according to the Uncertainty

Principle. If we could use the probes to turn these scenarios into exclusive alternatives [1],
e.g., by directing them to different (orthogonal) final states in the larger Hilbert space,
Equation (6) for the system subjected to L + 1 measurements would follow. In other words,
we will be able to trade a broken evolution in a smaller spaceHS [cf. Equation (8)] for an
uninterrupted unitary evolution in a larger Hilbert space HS+Probes. For this we need an
evolution operator ÛS+Probes(tL, t0) such that

〈qL
n′L
|ÛS+Probes(tL, t0)|ΨS+Probes(0)〉 = δn′LnL

× (12)

M1 ...ML−1

∑
m1 ....mL−1=1

AS(qL
nL

. . .← Q`
m`

. . .← q0
n0
)|ΨProbes(nL, . . .m`. . .n0)〉,

where the orthogonal states |ΨProbes(nL, . . .m`. . .n0)〉 play the role of “tags”, by which
previously interfering paths {qL

nL
. . . ← Q`

m`
. . . ← q0

n0
} can now be distinguished (see

Figure 2).
For the reader worried about the collapse of the wave function we note that the same

probabilities can be obtained in two different ways. Either the evolution of the wave
function of the system only is broken every time an instantaneous measurement is made, as
happens in Equation (8), or the evolution of the system + the probes continues until the end of
the experiment as in Equation (12).

Finally, we note the difference between producing all L records, but not using or
having no access to some of them, and not producing some of the records at all. There is
also a possibility of destroying, say, the `-th record by making a later measurement on a
composite {the system+ the `-th probe} [17,18]. In this case, the composite becomes the new
measured system, and the rules of the previous section still apply.
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|q01>|D0(1)>|D1(0)>|D1(0)>	

Time	

t0	

t2	

|q
21 >|D

0(1)>|D
1(1)>|D

2(1)>	

|q
22 >|D

0(1)>|D
1(1)>|D

2(2)>	

|q
23 >|D

0(1)>|D
1(2)>|D

2(3)>	

|q
21 >|D

0(1)>|D
1(3)>|D

2(1)>	

|q
22 >|D

0(1)>|D
1(3)>|D

2(2)>	

|q
23 >|D

0(1)>|D
1(3)>|D

2(3)>	

|q
23 >|D

0(1)>|D
1(1)>|D

2(3)>	

|q
21 >|D

0(1)>|D
1(2)>|D

2(1)>	

|q
22 >|D

0(1)>|D
1(2)>|D

2(2)>	

Figure 2. The measurements in Figure 1 seen from a different perspective. Just after t = t2, the
experimenter needs to compare three records, in order to determine which of the real paths in
Figure 1b was actually taken. This information is encoded in the final conditions of the three probes,
D`, ` = 0, 1, 2. The composite {system + probes} undergoes an unbroken unitary evolution for
t0 ≤ t ≤ t2. There are nine virtual paths ending in distinguishable states of the composite. The same
colors are used to indicate which of the nine path probabilities should be added to obtain likelihoods
of the four real scenarios in Figure 1b.

4. Two Kinds of Probes

We note next that it does not really matter for the theory how exactly the records
are produced, as long as the interference between the virtual paths is destroyed, and
Equation (12) is satisfied. The states |D`〉 in Equation (9) may equally refer to devices, to
the Observer or the Observers’ memories [17,19], or to the notes the Observers have made
in the course of a trail, [18]. We will assume for simplicity that the probes have no own
dynamics, and retain their states after having interacted with the measured system,

ĤS+Probes = ĤS + Ĥint, ĤProbes = 0. (13)

Several interactions which have the desired effect are, in fact, well known, and we will
discuss them next. There are at least two types of probes consistent with Equation (12).
They require different treatments, and we will consider them separately.

4.1. Discrete Gates

For the `-th probe consider a register of M` two-level sub-systems, each prepared in
its lower states |1m`

〉

|D`(0)〉 =
M`

∏
m`=1

|1m`
〉. (14)

The probe, designed to measure a quantity Q̂` = ∑M`
m`=1 Q`

m`
π̂`

m`
, is coupled to the sys-

tem via

Ĥ`
int = −(π/2)

M`

∑
m`=1

π̂`
m`

σ̂`
x(m`)δ(t− t`), (15)
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where σ̂`
x(m`) is the Pauli matrix, which acts on the m`-th sub-system in the usual way,

σ̂`
x(m`)|1m`

〉 = |2m`
〉. Since the individual terms in Equation (15) commute, the evolution

operator of the {System + `− th Probe} over a short interval [t` − ε, t` + ε], ε→ 0 is

Û`
int(t`) = exp

[
i(π/2)

M`

∑
m`=1

π̂`
m`

σ̂`
x(m`)

]
= i

M`

∑
m`=1

π̂`
m`

σx(m`). (16)

The probe entangles with the system in the required way,

Û`
int(t`)|ψS〉|D`(0)〉 = i

M`

∑
m`=1

π̂`
m`
|ψS〉|D`(m`)〉, (17)

where in |D`(m`)〉 is obtained from |D`(0)〉 by flipping the state of the m`-th sub-system,

|D`(m`)〉 ≡ |2m`
〉 ∏

k` 6=m`

|1k`〉. (18)

We note that, whatever the state |ψS〉, one of the subsystems will change its condition (the
system will be found somwhere). We note also that in each trial only one subsystem will
be affected (the system is never found simultaneously in two or more places). The full
evolution operator is, therefore, given by

ÛS+Probes(tL, t0) = Û`
int(tL)

L−1

∏
`=0

ÛS(t`+1, t`)Û`
int(t`) (19)

where, as before, we we assumed M0 = ML = N, π̂n0 = |qn0〉〈qn0 |, and π̂nL = |qnL〉〈qnL |.
The experimenter prepares all probes in the states (14) and, once the experiment is finished,
only needs to check which sub-system of D`, say, the m`-th, has changed its state. This will
tell him/her that the value of Q̂` at t = t` was Q`

m`
. As a simple example, Figure 3 shows an

outcome of five measurements made on a four-state system. There the first probe, capable
of distinguishing between all four states prepares the system in a state |q0

n0〉
. The second

probe cannot tell apart the third and the second states, so π̂1
1 = |q1

1〉〈q1
1|, π̂1

2 = |q1
2〉〈q1

2|,
and π̂1

3 = |q1
3〉〈q1

3|+ |q1
4〉〈q1

4|, and so on. The sequence of the measured valued obtained
by inspecting the probes at t > t4 is Q4

4 ← Q3
2 ← Q2

2 ← Q1
3 ← Q0

1. After many trials the
sequence will be observed with a probability P(Q4

4 ← Q3
2 ← Q2

2 ← Q1
3 ← Q0

1) = |AS(q4
4 ←

π̂3
2 ← π̂2

2 ← π̂1
3 ← q0

1)|2 [cf. Equation (5)]
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	1	 	1	
	

	1	
	

1	
	

	1	
	

		1	
	

				1	
	

		1	
	

		1	
	

				1	
	

	1	
	

				1	
	

	1	
	

	1	
	

	1	
	

	1	
	

	1	
	

	2	
	

	1	
	

	1	
	

	1	
	

	1	
	

	1	
	

				2	
	

	1	
	

	2	
	

				1	
	

1	
	

				2	
	

	1	
	

	1	
	

	1	
	

	1	
	

	2	
	

Before	 After	 Probe	1	
Probe	2	Probe	3	 		Probe	4	Probe	5	

System’s		states		

a)	 b)	

Figure 3. Five consecutive measurements of the quantities Q̂0, Q̂1. . .Q̂4 are made on a four-level
system (N = 4). Some of the eigenvalues are degenerate. Each probe consists of M` ≤ 4 [cf.
Equation (15)] two-level sub-systems. (a) Initially sub-systems of all probes are prepared in their
lower states |1〉. (b) At the end of a trial some these states are found changed, and a record {Q4

4 ←
Q3

2 ← Q2
2 ← Q1

3 ← Q0
1} is produced.

4.2. Von Neumann’s Pointers

In classical mechanics one can measure the value of a dynamical variable Q(x, p) at t0
by coupling the system to a “pointer”, a heavy one-dimensional particle with position f
and momentum λ. The full Hamiltonian is given by HS(x, p) + λQ(x, p)δ(t− t0), and at
t = t0 the pointer is rapidly displaced by δ f = Q(x(t0), p(t0)), which providies the desired
reading. What happens to the system, depends on the pointer’s momentum, which remains
unchanged by the interaction. If λ = 0, the system continues on its way unperturbed. If
λ 6= 0, the system experiences a sudden kick, whereby its position and momentum are
changed by ∆x = λ∂pQ(x(t0), p(t0)) and ∆p = λ∂xQ(x(t0), p(t0)), respectively.

The quantum version of the pointer [20] employs a coupling Ĥint = g(t)λ̂Q̂, where ˆ̀,
〈 f ′|λ̂| f 〉 = −iδ( f − f ′)∂ f is the pointer’s momentum operator, and Q̂ = ∑m Qmπ̂m is the
(system’s) operator to be measured. The function g(t) = 1/τ can be chosen constant for
the duration of the measurement τ, t0 ≤ t ≤ t0 + τ, and zero otherwise. It tends to a Dirac
delta δ(t− t0) for an instantaneous (impulsive) measurement, where τ → 0. For a system
whose state |ψS〉 lies in the eigen sub-space of a projector π̂m, the action of Ĥint results in a
spatial shift of the pointer’s initial state |G(0)〉 by Qm,

exp(−iĤintτ)|ψs〉|G(0)〉 = |ψs〉
∫

G( f −Qm)| f 〉d f ≡ |ψs〉|G(m)〉 (20)

With L + 1 pointers employed to measure L + 1 quantities Q̂`, the initial state of the
composite can be chosen to be [cf. Equation (9)]

|ΨS+Pointers(0)〉 = |q0
n0
〉|G0(n0)〉. . .|G`(0)〉. . .|GL(0)〉, (21)

where the initial pointer states can be, e.g., identical Gaussians of a width ∆ f , all centred at
the origin,

〈 f`|G`(0)〉 = C exp(− f 2
` /∆ f 2) ≡ G`( f`), C1 = [2/π∆ f 2]1/4, (22)
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except for the first probe, where we would need a narrow Gaussian, |G0( f0)|2 → δ( f ) in
order to prepare the system in |q0

n0
〉. If all couplings are instantaneous, for the amplitude

in Equation (3) [with L = 2, and |qL
nL
〉 replaced by a state of the composite, |qL

nL
〉 ⊗ | f 〉,

| f 〉 ≡ | f0〉 ⊗ | f1〉. . .⊗ | fL〉] one finds

AS+Pointers( f , qL
n′L
← Ψ0) = (23)

〈 f |〈qL
n′L
|ÛS+Pointers(tL, t0)|ΨS+Pointers(0)〉 = δn′LnL

GL( fL −QnL)×
M1 ...ML−1

∑
m1 ...mL−1=1

L−1

∏
`=1

G`( f` −QmL)G
0( f0 −Qn0)AS(qL

nL
. . .← Q`

m`
. . .← q0

n0
)

where, again, AS(qL
nL

. . .← Q`
n`

. . .← Q0
n0
) is the system’s amplitude (3).

If one wants their measurements to be accurate, the pointers need to be set to zero
with as little uncertainty as possible (see. Figure 4). This uncertainty is determined by
the Gaussian’s width ∆ f , and sending it to zero we have [since G`( f`)2 → δ( f`) and
G`( f`)G`( f` − X) = 0 for any X 6= 0]

PPointers( fL. . . f1, f0) ≡∑
nL

|AS+Pointers( f , qL
nL
← Ψ0)|2 = (24)

M1 ...ML

∑
m1 ...mL=1

L

∏
`=0

δ( f` −Q`
m`
)PS(QL

mL
. . .← Q`

m`
. . .← Q0

n0
),

where PS(QL
mL

. . .← Q`
m`

. . .← Q0
n0
) is the probability, computed with the help of Equation (7).

0	 0	 Q0
1	Q3

2	 Q1
3	 Q2

2	Q4
4	

f0	

f1	

f2	

f3	

f4	

Before	 After	a)	 b)	

Figure 4. The measurements shown in Figure 3, this time made by employing five accurate von
Neumann pointers. (a) Initially, the pointers are set to zero. (b) At the end of the trial, one finds each
pointer shifted by the corresponding eigenvalue. As in Figure 3, an outcome {Q4

4 ← Q3
2 ← Q2

2 ←
Q1

3 ← Q0
1} is recorded.

Equation (24) is the desired result, which deserves a brief discussion. In each trial, the
pointers’ readings may take only discrete values Q`

m`
, and the observed sequences occur

with the probabilities, predicted for the system by Feynman’s rules of Section 2. However,
unlike in the classical case, this information comes at the cost of perturbing the system’s
evolution. Indeed, writing G`(0) =

∫
G`(λ`) exp(iλ` f`)dλ` and proceeding as before,

one obtains terms like ∏L−1
`=1 exp(−iλ`Q̂`)ÛS(t`, t`−1), where exp(−iλ`Q̂`) represents the

“kick”, produced on the system by the `-th pointer at t`. As in the classical case, we can
get rid of the kick by ensuring that the pointer’s momentum λ` is approximately zero.
However, Heisenberg’s uncertainty principle (see, e.g., [1]) will make the uncertainty in
the initial pointer position very large. Accuracy and perturbation go hand in hand, and
the measured values do not “pre-exist” measurements but are produced in the course of
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it [21]. Notably, one can still predict the probabilities by not mentioning the pointers at all
and analyzing instead an isolated system, whose unitary evolution is broken each time the
coupling takes place.

Secondly, and importantly, von Neumann pointers have many states, and only a few
of them are actually used. This suggests that the pointers and the probes of the previous
section could, in principle, be replaced by much more complex devices, with only a few
states of their vast Hilbert spaces coming into play. For example, there is nothing in
quantum theory that forbids using printers, which print the observed values on a piece of
paper. If an experiment that measures spin’s component is set properly, the machine will
print only “up” or “down” with the predicted frequencies, and would never digress into
French romantic poetry.

5. The Past of a Quantum System: Elements of Reality

The stock of an experiment described so far, is taken just after the last measurement
at t = tL. This is the “present” moment, the times t0, . . .tL are relegated to the “past”, and
the “future” is yet unknown. Possible pasts are defined by the choice of the measured
quantities Q̂`, and of the times t` at which the impulsive measurements are performed.
The N × M1 × M2. . ...× ML possible outcomes {QL

mL
. . . ← Q`

m`
. . . ← Q0

n0
} occur with

probabilities P(QL
mL

. . . ← Q`
m`

. . . ← Q0
n0
) which the theory aims to predict. There are

clearly gaps in the description of the system between successive measurements at t` and
t`+1. One way to fill them (without adding new measurements, which would change the
problem) is to look for quantities whose values can be ascertained at some t` < t′ < t`+1
without altering the existing probabilities P(QL

mL
. . .. ← Q`+1

m`+1
← Q`

m`
. . . ← Q0

n0
). Or, to

put it slightly differently, to ask what can be measured without destroying the interference
between the virtual paths [cf. (2)] which contribute to the amplitudes AS(QL

mL
. . . ←

Q`+1
m`+1
← Q`

m`
. . .← Q0

n0
) in Equation (3).

There is a well-known analogy. EPR-like scenarios [22] are often used to question
the manner in which quantum theory describes the physical world. In a nutshell, the
argument goes as follows. Alice and Bob, at two separate locations, share an entangled pair
of spins. Alice can ascertain that Bob’s spin has any desired direction, while apparently
unable to influence it due to the restrictions imposed by special relativity. Hence, all
possible values of the spin’s projections can exist simultaneously, i.e., be in some sense
real. If quantum mechanics insists that different projections cannot have well-defined
values at the same time, it must be incomplete. We are not interested here in the details
of this important ongoing discussion (for an overview see [22] and Refs. therein), or the
implications relativity theory may have for elementary quantum mechanics [23]. Rather we
want to make use of the Criterion of Reality (CR) used by the authors of [24] to determine
what should be considered “real”. This criterion reads: “If, without in any way disturbing a
system, we can predict with certainty (i.e., with probability equal to unity) the value of a physical
quantity, then there exists an element of reality corresponding to that quantity.” [24].

Consider again an experiment in which L + 1 measurements are made on the system
at t = t`, ` = 0, 1. . .L, while the system’s condition at some t′ between, say, t` and t`+1
remains unknown. To fill this gap, one may use the CR criterion just cited, and look for
any information about the system, which can be obtained without altering the existing
statistical ensemble. Thus, one needs a variable Q̂′ whose measurement at t` < t′ < t`+1
results is

AS(qL
nL

. . .← Q`
m`+1
← Q′m′ ← Q`

m`
. . .← q0

n0
) = AS(qL

nL
. . .← Q`+1

m`+1
← Q`

m`
. . .← q0

n0
). (25)

There are at least two kinds of quantities that satisfy this condition. To the first kind belong
operators of the type

Q̂−(t′) = ∑
m−

Q−m− π̂−m− ≡ ÛS(t′, t`)Q̂`Û−1
S (t′, t`) = ∑

m`

Q`
m`

π̂m`
(t`, t′), (26)
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where π̂m`
(t`, t′) = ÛS(t′, t`)π̂m`

Û−1
S (t′, t`) is the projector π̂m`

evolved backwards in time
from t′ to t`. To the second kind belong the quantities

Q̂+(t′) = ∑
m+

Q+
m+

π̂+
m+
≡ Û−1

S (t`+1, t′)Q̂`+1ÛS(t`+1, t′) ≡ ∑
m`+1

Q`+1
m`+1

π̂m`+1(t`+1, t′) (27)

where π̂m`+1(t`+1, t′) = Û−1
S (t`+1, t′)π̂m`+1ÛS(t`+1, t′) is the projector π̂m`+1 evolved for-

wards in time from t′ to t`+1. Indeed, since π̂m`
π̂m′`

= π̂m`
δm`m′`

and π̂m`+1 π̂m′`+1
=

π̂m`+1 δm`+1m′`+1
, we have

π̂m`+1ÛS(t`+1, t′)π̂m`
(t`, t′)ÛS(t′, t`)π̂m`

= (28)

π̂m`+1ÛS(t`+1, t′)π̂m`+1(t`+1, t′)ÛS(t′, t`)π̂m`
= π̂m`+1ÛS(t`+1, t`)π̂m`

,

and [cf. Equation (6)]

P(QL
mL

. . .← Q`+1
m`+1
← Q`

m`
. . .← q0

n0
) = (29)

P(QL
mL

. . .← Q`+1
m`+1
← Q−m`

(t′)← Q`
m`

. . .← q0
n0
) =

P(QL
mL

. . .← Q`+1
m`+1
← Q+

m`+1
(t′)← Q`

m`
. . .← q0

n0
).

There is, of course, a simple explanation. The states ÛS(t′, t`)|q`n`
〉 form an orthogonal basis

for measuring Q̂−(t′), and the system in |q`n`
〉 at t` can only go to |ÛS(t′, t`)|q`n`

〉 at t′, as all
other matrix elements of ÛS(t′, t`) vanish. Similarly, the system in Û−1

S (t`+1, t′)|q`n`+1
〉 at t′

can only go to |q`n`+1
〉 at t`+1. The presence of the operators Û−1

S (t′, t`) and ÛS(t`+1, t′) in
Equations (26) and (27) ensures that Equation (25) holds, and Equation (29) follow.

The problem is as follows. By using the CR, we appear to be able to say that at t = t′ a
quantity Q̂−(t′) has a definite value Q−m`

if the value of Q̂` at t = t` was Q`
m`

. Similarly, it
would appear that Q̂+(t′) also has a definite value Q+

m`+1
if the value of Q̂`+1 at t = t`+1

is Q`+1
m`+1

Since in general Q̂−(t′) and Q̂+(t′) do not commute, [Q̂−(t′), Q̂+(t′)] 6= 0, and
quantum mechanics forbids ascribing simultaneous values to non-commuting quantities,
we seem to have a contradiction.

Fortunately, the contradiction is easily resolved. At the end of the experiment, one
needs to have all the relevant records and to produce these records an additional probe
must be coupled at t = t′. Measuring Q̂−(t′), or Q̂+(t′) requires different probes, which
affect the system differently, and produce different statistical ensembles. The values Q−m`

and Q̂+
m`+1

do not pre-exist in their respective measurements [9,21], and appear as a result
of a probe acting on a system. The caveat is the same as in Bohr’s answer [25] to the authors
of [24]. There are no practical means of ascertaining these conflicting values simultaneously.
Next, we give a simple example.

6. A Two-Level Example

Consider a two-level system, (a qubit), N = 2, prepared by the first measurement of
an operator

Q̂0 ≡ B̂ =
2

∑
i=1
|bi〉Bi〈bi| (30)

in a state |b1〉 at t = t0. The second measurement (we have L = 1) yields one of the
eigenvalues of an operator

Q̂1 ≡ Ĉ =
2

∑
i=1
|ci〉Ci〈ci|, [B̂, Ĉ] 6= 0, (31)
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With only two dimensions involved, all eigenvalues are non-degenerate. If for simplicity
we put ĤS = 0, ÛS(t1, t0) = 1 (see Figure 5a), one can easily verify that at any t0 < t′ < t1
the value of B̂ is B1 (see Figure 5b), or that Ĉ has the same value it will have at t = t1 (see
Figure 5c). Moreover, its is easy to ascertain that if the first and the last outcomes are B1
and Ci, the values of B̂ at t = t′ and of Ĉ at t = t′′ are B1 and Ci, as long as t0 < t′ < t′′ < t1
(see Figure 6a). Indeed, according to (3) we have

P(C1 ← C1 ← B1 ← B1) = |〈c1|c1〉〈c1|b1〉〈b1|b1〉|2 = |〈c1|b1〉|2 = P(C1 ← B1). (32)

The former is no longer true if Ĉ is measured before B̂. A final value C1 can now be reached
via four real paths {C1 ← Bi ← Cj ← B1} shown in Figure 6b, and the probabilities no
longer agree with those Equation (32),

P̃(C1 ← B1) ≡
2

∑
i,j=1

P(C1 ← Bi ← Cj ← B1) 6= P(C1 ← B1). (33)

The transition between the two regimes occurs at t′ = t′′, when an attempt is made to
measure two non-commuting quantities at the same time. The rules of Section 2 imply that
such measurements are not possible in principle, since B̂ and Ĉ do not have a joint set of
eigenstates which could inserted into Equation (2). However, ultimately one is interested
in the records available at the end of the experiment. Next, we will look at the readings
the probes would produce, should they be set up to measure non-commuting B̂ and Ĉ
simultaneously.

|b1>	

|c2>	|c1>	

a)	 |b1>	

|b1>	

|c2>	|c1>	

|b1>	

|c1>	

|c2>	|c1>	

|c2>	

c)	b)	t0	

t1	

t’	

Time	

Figure 5. (a) A measurement of an operator B̂ = ∑2
i=1 |bi〉Bi〈bi| prepares the system (ĤS = 0) in a

state |b1〉, and is followed by a measurement of Ĉ = ∑2
i=1 |ci〉Ci〈ci|. (b) An additional measurement

of B̂ at t0 < t′ < t1 yields an outcome B1, and finds the system in the state |b1〉 with certainty. (c) An
additional measurement of Ĉ at the same t′ yields Ci with certainty, if the last outcome is also Ci. The
probabilities are unchanged, P(Ci ← B1) = P(Ci ← B1 ← B1) = P(Ci ← Ci ← B1), and it would
appear that at t = t′ the system has well defined values of non-commuting operators B̂ and Ĉ.
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	B1	

C2	C1	

a)	
B1	

B1	

C2	C1	

C1	 C2	

b)	t0	

t1	

t’	

Time	

t’’	 C1	 C2	 B1	 B2	

Figure 6. (a) In the case shown in Figure 5b, at t′ < t′′ < t1 one can add a measurement of Ĉ, still
leaving the probabilities unchanged, P(Ci ← B1) = P(Ci ← Ci ← B1 ← B1). It would appear that
in a transition {C1 ← B1} intermediate values B1 and C1 co-exist for any t′ and t′′, such that t′′ > t′.
(b) The above is no longer true if Ĉ is measured before B̂. The transition between the cases (a,b) is
discussed in Section 7.

7. Joint Measurement of Non-Commuting Variables

We want to consider two measurements made on the system in Figure 6 which can
overlap in time at least partially. No longer instantaneous, both measurement will last τ
seconds, start at t′ and t′′ , t′, t′′ > t0, respectively, and finish before t = t1, t′+ τ, t′′+ τ < t1.
The degree to which the measurements overlap will be controlled by a parameter β,

β = (t′′ − t′)/τ, (34)

so that for β = 1 the measurement of B̂ precedes that of Ĉ, β = 0 corresponds to simultane-
ous measurements of both B̂ and Ĉ, and for β = −1 Ĉ is measured first. Next we consider
the two kind of probes introduced in Section 4 separately.

7.1. C-NOT Gates as a Meters

For our two-level example of Section 6 we can further simplify the probe described
in Section 4. Since we only need to distinguish between two of the system’s conditions, a
two-level probe, whose state either changes or remains the same, is all that is required. We
will need two such probes, D′ and D′′, two sets of states

|D`(1)〉 = |1`〉, |D`(2)〉 = |2`〉, ` =,′ ,′′ (35)

four projectors

π̂′1 = |b1〉〈b1|, π̂
′
2 = |b2〉〈b2|, π̂

′′
1 = |c1〉〈c1|, π̂

′′
2 = |c2〉〈c2|. (36)

and two couplings

Ĥ′int = −(π/2)τ−1π̂
′
2σ̂
′
x, Ĥ

′′
int = −(π/2)τ−1π̂

′′
2 σ̂
′′
x , (37)

where σ̂`
x |D`(1)〉 = |D`(2)〉. In what follows we will put τ = 1. The probes are prepared

in the respective states |D′(1)〉 and |D′′(1)〉, and after finding the system in |c2〉 at t2 their
state is given by

|ΦProbes(t2)〉 ≡ (38)

〈c1| exp[−i|β|Ĥ′′int]⊗ exp[−i(1− |β|)(Ĥ
′′
int + Ĥ

′
int)]⊗ exp[−i|β|Ĥ′int]|b1〉|D′(1)〉|D

′′
(1)〉.
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if t′′ > t′, while for t′′ < t′ the order of operators in (38) is reversed. It is easy to check that
(` =,′ ,′′)

exp[−i|β|Ĥ`
int] =

{
π̂`

1 + π̂`
2[cos(π|β|/2) + i sin(π|β|/2)σ̂`

x ]
}

(39)

so that for |β| = 1 the r.h.s. of Equation (39) reduces to π̂`
1 + iπ̂`

2σ`
x. The action of the

coupling is, therefore, that of a quantum (C)ontrolled-NOT gate [26], which flips the
probe’s (target) state if the system’s (control) state is |b2〉 or |c2〉, and leaves the probes’s
condition unchanged if it is |b1〉 or |c1〉.

There are four possible outcomes, (1′, 1′′), (1′, 2′′), (2′, 1′′), and (2′, 2′′), and four
corresponding probabilities (i, j = 1, 2) ,

P(i′, j′′) = |〈D′(i)|〈D′′(j)|ΦProbes(t2)〉|2/
2

∑
k,l=1
|〈D′(k)|〈D′′(l)|ΦProbes(t2)〉|2, . (40)

The matrix elements are easily evaluated (for details see Appendix B), and the results are
shown in Figure 7.

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Pr
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ab
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ie
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P(1',1'')

P(2',2'')

P(1',2'),P(2',1'')

Figure 7. The values of B̂ = σ̂x and Ĉ = σ̂y are measured jointly (cf. Equations (36)–(38)) for a
two-level system (ĤS = 0), initially polarised along the x-axis, |b1〉 = | ↑x 〉, B1 = 1, and later found
polarised along the y-axis, |c1〉 = | ↑y 〉, C1 = 1. Four probabilities in Equation (40) are plotted vs. β

in Equation (35). For β = 1 the measurement of B̂ precedes that of Ĉ, for β = 0, B̂ and Ĉ are measured
simultaneously, and for β = −1, Ĉ is measured first.

If β = 1, there is no overlap, and B̂ is measured before Ĉ. Dividing τ into K sub-
intervals and sending K → ∞ we have an identity (cf. Equation (39))

exp[−iĤ
′
int]|b1〉 =

[
exp(−iĤ

′
int/K])

]K
|b1〉 = (π̂′1)

K|b1〉 = |b1〉, (41)

and the state of the first probe remains unchanged. For β = 0 both probes act simultane-
ously. Now the use of the Trotter’s formula yields

exp[−i(Ĥ
′
int + Ĥ

′′
int)]|b1〉 = lim

K→∞

(
1 + iππ̂

′
2σ̂
′
x/2K + iππ̂

′′
2 σ̂
′′
x /2K

)K
|b1〉. (42)

Equation (42) contains scenarios where both probes change their states, and since π̂
′ ⊗ π̂

′′ 6=
0, the evolution of one of them must affect what happens to the other. Now all four
probabilities in Equation (40) have non-zero values, although it is still more likely that both
probes will remain in their initial states (cf. Figure 7). Finally, for β = −1, Ĉ is measured
before B̂ as if both measurements were instantaneous, and all four paths in Figure 6b
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are equally probable. A different result is obtained if the two measurements are of von
Neumann type, as we will discuss next.

7.2. Von Neumann Meters

Consider the same problem but with the two-level probes replaced by two von Neu-
mann pointers with positions f ′ and f ′′, respectively. As before, the interaction with each
pointer lasts τ seconds, so the two Hamiltonians are

Ĥ′int = −i∂ f ′ B̂/τ, Ĥ′′int = −i∂ f ′′ Ĉ/τ. (43)

If the pointers are prepared in identical Gaussian states (22) 〈 f `|G`〉 = G( f `), ` =,′ ,′′ the
probability distribution of their final positions is given by

P( f ′, f ′′) =
∣∣∣∣∫ dy′dy′′G( f ′ − y′)G( f ′′ − y′′)Φ(y′, y′′)

∣∣∣∣2 ≡ |Ψ( f ′, f ′′)|2 (44)

where (we measure f in units of g0 and put τ = 1)

Φ( f ′, f ′′) ≡ 〈c1|〈 f ′|〈 f ′′| exp[−|β∂ f ′′ Ĉ]⊗ exp[−(1− 2|β|)(∂ f ′ B̂ + ∂ f ′′ Ĉ)] (45)

⊗ exp[−|β|∂ f ′′ B̂]|0′〉|0′′〉|b1〉

where 〈 f ′|0′〉 = δ( f ′), 〈 f ′′|0′′〉 = δ( f ′′), and t′ ≤ t′′. (For t′ > t′′ we interchange B̂ with Ĉ.)
Consider first the case β = 0 where the measurements coincide. The amplitude Φ( f ′, f ′′)
has several general properties. Firstly, it cannot be a smooth finite function of y′ and
y′′, or the integral in (44) would vanish in the limit of narrow Gaussians, ∆ f → 0, due
to the normalisation of |G′〉 and |G′′〉 (cf. Equation (22)). It must, therefore, have δ-
singularities [27,28]. Secondly, using the Trotter’s formula [29], we have

exp[−(∂ f ′ B̂ + ∂ f ′′ Ĉ)] = lim
K→∞

[
exp(−∂ f ′ B̂/K)⊗ exp(−∂ f ′′ Ĉ/K)

]K
(46)

It is readily seen that each time the product in the r.h.s. of Equation (46) is applied, the
pointers are displaced by B1/K or B2τ/K and C1/K or C2/K, respectively. If B1,2, C1,2 = ±1,
one has a quantum random walk, where the pointers are shifted by an equal amount 1/K
ether to the right or to the left. Since the largest possible displacement is 1, Φ( f ′, f ′′) must
vanish outside a square −1 ≤ f ′, f ′′ ≤ 1. One also notes that for f ′ = ±1, the maximum of
Φ(±1, f ′′) is reached for f ′′ = 0, since there are (let K be an even number) K!/(K/2)!(K/2)!
walks, each contributing to Φ( f ′, f ′′) the same amount 1/22K+1. Similarly, a maximum of
Φ( f ′,±1) is reached for f ′ = 0.

A detailed combinatorial analysis is complicated, but the location of the singularities
can be determined as was done in [30]. As explained in the Appendix B, the amplitude
Φ(y′, y′′) in Equation (45) can also be written as ( f ≡

√
f ′2 + f ′′2, cos(θ) = f ′/ f )

Ψ( f ′, f ′′) = (2π)−1/2∆ f 〈c1|b1〉
∫ ∞

0
dλλ exp(−λ2∆ f 2/4)× (47)[

cos(λ)J0(λ f )−
√

2i sin(λ)J1(λ f ) sin(θ − π/4)
]

where Jk is the Bessel function of the first kind of order k. From Equation (44) one notes
that in the limit ∆ f → 0, P( f ′, f ′′) in Equation (44) will become singular, and that its
singularities will coincide with those of Φ( f ′, f ′′) in Equation (45). Since [31]

Jk(λ f → ∞)→ (2/πλ f )1/2 cos(λ f − kπ/2− π/2), (48)

the integral in Equation (47) will diverge at large λ’s provided the oscillations of cos(λ)
and sin(λ) are cancelled by those of J0(λ f ) and J1(λ f ), i.e., for

√
f ′2 + f ′′2 = 1. As a result,

we find the pointer readings of two simultaneous accurate measurements of B̂ and Ĉ (with
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B1,2 = C1,2 = ±1) distributed along the perimeter of a unit circle as shown in Figure 8.
Figure 9 shows the distribution of the pointer’s readings for different degrees of overlap
between the two measurements.

Figure 8. The values of B̂ = σ̂x and Ĉ = σ̂y are measured simultaneously (β = 0, ∆ f = 0.05) for a
two-level system (ĤS = 0), initially polarised along the x-axis, |b1〉 = | ↑x 〉, B1 = 1, and later found
polarised along the y-axis, |c1〉 = | ↑y 〉, C1 = 1.

β=1	 0.75	 0.5	

0.25	 0	 -0.25	

-0.5	 -0.75	 -1	

f’ 

f’’ 

Figure 9. The same probability as in Figure 8, but for different degrees of overlap between the
measurements. The value of β in Equation (34) is indicated in each panel. The cases β = 1 and
β = −1 correspond to the scenarios (a) and (b) shown in Figure 4, respectively.

There is, therefore, an important difference between employing discrete probes and
von Neumann pointers. In the previous example shown in Figure 7 one could (although
should not) assume, e.g., that for β = 0 P(1′, 2′′) yields the probability for B̂ and Ĉ to have
the values 1 and −1, if measured simultaneously. Figures 8 and 9 show this conclusion to
be inconsistent. As β decreases from 1 to−1, the pointer’s readings are not restricted to±1′,
±1′′. Rather, for β = 0 they are along the perimeters of a unit circle (cf. Figures 8 and 9),
which, if taken at face value, implies that the probability in question is zero. We already
noted that the theory in Section 2 is unable to prescribe probabilities of simultaneous values
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of non-commuting operators. In practice, this means that the probes, capable of performing
the task in a consistent manner, simply cannot be constructed.

8. The Past of a Quantum System: Weakly Perturbing Probes and the
Uncertainty Principle

It remains to see what information can be obtained from the measurements, designed
to perturb the measured system as little as possible. If such a measurement were an attempt
to distinguish between interfering scenarios, without destroying interference between them,
it would contradict the Uncertainty Principle cited in Section 2. As before, we treat the two
types of probes separately.

8.1. Weak Discrete Gates

We start by reducing the coupling strength, so the interaction Hamiltonians (15)
become

Ĥ`
int = −γ

M`

∑
m`=1

π̂`
m`

σ̂x(m`)δ(t− t`), γ < π/2. (49)

In [11], Feynman described a double-slit experiment where photons, scattered by the the
passing electron, allowed one to know through which of the two slits the electron has trav-
elled. With every electron duly detected, their distribution on the screen, PSlit-unknown(x),
does not exhibit an interference pattern. With no photons present, the pattern is present
in the distribution PSlit-known(x). If the intensity of light (i.e., the number of photons) is
decreased, some of the electrons pass undetected. The total distribution on the screen is,
therefore, “a mixture of the two curves” [11]. P(x) = aPSlit-unknown(x) + bPSlit-known(x),
where a and b are some constants,.

Something very similar happens if an extra discrete probe D′ is added to measure
Q̂′ = ∑M′

m′=1 Q′m′ π̂
′
m′ at t = t′, t` < t′ < t`+1. As before [cf Equation (16)], we find

Û′int(t
′) = exp

[
iγ

M′

∑
m′=1

π̂′m′ σ̂
′
x(m

′)

]
= cos(γ) + i sin(γ)

M′

∑
m′ l=1

π̂′m′ σ̂
′
x(m

′), (50)

where the cosine term accounts for the possibility that the systems passes the check unde-
tected. Replacing P(x) in Feynman’s example with the probability P(qL

nL
) of detecting the

system in a final state |qL
nL
〉 at tL. With a values of Q̂′ detected in every run, γ = π/2, one

has a distribution

PQ’-known(qL
nL
) =

M′

∑
m′=1

∣∣∣AS(qL
nL

. . .← π̂`+1
m`+1
← π̂′m′ ← π̂`

m`
. . .← q0

n0
)
∣∣∣2 (51)

where AS is the amplitude in Equation (5). If the probe is uncoupled, γ = 0, the distribu-
tion is

PQ’-unknown(qL
nL
) =

∣∣∣∣∣ M′

∑
m′=1

AS(qL
nL

. . .← π̂`+1
m`+1
← π̂′m′ ← π̂`

m`
. . .← q0

n0
)

∣∣∣∣∣
2

(52)

With 0 < γ < π/2 the outcomes fall into two groups, those where the probe D′ remains in
its initial state, and those where the state of one of its sub-systems has been flipped. The
two alternatives are exclusive [32], and the total distribution is indeed a mixture of the two
curves. As γ→ 0 one has

P(qL
nL
) = (1− γ2)PQ’-unknown(qL

nL
) + γ2PQ’-known(qL

nL
) + o(γ2). (53)

In other words, in the vast majority of cases, the system remains undetected, and the
interference is preserved (cf. Equation (52)). In the few remaining cases, it is detected
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and the interference is destroyed. The Uncertainty Principle [1] is obeyed to the letter:
probabilities are added where records allow one to distinguish between the scenarios;
otherwise one sums the amplitudes. One has, however, to admit that nothing really new
has been learned from this example, as both possibilities simply illustrate the rules of
Section 2.

The above analysis is easily extended to include more extra measurements, whether
impulsive or not. Since to the first order in the coupling constant γ weak probes act
independently of each other, the r.h.s. of Equation (53) would contain additional terms
PQ”-known(qL

nL
), PQ”’-known(qL

nL
), etc.

8.2. Weak von Neumann Pointers

Next we add to L + 1 accurate impulsive von Neumann pointers an extra “weak”
pointer, designed to measure Q̂′ = ∑M′

m′=1 Q′m′ π̂
′
m′ at t = t′ between t` and t`+1. The new

coupling, given by

Ĥ′int = −iγ∂ f ′ Q̂
′, (54)

will perturb the system only slightly in the limit γ → 0. To see what happens in this
limit, one can replace f ′ by γ f ′, Ĥ`

int in Equation (54) by −i∂ f ′ Q̂`, and the pointer’s initial
state G′( f ′) by γ1/2G′(γ f ′). Now as γ→ 0 the pointer’s initial states become very broad,
while the coupling remains unchanged. For a Gaussian pointers (22), considered here, this
means replacing ∆ f ′ with ∆ f ′/γ, i.e., making the measurement highly inaccurate. This
makes sense. The purpose of a pointer is to destroy interference between the system’s
virtual paths, (cf. Equation (24)), which it is clearly unable to do if the coupling vanishes.
Accordingly, with the pointer’s initial position highly uncertain, its final reading is also
spread almost evenly between −∞ and ∞. Measured in this manner, the value of Q̂′

remains indeterminate, as required by the Uncertainty Principle.
This could be the end of our discussion, except for one thing. It is still possible to use

the broad distribution of a pointer’s readings in order to evaluate averages, which could, in
principle, remain finite in the limit ∆ f ′ → ∞. Maybe this can tell us something new about
the system’s condition at t = t′. Note, however, that whatever information is extracted in
this manner should not contradict the Uncertainty Principle, or the whole quantum theory
would be in trouble [1].

From Equation (22) it is already clear that any average of this type will be expressed in
terms of the amplitudes A(qL

nL
. . .← π̂`

m`
. . .← q0

n0
). The simplest average is the pointer’s

mean position. If the outcomes of the accurate measurements are QL
nL

. . .Q`
m`

. . .Q0
n0

, for the
mean reading of the weakly coupled pointer we obtain (see Appendix C)

〈 f ′(QL
nL

. . .Q`
m`

. . .Q0
n0
)〉 ≈ Re

[
∑M′

m′=1 Q′m′AS(qL
nL

. . ..← π̂`+1
m`+1
← π̂′m′ ← π̂`

m`
. . .← q0

n0
)

∑M′
m′=1 AS(qL

nL
. . ..← π̂`+1

m`+1 ← π̂′m′ ← π̂`
m`

. . .← q0
n0)

]
. (55)

If the measured operator is one of the projectors, say, Q̂` = π̂`
m′ , this reduces to

〈 f ′(QL
nL

. . .Q`
m`

. . .Q0
n0
)〉 ≈ Re

[
AS(qL

nL
. . ..← π̂`+1

m`+1
← π̂′m ← π̂`

m`
. . .← q0

n0
)

∑M′
m′=1 AS(qL

nL
. . ..← π̂`+1

m`+1 ← π̂′m′ ← π̂`
m`

. . .← q0
n0)

]
(56)

We note that, as in the previous example, different pointers do not affect each other to the
leading order in the small parameter γ.

The quantities in the l.h.s. of Equations (55) and (56) are the standard averages of
the probes’ variables. In the l.h.s. of these equations one finds probability amplitudes for
the system’s entire paths, {qL

nL
. . ..← π̂`+1

m`+1
← π̂′m′ ← π̂`

m`
. . .← q0

n0
}. The values of these

amplitudes can be deduced from the probes’s probabilities [33]. The problem is, these
values offer no insight into the condition of the system at t = t`. In the double-slit case,
to conclude that a particle “. . . goes through one hole or the other when you are not looking is
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to produce an error in prediction” [11]. In our case, one cannot say that the value of Q̂′ was
or was not a particular Q′m′ . The Uncertainty Principle prevails again, this time by letting
one only gain information not sufficient for determining the condition of the unobserved
system at t = t′. A more detailed discussion of this point can be found, e.g., in [7,8].

9. Summary and Conclusions

A very general way to describe quantum mechanics is to say that it is a theory that
prescribes probability amplitudes to sequences of events, and then predicts the probability
of a sequence by taking an absolute square of the corresponding amplitude [1]. Where
several (L + 1) consecutive measurements are made on the same system (S), a sequence
of interest is that of the measured values Q̂`

m`
, endowed with a (system’s) probability

amplitude AS(qL
nL

. . .← π̂`
m`

. . .← q0
n0
) in Equation (5).

This is not, however, the whole story. To test the theory’s predictions, an experimenter
(Observer) must keep the records of the measured values, in order to collect the statistics
once the experiment is finished. This is more than a mere formality. The system, whose
condition changes after each measurement, cannot itself store this information. Hence
the need for the probes, material objects, whose conditions must be directly accessible
to the Observer at the end. One can think of photons [1,11] devices with or without
dials, or Observer’s own memories of the past outcomes [17,18]. The probes must be
prepared in suitable initial condition |ΨProbes(0)〉 and be found in one of the orthogonal
states |ΨProbes(nL, . . .m`. . .n0)〉 later, with an amplitude AS+Probes(ΨProbes(nL, . . .m`. . .n0),
qL

nL
← ΨProbes(0), q0

n0
).

To be consistent, the theory must construct the amplitudes AS and AS+Probes using
exactly the same rules, and ensure that |AS+Probes|2 = |AS|2. In other words, the experi-
menter should see a record occurring with a frequency the theory predicts for an isolated
(no probes) system, going through its corresponding conditions. This requires the existence
of a suitable coupling between the system and the probe. Its choice is not unique, and
for a system with a finite-dimensional Hilbert space studied here, two different kinds of
probes were discussed in Section 4. The first one is a discrete gate, using the interaction in
Equation (15), while the second is the original von Neumann pointer [20].

Now one can obtain the same probability P = |AS+Probes|2 = |AS|2 by considering
a unitary evolution of a composite {System + Probes} until the moment the Observer
examines their records at the end of the experiment. Or one can consider such an evolution
of the system only, but broken every time a probe is coupled to it. For a purist intent on
identifying quantum mechanics with unitary evolution (see, e.g., the discussion in [34]), the
first way may seem preferable. Yet there is no escaping the final collapse of the composite’s
wave function when the stock is taken at the end of the experiment.

It is often simpler to discuss measurements in terms of the measured system’s am-
plitude, leaving out, but not forgetting, the probes. The rules formulated in Section 2
readily give an answer to any properly asked question, but offer no clues regarding a
question which has not been asked operationally. One may try to extend the description
of a quantum system’s past by looking for additional quantities whose values could be
ascertained without changing the probabilities of the measured outcomes. In general, this is
not possible. To find the value of a quantity Q̂′ at a t′ between to successive measurements,
t` < t′ < t`+1, one needs to connect an extra probe. This would destroy interference
between the system’s paths and change other probabilities, leaving the question “what was
the value of Q̂′ if was not measured?” without an answer.

There are two seeming exceptions to this rule. If Q̂′ is obtained by evolving backward
in time the previously measured Q̂` (cf. Equation (26)), call it Q̂− , its value is certain to
equal that of Q̂`, and all other probabilities will remain unchanged, (cf. Equation (28)).
Similarly, the value of a Q̂+ (cf. Equation (27)), obtained by the forward evolution of the
next measured operator Q̂`+1, will also agree with that of Q̂`+1. It would be tempting
to assume that these values represent some observation-free “reality”, were it not for
the fact that they cannot be ascertained simultaneously. The two measurements require
different probes, each affecting the system in a particular way. The probes frustrate each
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other if employed simultaneously. It is hardly surprising that different evolution operators
ÛS+Probes(tL, t0), in Equation (10) may lead to different outcomes.

One notes also that measuring these two quantities one after another would also leave
all other probabilities intact, but only if Q̂− is measured first, as shown in Figure 6a. Chang-
ing this order results in a completely different statistical ensemble, shown in Figure 6b. The
rules of Section 2 say little about what happens if the measurements coincide, except that if
Q̂− and Q̂+ do not have common eigenstates, Equation (5) cannot be applied. One can still
analyze the behavior of the two probes at different degrees of overlap to explain why it is
impossible to reach consistent conclusions about the simultaneous values of Q̂− and Q̂+.
For example, if two discrete gates are used, Figure 7 appears to offer four joint probabilities
of having the values B, C = ±1. If discrete probes are replaced by von Neumann pointers,
the readings shown in Figure 8 suggest that joint values of B̂ and Ĉ should lie on the
perimeter of a unit circle, in a clear contradiction with the previous conclusion.

Another way to explore the system’s past beyond what has been established by
accurate measurements, is to study its response to a weakly perturbing probe, set up to
measure some Q̂′ at an intermediate time t′. In this limit, the two types of probes produce
different effects but, in accordance with the Uncertainty Principle, reveal nothing new that
can be added to the rules formulated in Section 2. If the coupling of an additional discrete
probe is reduced, trials are divided into two groups. In a (larger) number of cases, the
system remains undetected, and interference between its virtual paths passing through
different eigenstates of Q̂′ remains intact. In a (smaller) fraction of cases, the value of Q̂′

is accurately determined, and the said interference is destroyed completely. Individual
readings of a weak von Neumann pointer extend a range much wider than the region
which contains the values of Q̂′, and are in this sense practically random. Its mean position
(reading) allows one to learn something about the probability amplitude in Equation (56),
or a combination of such amplitudes as in Equation (55). The problem is that even after
obtaining the values of these amplitudes (and this can be done in practice [33]), one still
does not know the value of Q̂′, for the same reason he/she cannot know the slit chosen
by an unobserved particle in a double-slit experiment. Quantum probability amplitudes
simply do not have this kind of predictive power [1,11].

In summary, quantum mechanics can consistently be seen as a formalism for calculat-
ing transition amplitudes by means of evaluating matrix elements of evolution operators.
In such a “minimalist” approach (see also [35]), the importance of a wave function, rep-
resented by an evolving system’s state, is reduced to that of a convenient computational
tool. In the words of Peres [23] (see also [36]) “. . . there is no meaning to a quantum state
before the preparation of the physical system nor after its final observation (just as there is no ‘time’
before the big bang or after the big crunch).” This is, however, not a universally accepted
view. For example, the authors of [4–6] propose a time-symmetric formulation of quantum
mechanics, employing not one but two evolving quantum states. We will examine the
usefulness of such an approach in future work.
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Appendix A

Evaluation of the Probabilities in Equation (40). For the eigenstates of the probes’s
operators σ̂`

x we have

|D`(λ`)〉 = [|1`〉+ λ`|2`〉)]/
√

2, σ̂`
x |D`(λ`)〉 = λ`|D`(λ`)〉, λ` = ±1, ` =′,′′ . (A1)
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The probes’ are prepared in an initial state ΦProbes(t0) = |1′〉|1′′〉 = ∑λ′ ,λ′′=± |D′(λ′)〉|
D′′(λ′′)〉/2, and after post-selecting the system in |c1〉, their final state (38) is given by

|ΦProbes(t2)〉 = ∑
λ′ ,λ′′=±

Uλ′λ′′ |D′(λ′)〉|D′′(λ′′)〉/2, (A2)

where

Uλ′λ′′ = 〈c1| exp(iπλ′′|β|π̂′′2 /2)⊗ (A3)

exp[iπ(1− |β|)(λ′π̂′2 + λ′′π̂
′′
2 )/2]⊗ exp(iπλ′|β|π̂′2/2)|b1〉.

Operators in (A2) can be diagonalised either analytically or numerically, and the matrix
elements in Equation (40),

〈j′|〈j′′|ΦProbes(t2)〉 = ∑
λ′ ,λ′′=±1

Uλ′λ′′〈j′|D′(λ′)〉〈j′′|D′′(λ′′)〉/2, j′, j′′,= 1, 2, (A4)

are easily evaluated.

Appendix B

Derivation of Equation (47). The two-level system (a spin-1/2), with ĤS = 0, is
pre- and post-selected in the states | ↑ν 〉 and | ↑µ 〉, µ, ν = x, y, z, µ 6= ν. respectively.
Two pointers are employed to measure σ̂ν and σ̂µ simultaneously, β = 0. (Extension to
measurements along non-orthogonal axes is trivial.) The final distribution of the pointer’s
positions (readings) is, therefore, given by

P( f1, f2) = |A( f1, f2)|2 ≡ |K(f1, f2, ˘1, ˘2)G(˘1)G(˘2)d˘1˘2|2, (A5)

where |G1,2〉 =
∫

G(λ1,2)|λ1,2〉dλ1,2 and

K( f1, f2, λ1, λ2) = 〈 f1|λ1〉〈 f2|λ2〉〈 ↑µ | exp(−iλ̂1σ̂ν − iλ̂2σ̂µ)| ↑ν 〉, (A6)

We recall that

〈 ↑µ | exp(−iλ̂1σ̂ν − iλ̂2σ̂µ)| ↑ν 〉 = (A7)

〈 ↑µ | cos(λ)− i sin(λ)[cos(ϕ)σ̂ν + sin(ϕ)σ̂µ]| ↑ν 〉 =
〈 ↑µ | ↑ν 〉{cos(λ/2)− sin(λ/2)[(i + 1) exp(iϕ) + (i− 1) exp(−iϕ)]/2},

where λ ≡
√

λ2
1 + λ2

2, and ϕ = arccos(λ1/λ). Defining f ≡
√

f 2
1 + f 2

2 , θ = arccos( f1/ f ),

we obtain 〈 f1|λ1〉〈 f2|λ2〉 = (2π)−1 exp(i f1λ1 + i f2λ2) ≡ (2π)−1 exp[iλ f cos(ϕ − θ)] =
(2π)−1 exp[iλ f sin(ξ)], where ξ = π/2 + θ − ϕ.

Furthermore,

exp[iλ f sin(ξ)] =
∞

∑
k=−∞

Jk(λ f ) exp(ikξ) =
∞

∑
k=−∞

ik Jk(λ f ) exp(ikθ − ikϕ) (A8)

where Jk is the Bessel function of the first kind of urder k [31]. Finally, for a Gaussian
G in Equation (22) we have G(λ1)G(λ2) = ∆ f /

√
2π exp(−λ2∆ f 2/4), and performing in

the cylindrical coordinates,
∫

dλ1dλ2 =
∫ ∞

0 λdλ
∫ 2π

0 dϕ the integration over dϕ , yields
Equation (47).

Appendix C

Derivation of Equation (55). Consider L + 1 impulsive von Neumann pointers ac-
curately measuring the quantities Q̂`. Q̂0 and Q̂L have non-degenerate eigenvalues, the
first measurement yields an outcome Q0

n0
and leaves the system in a state |q0

n0
〉. The last
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measurement yields QL
nL

and leaves the system in |qL
nL
〉. An extra weakly coupled pinter is

added at t = t′, t` < t′ < t`+1 to measure Q̂′ = ∑M′
m′=1 Q′m′ π̂

′
m′ . Just after tL the state of the

pointers is given by

〈 f0. . . f ′. . . fL|ΨPointers(tL)〉 =
M1 ...M′ ...ML−1

∑
m1 ...m′ ...mL−1=1

G′( f ′ −Q′m′)G( fL −QL
nL
)G( f0 −Q0

n0
) (A9)

×
L−1

∏
`=1

G( f` −Q`
m`
)AS(qL

nL
. . ..← π̂`+1

m`+1
← π̂′m′ ← π̂`

m`
. . .← q0

n0
)

where G∗( f`−Q`
m`
)G( f`−Q`

m′`
) = δm`,m′`

δ( f`−Q`
m`
), ` = 0, . . .L, and G′( f ′) is very broad,

so that G′( f ′ −Q′m′) ≈ G′( f ′). For the distribution of the readings we have

PPointers( f0. . . f ′. . . fL) = 〈 f0. . . f ′. . . fL|ΨPointers(tL)〉 = (A10)
M1 ...ML−1

∑
m1 ...mL−1=1

L

∏
`=0

δ( f` −Q`
m`
)

M′

∑
µ′ ,ν′=1

G′∗( f ′ −Q′µ′)G
′( f ′ −Q′ν′)

A∗S(q
L
nL

. . ..← π̂`+1
m`+1
← π̂′µ′ ← π̂`

m`
. . .← q0

n0
)AS(qL

nL
. . ..← π̂`+1

m`+1
← π̂′ν′ ← π̂`

m`
. . .← q0

n0
)

and the (unnormalised) distribution of the weak pointer’s readings given that the other
outcomes are QL

nL
. . .Q`

m`
. . .Q0

m0
is given by (ε→ 0)

WPointer( f ′|QL
nL

. . .Q`
m`

. . .Q0
n0
) = (A11)∫ QL

nL
+ε

QL
nL−ε

d fL. . .
∫ Q`

m`
+ε

Q`m`
−ε

d f`. . .
∫ Q0

n0
+ε

Q0
n0−ε

d f0PPointers( f0. . . f ′. . . fL)

≈
M′

∑
µ′ ,ν′=1

[|G′( f ′)|2 − ∂ f ′G
′∗( f ′)G′( f ′)Q′µ′ − ∂ f ′G

′( f ′)G′∗( f ′)Q′ν′ ]×

A∗S(q
L
nL

. . ..← π̂`+1
m`+1
← π̂′µ′ ← π̂`

m`
. . .← q0

n0
)AS(qL

nL
. . ..← π̂`+1

m`+1
← π̂′ν′ ← π̂`

m`
. . .← q0

n0
),

where we expanded the (broad) G′( f ′−Q′µ′) to the first order in its (small) derivatives. For a

Gaussian pointer G′( f ′) is given by Equation (22), G′∗( f ) = G′( f ′), and
∫

f ′[|G′( f ′)|2d f ′ =
0. Defining

〈 f ′(QL
nL

. . .Q`
m`

. . .Q0
n0
)〉 ≡

∫
f ′WPointer( f ′|QL

nL
. . .Q`

m`
. . .Q0

m0
)d f ′∫

WPointer( f ′|QL
nL

. . .Q`
m`

. . .Q0
m0)d f ′

, (A12)

and integrating by parts, yields Equation (55).
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