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Abstract: Parameter estimation accuracy and average sample number (ASN) reduction are important
to improving target detection performance in sequential hypothesis tests. Multiple-input multiple-
output (MIMO) radar can balance between parameter estimation accuracy and ASN reduction
through waveform diversity. In this study, we propose a waveform design method based on a
two-stage information criterion to improve multi-target detection performance. In the first stage, the
waveform is designed to estimate the target parameters based on the criterion of single-hypothesis
mutual information (MI) maximization under the constraint of the signal-to-noise ratio (SNR). In
the second stage, the objective function is designed based on the criterion of MI minimization and
Kullback–Leibler divergence (KLD) maximization between multi-hypothesis posterior probabilities,
and the waveform is chosen from the waveform library of the first-stage parameter estimation. Fur-
thermore, an adaptive waveform design algorithm framework for multi-target detection is proposed.
The simulation results reveal that the waveform design based on the two-stage information criterion
can rapidly detect the target direction. In addition, the waveform design based on the criterion
of dual-hypothesis MI minimization can improve the parameter estimation performance, whereas
the design based on the criterion of dual-hypothesis KLD maximization can improve the target
detection performance.

Keywords: multi-target detection; MI; KLD; waveform design; information criterion

1. Introduction

A cognitive radar receives and processes a transmission waveform according to the
target environment interactive relationship. It optimally allocates limited resources to
improve the performance of the radar system in a complex environment [1–4]. The archi-
tecture of the cognitive radar system was proposed by Haykin et al. [5], and a preferred
framework for solving the target detection problem lies in combining cognitive radar with
a sequential hypothesis test [6]. Compared with the classical hypothesis test, the sequential
hypothesis test can adjust a transmission waveform according to previous observation data,
making it possible to achieve the expected detection performance within a shorter time.

During sequential hypothesis tests, multiple-input multiple-output (MIMO) radar
can improve target detection performance through waveform design [7]. A waveform
design based on a sequential hypothesis test framework was proposed in which the radar
updated the probability of the target hypothesis via closed-loop feedback [8]. Based
on [8], the sum of the products between the characteristic waveform and the probability of
each hypothesis was considered as a multi-hypothesis test waveform to classify multiple
targets, and good classification performance was achieved in the frequency domain [9].
Romero et al. [10] designed two transmission waveforms matching the target response
based on the SNR and the mutual information (MI) criterion and applied them to target
classification in the multi-hypothesis test. However, the waveforms designed above do not
have adaptive characteristics.
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Another way is the sequential waveform design, it can optimize the next transmission
waveform according to the previously received echo data. The commonly used criteria
include the Reuven–Messer bound (RMB) criterion [11], the Bayesian Cramér–Rao bound
(BCRB) criterion [12], and the minimum mean square error (MMSE) criterion [13]. Consider-
ing the environmental uncertainties, sequential detection waveforms were designed based
on the BCRB criterion to track moving targets [12]. Based on the radar signal model [11], a
sequential waveform optimization was proposed, which estimated the angle parameter
based on the MMSE criterion [13]. Compared to the methods of predesigning a waveform
library, the sequential waveform could change adaptively to the target’s characteristics [14].
Therefore, our present work focuses on sequential waveform design.

Sequential waveform design can be used to flexibly adjust the average number of
observation signal samples or to reduce the average sample number (ASN) during sequen-
tial hypothesis tests. In MIMO radar detection, a transmission waveform was designed to
reduce the ASN by maximizing the distance between composite hypotheses based on the
Kullback–Leibler divergence (KLD) criterion [15]. The optimal waveform could balance the
signal-clutter-noise ratio (SCNR) and detection probability in the frequency domain [16].
However, it is difficult to acquire the KLD expression between different hypotheses when
some parameters are unknown in a complex hypothesis test problem. Using the generalized
likelihood ratio test (GLRT) framework, the target parameters were estimated based on the
criterion of maximum likelihood (ML) estimation before the waveform design according to
the KLD criterion [6]. However, parameter estimation accuracy affected the performance of
ASN, and waveforms designed by the KLD criterion could not easily balance parameter
estimation accuracy and ASN reduction [17]. To estimate unknown parameters during se-
quential hypothesis tests, the waveform design criteria that can be used include MI [18–20],
MMSE [21–23], and BCRB [11,12]. Considering that both MI criteria and KLD criteria are
information theory criteria, there is a certain constraint relationship between them [24].
Under the sequential hypothesis test framework, the waveform design has been conducted
simultaneously based on information criterion like MI and KLD in a few studies [25,26].
Therefore, this paper attempts to optimize the design waveform by combining the MI
criterion for parameter estimation and the KLD criterion for ASN reduction.

The main idea is that a waveform library is designed in the first stage, and a wave-
form is chosen in the second stage. The MI criterion and KLD criterion have mostly been
applied to two-stage waveform optimization. Meanwhile, considering that, under practical
conditions, the SNR of a tracked target needs to remain within a specified threshold for the
radar system to maintain stable tracking of known targets [27]. The SNR should be taken
as a constraint condition to adjust and optimize the transmitted waveform. In [28], the
information theoretic criteria-based waveform design under SNR constraint was studied
from a frequency domain perspective, and the results revealed that the SNR constraint
waveform can take full advantage of transmitted energy to extract target signals at fre-
quency points containing targets with weak clutter. However, the waveform diversity
performance under the SNR constraint was not analyzed from the perspective of the time
domain [29]. According to the above analysis, an adaptive waveform is designed in this
study by taking information theoretic criteria as the criterion based on the sequential hy-
pothesis test framework to optimize the target detection performance. The main innovative
points are summarized as follows:

1. The MI criterion-based waveform under SNR constraint is proposed to meet the
demand for steady target detection. The theoretical analysis indicates that the optimized
waveform matrix matches the target response and can take full advantage of transmitted
energy to extract target signals.

2. The progressive relationship between parameter estimation and ASN in multi-target
detection is obtained, and a two-stage waveform design is proposed. In the first stage, a
waveform library for parameter estimation is designed. In the second stage, a waveform is
selected from the waveform library according to the waveform optimization criterion of
reducing the ASN.
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3. The KLD criterion [26] is improved, and the calculated quantity in waveform
optimization is reduced. Next, a waveform optimization method reducing the ASN is
proposed by considering the MI and KLD between multiple hypotheses as the criterion.

4. An algorithm framework for adaptive waveform design is formulated according to
the waveform design characteristics based on the two-stage information theoretic criteria,
with the following logical structure. The sequential decision conditions are calculated
according to the target parameters. Next, the transmission waveform and prior probability
density function (PDF) of each hypothesis are updated. Subsequently, two-stage transmis-
sion waveforms are iteratively designed to further update the PDF of parameter estimation,
followed by the closed-loop iteration of target parameter estimation.

5. The two-stage adaptive waveform design is simulated and verified by considering
three targets of radar detection as an example. The results reflect that the relationship
between the parameter estimation accuracy and ASN reduction can be a trade-off. The
waveform design based on the dual-hypothesis MI minimization criterion can improve the
parameter estimation performance, and that based on the dual-hypothesis KLD maximiza-
tion criterion can improve the target detection performance.

The remaining sections of this paper are organized as follows. In Section 2, we establish
the multi-hypothesis test model and formulate the waveform design problem. In Section 3,
we introduce the constraint relations between parameter estimation and ASN. In Section 4,
the method of waveform design based on the two-stage information criterion is presented.
In Section 5, the simulation results are presented to verify the effectiveness of the algorithm.
Finally, we conclude the paper in Section 6.

2. Signal Model and Problem Formulation
2.1. Radar Signal Model

The transmission waveform matrix of the k-th pulse of a standard MIMO radar sys-
tem [11] is defined herein as Sk, which consists of L different instantaneous samples of the
transmission beam. The l-th column of Sk represents the l-th sample data, and the rows of
Sk correspond to the signals transmitted by NT transmission units composed of linear array
elements. Therefore, Sk ∈ CNT×L. The transmitted signal is then received by NR linear
array elements after being reflected by the target and the environment.

The observed signal Xk ∈ CNR×L corresponding to the k-th pulse of the transmitted
signal can be expressed as [23]:

Xk=H(Φk)Sk+Nk (1)

where Nk ∈ CNR×L denotes additive white Gaussian noise (AWGN), and H(Φk) ∈ CNR×NT

represents the target response matrix, which is a nonlinear function of the target parameter
Φk. With Q targets in the environment, the target response matrix can be expressed as [23]:

H(Φk) =
Q

∑
q=1

H
(

Φk,q

)
=

Q

∑
q=1

αk,qaR

(
θk,q

)
aT

T

(
θk,q

)
(2)

where αk,q and θk,q represent the attenuation amplitude and direction angle of target q,

respectively. Moreover, αk =
[
αk,1 αk,2 · · · αk,Q

]T and θk =
[
θk,1 θk,2 · · · θk,Q

]T,

where the superscript T represents the standard transpose operator, and aT

(
θk,q

)
∈ CNT×1

and aR

(
θk,q

)
∈ CNR×1 are the steering vectors of the transmitting array and receiving array,

respectively:

aT

(
θk,q

)
=
[
1 (ak,q)

1 · · · (ak,q)
NT−1

]T
(3)

aR

(
θk,q

)
=
[
1 (ak,q)

1 · · · (ak,q)
NR−1

]T
(4)
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Here, ak,q = exp
(
−j2π(d/λ) sin

(
θk,q

))
, where j ,

√
−1, λ denotes the wavelength

of the transmission beam, and both arrays are assumed to adopt the same element spacing
d. Hence, the response matrix of target q can be obtained according to the equation of the
target response matrix:

H
(

Φk,q

)
= αk,q


(ak,q)

0 (ak,q)
1 · · · (ak,q)

NT−1

(ak,q)
1 (ak,q)

2 · · · (ak,q)
NT

...
...

. . .
...

(ak,q)
NR−1 (ak,q)

NR · · · (ak,q)
NT+NR−2

 (5)

As evident from Equation (5), H
(

Φk,q

)
includes NT + NR − 1 different elements

αk,q(ak,q)
i, where i = 0, 1, . . . , NT + NR − 2. If the target responds as

hk =
[
(hk)

0 (hk)
1 · · · (hk)

NT+NR−2
]T

, where (hk)
i =

Q
∑

q=1
αk,q(ak,q)

i, the corresponding

covariance matrix is Rk, then the received signal model in Equation (1) can be transformed
into the following vector model:

xk =
¯
Skhk + nk (6)

where xk = vec(Xk), nk = vec(Nk), and the diagonal matrix RNk ∈ CNR L×NR L is the

noise covariance matrix of nk. The waveform matrix
¯
Sk ∈ CNR L×(NT+NR−1) is expressed

as
¯
Sk =

[
¯
Sk,1

¯
Sk,2 · · ·

¯
Sk,L

]T
, in which each submatrix

¯
Sk,l ∈ CNR×(NT+NR−1) is a

column vector
[
s1l s2l · · · sNT l

]T consisting of NT elements in column l of Sk. The

Hankel matrix formed through transposed transformation, i.e., the vector of row j in
¯
Sk,l ,

can be expressed as
[
0j−1 s1l s2l · · · sNT l 0NR−j

]
, where 0j represents a row with j

zero elements.

2.2. Multi-Target Detection

Target detection refers to rapid and accurate identification of the target within the
field of view of radars. Binary hypothesis testing can determine the presence of a target in
the echo signal, while multi-hypothesis testing can determine the number of targets and
estimate the target positions [17]. The interesting area of the radar scene is discretized into
M angular grids, namely

{
θ1, · · · , θM

}
, and then multiple hypotheses testing can be used

to achieve the goal of multi-target detection. Assuming at most Qmax targets located on
these grids, when detecting the m-th angle grid θm, the total number of multi-hypotheses
for the existence of a target is T = C1

Qmax
+ C2

Qmax
+ · · ·CQmax

Qmax
, where Cb

a is the operation of

combination, which can be calculated as a!
b!(a−b)! , where ! denote factorial. Hypothesis H0

denotes the null hypothesis, according to which there is no target in the radar scene, and
hypothesis Hi(i ≥ 1) denotes that there is at least one target in the radar scene. In the case
study, at most three targets are located on the angle grid θm, and the multi-target detection
can be described as the multi-hypothesis test model shown below:

H1 : Φk,1 = (αk,1 θk,1)
T target1exists

H2 : Φk,2 = (αk,2 θk,2)
T target2exists

H3 : Φk,3 = (αk,3 θk,3)
T target3exists

H4 : Φk,4 = (αk,1 αk,2 θk,1 θk,2)
T target1and2exist

H5 : Φk,5 = (αk,1 αk,3 θk,1 θk,3)
T target1and3exist

H6 : Φk,6 = (αk,2 αk,3 θk,2 θk,3)
T target2and3exist

H7 : Φk,7 = (αk,1 αk,2 αk,3 θk,1 θk,2 θk,3)
T target1, 2and3exist

(7)



Entropy 2022, 24, 1075 5 of 19

Here, Φk,i is the target parameter of hypothesis Hi, and is a vector composed of the
target attenuation amplitude and the angle parameter.

Given the target parameter Φk,i, according to Equations (2) and (5), the target response
vector hik of hypothesis Hi can be obtained, and the corresponding covariance matrix is
expressed as Rik = hikhH

ik , where the superscript H represents the conjugate transpose
operator. Let us assume that the target response hik and noise nk are independent. Hence,
the probability distribution function of each hypothesized observation signal xk can be
expressed as a multi-hypothesis testing model [25]

H0 : xk ∼ CN
(
0, RNk

)
H1 : xk ∼ CN

(
¯
Skh1k,

¯
SkR1k

¯
S

H

k +RNk

)

H2 : xk ∼ CN

(
¯
Skh2k,

¯
SkR2k

¯
S

H

k +RNk

)
. . .

Ht : xk ∼ CN

(
¯
Skhtk,

¯
SkRtk

¯
S

H

k +RNk

)
(8)

When the number of targets and parameters are unknown, it is difficult to judge
multiple targets using a binary hypothesis testing model. In this paper, multi-hypotheses
are designed according to the target number, and only the unknown target parameters need
to be considered. According to the hypothesis test framework [8], the multi-hypothesis test
can be conducted by analyzing the sequentially received observation signal xk. The design

of the transmission waveform
¯
Sk can realize the parameter estimation of the target [18],

and also reduce the ASN for sequential hypothesis testing [17]. However, it is unknown
whether the two can be balanced. Therefore, it is necessary to explore the relationship
between the ASN and estimated parameters.

3. Constraint Relations between Parameter Estimation and ASN

In multi-hypothesis testing, the decision conditions are presented through the sequen-
tial probability ratio test. After the irradiation of the k-th pulse signal, the probability ratio
between hypotheses Hi and Hj is expressed as:

Λ(k)
i,j =

Pi(x1|Φ1,i)Pi(x2|Φ2,i) . . . Pi(xk
∣∣Φk,i) · P

(0)
i

Pj
(
x1
∣∣Φ1,j

)
Pj
(
x2
∣∣Φ2,j

)
. . . Pj

(
xk

∣∣∣Φk,j

)
· P(0)

j

(9)

where P(0)
i and P(0)

j is the prior probability of hypothesis Hi and Hj, respectively, and
Pi(xk

∣∣Φk,i) denotes the PDF of hypothesis Hi parameterized by Φk,i when the signal is
received for the k-th time. Note that Pi(xk

∣∣Φk,i) depends on the parameter Φk,i, which can
be estimated by particle filter.

The error probability εij is defined as the probability for hypothesis Hi to be mistakenly
judged as Hj, namely:

εij = P
(

Dj
∣∣Hi
)

, for all i 6= j (10)

where Dj denotes that hypothesis Hj is accepted. According to the sequential probability
ratio test model [8,17], the hypothesis decision condition is:

Λ(k)
i,j >

1− εij

εij
, for all i 6= j (11)

When the hypothesis decision condition satisfies Equation (11), the correct hypothesis
is judged as Hi, otherwise the hypothesis Hi is rejected. Then, the newly received data
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should be continuously observed, and the decision should be made once again. Owing to
the error probability 0 < εij < 1, Equation (11) can be converted to:

Λ(k)
i,j <

ε ji

1− ε ji
, for all i 6= j (12)

Combining Equations (11) and (12), Wald’s SPRT decision condition is satisfied [30].
As the sequential probability ratio test is a Bayesian method, the prior probability of the
target should be accurately understood to acquire the error probability εij. For Equation (11),
the error probability εij is generally an assigned value. The target detection performance
can be effectively enhanced by adaptive adjustment of εij, but the adaptive design of εij is
beyond the scope of the current discussion.

To judge multiple hypotheses rapidly, the probability ratio Λ(k)
i,j should be discussed.

Based on the definition of the PDF, Pi(xk
∣∣Φk,i) can be denoted by a circularly symmetric

complex Gaussian PDF as [17]:

Pi(xk
∣∣Φk,i) =

1√
(2π)LNR det

(
RNk

) × exp

[
−
(

xk −
¯
Skhik(Φk,i)

)H

R−1
Nk

(
xk −

¯
Skhik(Φk,i)

)]
(13)

In Equation (13), Pi(xk
∣∣Φk,i) is mainly decided by the transmission waveform

¯
Sk and

the target parameter Φk,i. Under a fixed transmission waveform, the precision of the target
parameter Φk,i plays a decisive role in the decision of the sequential probability ratio test
according to Equation (11). The general form [13] for estimating the target parameter
Φk,i is:

_
Φk = E

(
Φk

∣∣∣∣∣xk,
¯
Sk, xk−1,

¯
S

k−1)
(14)

Here, xk−1 and
¯
S

k−1

represent the signal accumulation matrices of the observed signal
and the emitted signal in the first k− 1 snapshots. As parameter estimation is not the focus
of this research study, a particle filter is employed to estimate the target parameters. It is
considered that the target parameter PDF can be expressed as [23]:

P

(
Φk|xk,

¯
Sk,xk−1,

¯
S

k−1)
∝ P

(
xk|Φk,

¯
Sk,xk−1,

¯
S

k−1)
P

(
Φk|

¯
Sk,xk−1,

¯
S

k−1)

= P
(

xk|Φk,
¯
Sk

)
P

(
Φk|xk−1,

¯
S

k−1) (15)

Here, the definition of the system model in Equation (6) is such that xk has no

dependence on xk−1,
¯
S

k−1

. Then P

(
xk|Φk,

¯
Sk,xk−1,

¯
S

k−1)
= P

(
xk|Φk,

¯
Sk

)
. In addi-

tion, as the probability of the parameter Φk does not depend on the transmission wave-

form
¯
Sk unless there are conditions on the observation xk, then P

(
Φk|

¯
Sk,xk−1,

¯
S

k−1)
=

P

(
Φk|xk−1,

¯
S

k−1)
. For a particle filter, any probability distribution P

(
Φk|xk−1,

¯
S

k−1)
can be approximated with the Monte Carlo approach using a discrete particle set, as shown
below [23]:

P

(
Φk

∣∣∣∣∣xk−1,
¯
S

k−1)
≈

Np

∑
j=1

ω
(j)
k δ
(

Φk −Φ
(j)
k

)
(16)
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where Φ
(j)
k , ω

(j)
k , and Np represent the status and weight of the target parameter and the

total number of particles, respectively, at k-th time. Moreover, δ(·) is a Dirac delta function.
The estimated value of the target parameter is expressed as:

_
Φk ≈

∑
Np
j=1 ω

(j)
k P

(
xk|Φ

(j)
k ,

¯
Sk

)
Φ

(j)
k

∑
Np
i=1 ω

(j)
k P

(
xk|Φ

(j)
k ,

¯
Sk

) (17)

The value of P
(

xk|Φ
(j)
k,i ,

¯
Sk

)
can be obtained by substituting the target parameter

status Φ
(j)
k,i of hypothesis Hi into Equation (13), and then the estimated value

_
Φk,i can be

obtained according to Equation (17).

According to Equation (14) for target parameter estimation, parameter
_
Φk is related

to the transmission waveform. Parameter
_
Φk changes significantly make the decision

condition Λ(k)
i,j of Equation (9) fluctuate, thus increasing the ASN. Then, efforts should be

made to reduce the fluctuation of the estimated
_
Φk. Meanwhile, it is known if adaptive

waveform design [8,11] is capable of reducing the estimation error of target parameters
and reducing the ASN. However, the circumstance of low received SNR has not been
considered earlier. From the perspective of the frequency domain [28], the fact that the
waveform design under SNR constraint can improve the performance of the radar system
was verified. However, the analysis was not performed within the time domain, and the
focus was on the binary hypothesis test. In this study, SNR is considered as a constraint
condition to design adaptive waveforms.

4. Waveform Design Based on Two-Stage Information Criterion

As analyzed, target parameter estimation and ASN reduction are key links in multi-
hypothesis tests. Poor estimation accuracy can cause fluctuations in the decision criterion,
thus increasing ASN and eventually degrading the target detection performance. Parameter
estimation focuses on the target performance of a single hypothesis, whereas ASN is to
solve the rapid decision between multi-hypotheses. Hence, the trade-off between the two
can be solved in two stages.

4.1. Waveform Design for Parameter Estimation

As mentioned in Section 3, one of the key steps in multi-hypothesis tests is parameter
estimation, and its performance can be improved by waveform design. Therefore, based on
the constraint between the decision of multi-hypothesis tests and estimated parameters,
waveform design is performed with MI as the criterion. According to the MIMO radar
signal model, the MI between the received signal xk and the target response hk can be
expressed as [18]:

MI
(

xk; hk |
¯
Sk

)
= NR

{
log

[
det

(
¯
SkRk

¯
S

H

k +RNk

)]
− log

[
det
(
RNk

)]}
(18)

In multi-hypothesis tests, each hypothesis corresponds to MI
(

xk; hk |
¯
Sk

)
, and wave-

form design can be conducted with MI maximization as a criterion. However, it is difficult

to maximize the MI of all hypotheses by designing a waveform
¯
Sk based on a single hypoth-

esis. Additionally, the probabilities of all hypotheses change because different observation
signals are received in each pulse. The ultimate goal of waveform design is to concentrate
hypothesis testing on true hypotheses and maximize the probability. If the waveform is
optimized based on MI maximization, then a theoretical method to improve parameter
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estimation accuracy is to design a transmission waveform for multi-hypothesis tests based
on the product sum of the posterior probability weights of all hypotheses and waveforms.
This method is called a waveform based on the MI maximization of a single hypothesis.

According to [24], the mutual information is constrained by the SNR. When the target
response covariance matrix Rk is a fixed value, the energy constraint is equivalent to the
SNR constraint. However, the waveform design needs to match the change in the target
response, hence both the energy constraint and the SNR constraint need to be considered.
In this study, the maximum transmission energy of the radar is set as P0 and the SNR
threshold as SNR0. Under the SNR and energy constraints, the objective function of
waveforms designed based on the maximization of MI can be expressed as:

max
¯
Sk

MI = log

[
det

(
IK +

¯
SkRk

¯
S

H

k R−1
Nk

)]

s.t. tr

(
¯
SkRk

¯
S

H

k R−1
Nk

)
≤ SNR0

tr

(
¯
Sk

¯
S

H

k

)
≤ P0

(19)

Considering that the objective function (19) is a non-convex function, conversion
processing is required. To see this, if we introduce an auxiliary variable F, it is easy to

verify that the constraint
¯
SkRk

¯
S

H

k R−1
Nk
�F�0 is non-convex with respect to

¯
Sk. The notation

A�B (A � B) means A−B is positive definite (semi-definite). As a result, the optimization
problem in (19) is non-convex.

Let the singular value decomposition (SVD) of
¯
Sk be

¯
Sk = U¯

Sk

Σ¯
Sk

VH
¯
Sk

, where Σ¯
Sk

=[
(ΣS1)

1/2, 0N×(NR L−N)

]T
, ΣS1 = Diag

(
[σs1, · · · ,σsN ]

T
)

, σs1 ≥ σs2 ≥ · · · ≥ σsN and N =

NT + NR − 1. Here, (σsk)
1/2 is the k-th singular value of the waveform

¯
Sk, and the k-th

column vectors of U¯
Sk

and V¯
Sk

correspond to the singular vectors on the left and right

sides of the eigenvalues (σsk)
1/2, respectively. Accordingly, the objective function (19) is

converted based on the above decomposition, as shown below.

max
V¯

S k

,ΣS1
MI = log

[
det

(
IK + RkV¯

Sk

ΣS1VH
¯
Sk

)]
(20)

Similarly, the SNR constraint and energy constraints are simplified as:

tr

(
RkV¯

Sk

ΣS1VH
¯
Sk

)
≤ SNR0 (21)

tr

(
¯
Sk

¯
S

H

k

)
=

N

∑
k=1

σsk ≤ P0 (22)
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Then, the objective function (19) for waveform design is transformed into the following:

max
V¯

S k

,ΣS1
log

[
det

(
IK + ΣS1VH

¯
Sk

RkV¯
Sk

)]

s.t. tr

(
ΣS1VH

¯
Sk

RkV¯
Sk

)
≤ SNR0

N
∑

k=1
σsk ≤ P0

(23)

As shown by functions (19) and (23), the problem of waveform design is transformed

from the optimization of
¯
Sk to that of ΣS1 and V¯

Sk

. Perform an eigenvalue decomposition

of Rk = VRk ΣRk VH
Rk

, where ΣRk = Diag
(
[σH1, · · · ,σHN ]

T
)

and σH1 ≥ σH2 ≥ · · · ≥ σHN .
The k-th column vector of VRk corresponds to the eigenvector of the eigenvalue σHk.
Accordingly, the objective function (23) is converted, as shown below.

log

[
det

(
IK + ΣS1VH

¯
Sk

RkV¯
Sk

)]
= log

[
det

(
Σ−1

S1 + VH
¯
Sk

RkV¯
Sk

)]
+ log[det(ΣS1)] (24)

It is obvious that ΣS1VH
¯
Sk

RkV¯
Sk

and IK are both positive semidefinite Hermitian matri-

ces. According to the inequality condition,
n
∏
i=1

αi + βi ≤ det(A + B) ≤
n
∏
i=1

αi + βn+1−i of

Lemma 1 in [18], we can ascertain that

log

[
det

(
IK + ΣS1VH

¯
Sk

RkV¯
Sk

)]
≤

N

∑
k=1

log(1 + σskσHk) (25)

where the equality is achieved if and only if VRk = V¯
Sk

. Then,
¯
Sk = U¯

Sk

Σ¯
Sk

VH
Rk

. Similarly,

the SNR constraint is simplified, as shown below.

tr

(
ΣS1VH

¯
Sk

RkV¯
Sk

)
=

N

∑
k=1

σskσHk ≤ SNR0 (26)

Hence, the objective function (23) of waveform optimization is further converted into
the following:

max
σsk

N
∑

k=1
log(1 + σskσHk)

s.t.
N
∑

k=1
σskσHk ≤ SNR0

N
∑

k=1
σsk ≤ P0

(27)

Notably, the objective function is a convex function where the constraints are linearly
correlated with σsk. Thus, the optimization problem is a convex optimization, which can be
solved by the method of Lagrange multipliers, i.e.,

L(σsk, λ1, λ2) = −
N

∑
k=1

log(1 + σskσHk) + λ1

(
N

∑
k=1

σskσHk − SNR0

)
+ λ2

(
N

∑
k=1

σsk − P0

)
(28)

where λ1 ≥ 0 and λ2 ≥ 0 correspond to the Lagrange multipliers of the SNR constraint and
energy constraints, respectively. The derivative of L(σsk, λ1, λ2) with respect to σsk is solved,
and the derivative is zero. Then the solution to the equation of σsk can be expressed as:
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σsk =

[
1

λ1σHk + λ2
− 1

σHk

]+
(29)

From the expression of
¯
Sk = U¯

Sk

Σ¯
Sk

VH
Rk

, for the optimized waveform obtained

based on the MI maximization criterion, the right singular vector of the matrix generally
matches the eigenvector of the target response matrix. Then, the optimized waveform is
expressed as:

¯
Sk = U¯

Sk

diag

[(
1

λ1σH1 + λ2
− 1

σH1

)+

, . . . ,
(

1
λ1σHN + λ2

− 1
σHN

)+
]1/2

, 0N×(NR L−N)


T

VH
Rk

(30)

Without the SNR constraint, the optimized waveform can be expressed as:

¯
Sk = U¯

Sk

diag

[(
1

λ1
− 1

σH1

)+

, . . . ,
(

1
λ1
− 1

σHN

)+
]1/2

, 0N×(NR L−N)


T

VH
Rk

(31)

This result is in accordance with that in [21]. The optimized waveform of each hypoth-
esis is obtained, and the posterior probability Pk

i (Hi|xk) of each hypothesis during the k-th
waveform transmission is generated based on the received echo signal. Then, the (k + 1)-th
transmission waveform based on the single hypothesis of MI maximization is:

¯
S

SGMI

k+1 =
M−1

∑
i=0

Pk
i (Hi|xk)

¯
Sik (32)

where M represents the total number of hypotheses, and
¯
Sik indicates the optimized

waveform of the i-th hypothesis Hi. The posterior probability Pk
i (Hi|xk) of each hypothesis

experiences an iterative update according to the previous (k − 1)-th transmission waveform
and the received echo. Hence, the posterior probability Pk

i (Hi|xk) of hypothesis Hi can be
expressed as:

Pk
i (Hi|xk) =

Pk−1
i (x1, x2, · · · , xk−1)P

(0)
i

M−1
∑

i=0
Pk−1

i (x1, x2, · · · , xk−1)P
(0)
i

(33)

Here, P(0)
i is the prior probability of hypothesis Hi, and Pk−1

i (x1, x2, · · · , xk−1) denotes
the joint probability density function of the (k − 1)-th transmission waveform, which can be
further expressed as the product of the probability density functions with target parameters
and transmission waveforms as the conditions, as shown below.

Pk−1
i (x1, x2, · · · , xk−1) =

k−1

∏
t=1

Pi(xt|Φt,i) (34)

4.2. Waveform Design of ASN Reduction

In multi-hypothesis tests, ASN is a key factor for target detection, and it fluctuates
with the accuracy of target parameter estimation. The estimated target parameters directly
affected the posterior PDF Pk

i (Hi|xk) through the Pi(xk
∣∣Φk,i) of each hypothesis. ASN

reduction can be performed by two approaches. One is to minimize the MI between the
posterior probabilities Pk

i (Hi|xk) of the multi-hypotheses. For simple binary hypotheses
testing, maximizing the KLD between two distributions of two hypotheses can obtain
optimal detection performance, according to Stein’s lemma [31,32]. Thus, the other is to
maximize the KLD between the posterior probabilities Pk

i (Hi|xk) of the multi-hypotheses
to increase the distance metric between the hypotheses. As ASN reduction occurs after
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parameter estimation, during waveform optimization, the waveform designed based on the
criterion of MI maximization in the first stage should be used as the library for waveform
selection. On this basis, a multi-target detection waveform for ASN reduction is designed.

4.2.1. Waveform Design Based on Dual-Hypothesis MI Minimization

The amount of information between the posterior probabilities of each hypothesis can
be reduced by minimizing the MI between the received echoes through multiple hypotheses.
Thus, according to the definition of MI, the MI between xik and xjk (the output signal of
hypothesis Hi and hypothesis Hj, respectively) can be expressed as:

MI
(

xik, xjk

)
= H

(
xik

∣∣∣∣¯Sk

)
+ H

(
xjk

∣∣∣∣¯Sk

)
−H

(
xik, xjk

∣∣∣∣¯Sk

)
(35)

Combining the entropy calculation formula, the following equation is obtained [19]:

MI
(

xik, xjk

)
= −N ln

[
det
(

IN −D2
)]

(36)

where IN refers to the identity matrix of order N, and D is the diagonal matrix after SVD of
the covariance matrix RHi ,Hj , as shown below.

RHi ,Hj =

(√
R−1

xik

)H
Rxik ,xjk

√
R−1

xjk
(37)

where Rxik , Rxjk and Rxik ,xjk are calculated as:

Rxik =
¯
SkRik

¯
S

H

k + RNk (38)

Rxjk =
¯
SkRjk

¯
S

H

k + RNk (39)

Rxik ,xjk =
¯
Skhk(Φik)

Hhk

(
Φjk

)¯
S

H

k (40)

The waveform optimization criterion can be expressed as:

min
¯
Sijk

MI
(

xik, xjk

)
= −N ln

[
det
(
IN −D2)]

s.t.
¯
Sijk ∈

{¯
Sik,

¯
Sjk

} (41)

Given that the optimized waveform is mainly for the MI between hypothesis Hi and
hypothesis Hj, only the waveform with the best parameter estimation performance is

selected for the construction of the waveform library, i.e., S =

{¯
Sik,

¯
Sjk

}
. Consequently,

the waveform designed based on dual-hypothesis MI minimization is expressed as:

¯
S

DBMI

k+1 =
M−1

∑
i=0

M−1

∑
j=0

Pk
i (Hi|xk)P

k
j
(

Hj
∣∣xk
)¯
Sijk (42)

4.2.2. Waveform Design Based on Dual-Hypothesis KLD Maximization

In multi-hypothesis tests, ASN reduction is also possible by increasing the relative
entropy between hypotheses. In [17], adaptive waveforms were designed through the max-
imization of the KLD between all hypotheses, where the objective function was the product
sum of the weight of the assumed probability density function and the J-divergence between
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any two hypotheses, i.e., max
Sk

M−1
∑

i=0

M−1
∑

j=i+1
Pk

i (Hi|xk)Pk
j
(

Hj
∣∣xk
)
d
(

Hi; Hj
)
. The J-divergence

d
(

Hi; Hj
)

between any two hypotheses is expressed as the KLD sum of the posterior prob-

ability, i.e., d
(

Hi; Hj
)
= D

(
Pk

i

∣∣∣∣∣∣Pk
j

)
+ D

(
Pk

j

∣∣∣∣∣∣Pk
i

)
. In their method, the KLD between all

hypotheses need to be calculated, and the calculation amount is large in the case of the
rising hypotheses. According to [33], the ASN of each hypothesis is inversely proportional
to min

j:j 6=i
D
(

Pk
i

∣∣∣∣∣∣Pk
j

)
. Therefore, the objective function of waveform optimization based on

dual-hypothesis KLD maximization can be expressed as:

max
Sk

M−1

∑
i=0

M−1

∑
j=i+1

Pk
i (Hi|xk)P

k
j
(

Hj
∣∣xk
)
min
j:j 6=i

D
(

Pk
i

∣∣∣∣∣∣Pk
j

)
(43)

According to the definition of relative entropy, the KLD between any two hypotheses is:

D
(

Pk
i

∣∣∣∣∣∣Pk
j

)
= log det

(
¯
SkRjk

¯
S

H

k + RNk

)
− log det

(
¯
SkRik

¯
S

H

k + RNk

)
+ tr

(¯
SkRjk

¯
S

H

k + RNk

)−1(
¯
SkRik

¯
S

H

k + RNk

)
+

(¯
Skhik −

¯
Skhjk

)H(¯
SkRjk

¯
S

H

k + RNk

)−1(¯
Skhik −

¯
Skhjk

) (44)

In the event of multiple hypotheses, the mean value of the received echo under each hy-

pothesis is
¯
Skhik, and unlike the expression of KLD in [25], the expression

(¯
Skhik −

¯
Skhjk

)H

(
¯
SkRjk

¯
S

H

k + RNk

)−1(¯
Skhik −

¯
Skhjk

)
is introduced. According to the properties of matrix

transformation, the additional expression is converted as:

(¯
Skhik −

¯
Skhjk

)H(¯
SkRjk

¯
S

H

k + RNk

)−1(¯
Skhik −

¯
Skhjk

)
= tr

(¯
SkRjk

¯
S

H

k + RNk

)−1(¯
Skhik −

¯
Skhjk

)(¯
Skhik −

¯
Skhjk

)H
 (45)

Then, D
(

Pk
i

∣∣∣∣∣∣Pk
j

)
can be expressed as:

D
(

Pk
i

∣∣∣∣∣∣Pk
j

)
= log det

(
¯
SkRjk

¯
S

H

k + RNk

)
− log det

(
¯
SkRik

¯
S

H

k + RNk

)
+ tr

(¯
SkRjk

¯
S

H

k + RNk

)−1(
¯
SkRBk

¯
S

H

k + RNk

) (46)

where Rijk = hikhH
jk and

RBk = 2Rik + Rjk −Rijk −RH
ijk (47)

According to [25], when Mk is a positive definite matrix, log det(I + Mk)+ tr
[
(I + Mk)

−1
]

increases monotonically with Mk. The covariance matrix of the target parameters Rjk is a
Hermitian matrix involving the attenuation amplitude and the target angle. According
to Equation (46) and the theorem of matrix positive definiteness, D

(
Pk

i

∣∣∣∣∣∣Pk
j

)
increases

monotonically with hjk or Rjk when Rjk ≥ Rik (i.e., hjk ≥ hik); otherwise, it decreases
monotonically with hjk or Rjk when Rjk < Rik. Therefore, only the value of j at Rjk ≥ Rik

should be considered to determine the min
j:j 6=i

D
(

Pk
i

∣∣∣∣∣∣Pk
j

)
between hypothesis Hi and hy-

pothesis Hj. The covariance matrix of the target parameters for each hypothesis is de-
termined by the direction angle θk and attenuation amplitude αk of the target, where all
elements are related to (hk)

i. Hence, such a matrix can be sorted in decreasing order. If
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· · · ≥ Rtk ≥ Rik ≥ Rck ≥ · · · , min
j:j 6=i

D
(

Pk
i

∣∣∣∣∣∣Pk
j

)
indicates the KLD between the i-th and the

t-th hypotheses, as shown below.

min
j:j 6=i

D
(

Pk
i

∣∣∣∣∣∣Pk
j

)
= D

(
Pk

i

∣∣∣∣∣∣Pk
t

)
, t ∈ 0, 1, · · ·M− 1,t 6= i (48)

Then, the objective function (43) can be transformed into the following:

max
¯
Sk

M−1

∑
i=0

Pk
i (Hi|xk)P

k
t (Ht|xk)D

(
Pk

i

∣∣∣∣∣∣Pk
t

)
,t ∈ 0, 1, · · ·M− 1,t 6= i (49)

The core of the waveform optimization objective function (49) is to maximize D
(

Pk
i

∣∣∣∣∣∣Pk
t

)
.

In the event of max
¯
Sitk∈S

D
(

Pk
i

∣∣∣∣∣∣Pk
t

)
, t ∈ 0, 1, · · ·M− 1,t 6= i, the obtained waveform is

¯
Sitk, the

ASN of hypothesis Hi is the smallest, and the waveform library is S =

{¯
Sik,

¯
Stk

}
. Then,

the waveform design based on dual-hypothesis KLD maximization can be expressed as:

¯
S

DBKLD

k+1 =
M−1

∑
i=0

Pk
i (Hi|xk)P

k
t (Ht|xk)

¯
Sitk, t ∈ 0, 1, · · ·M− 1,t 6= i (50)

As analyzed above, the algorithm of waveform optimization based on the two-stage
information criterion is described in Table 1.

Table 1. Waveform optimization based on two-stage information criterion.

Input: RNk , P0, SNR0, εij,
¯
S0, θ0, α0

Initialize: k = 0, the prior probability of each hypothesis is P(0)
i . Design a hypothesis testing

model according to Equation (7).

For: k = 1 : K
Calculate xk for each hypothesis based on Equation (6).
Estimate parameter Φk for each hypothesis based on Equation (17) and solve Rik based on
Equation (5).
Calculate Pi

(
xk
∣∣Φk,i

)
for each hypothesis based on Equation (13).

Calculate Λ(k)
i,j based on Equation (9). If Equation (11) is satisfied, the hypothesis is judged to be

Hi, end loop; otherwise, continue the calculation process.

Update the transmission waveform
¯
Sk of each hypothesis based on Equation (30).

Update the posterior probability Pk
i (Hi|xk) of each hypothesis based on Equation (33).

Design the waveform in the following three cases:

1. Design the transmission waveform
¯
S

SGMI

k+1 based on single-hypothesis MI maximization as
shown in object function (32).

2. Design the transmission waveform
¯
S

DBMI

k+1 based on dual-hypothesis MI minimization as shown
in object function (42).

3. Design the transmission waveform
¯
S

DBKLD

k+1 based on dual-hypothesis KLD maximization as
shown in object function (50).

5. Simulation and Results

In this section, the parameter estimation accuracy and the detection probability are
mainly used as the indicators of multi-hypothesis tests to verify the waveform design based
on the two-stage information criterion. In the first stage, a waveform with SNR constraint
is designed based on single-hypothesis MI maximization. The estimate waveform without
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SNR constraint [18] is selected for contrast in parameter estimation. In the second stage,
waveform selection is performed based on the estimated waveform library of the first stage.
The waveform is designed with KLD maximization as the criterion [17], which is used as a
comparison scheme for reduced ASN.

When the waveform with SNR constraint designed in the first stage is used as the
waveform library, it is in contrast to the transmission waveform designed based on single-
hypothesis MI maximization (SGMI waveform), dual-hypothesis MI minimization (DBMI
waveform), dual-hypothesis KLD maximization (DBKLD waveform), and the KLD cri-
terion [17] (DBKLDRef waveform). When the waveform without SNR constraint in the
first stage is used as the waveform library, it is in contrast to the transmission wave-
form designed based on single-hypothesis MI maximization (SGMI-NoSNR waveform),
dual-hypothesis MI minimization (DBMI-NoSNR waveform), dual-hypothesis KLD max-
imization (DBKLD-NoSNR waveform), and the KLD criterion [17] (DBKLDRef-NoSNR
waveform). Furthermore, the orthogonal waveform is added as a benchmark to verify the
waveform designed in this paper.

In this simulation, the target of MIMO radar detection is treated as point scatter, and
the receive and transmit arrays are uniform and linear with NT = NR = 6 elements, with
half wavelength inter-element spacing for both transmit and receive arrays. We consider a
scenario where the MIMO radar must estimate the angles of three targets. The attenuation
amplitude of waveform signals remains the same after being reflected by three assumed
targets in space, which is 1 dB, but the angles of the three targets are different. The deviation
angles of the three targets from the beam center line are assumed to be −33◦, 0◦, and 30◦,
respectively, and the SNR constraint threshold SNR0 is set as −3 dB.

5.1. Performance of Parameter Estimation

As the design of adaptive waveforms is the focus of this study, rather than the verifi-
cation of the estimation performance of the filter, the particle filter is simplified, and we
initialize the particles on a grid equally spaced, i.e., Np = 180. In the initialization stage,
equal weight allocation is conducted on spatial angles between −90◦ and 89◦, and each
particle is assigned a weight of 1/180. With changes in the adaptive waveform, the particles
ω
(i)
k are resampled based on a Gaussian distribution, where the mean of the received data

is considered as the mean value, and the reduction factor tk−1 , t < 1 is the variance, where
t = 0.75. Then the parameters are estimated according to the designed waveform. Figure 1
presents the comparison result of the MMSE obtained by target parameter estimation.
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As observed in Figure 1, the MMSE of the target parameters decreases with increasing
pulse number. Furthermore, because the first stage is parameter estimation based on the
MI criterion and the second stage is waveform selection from the library of parameter
estimation, in general, the MMSE of target parameters is reduced under the influence of
the waveform designed based on the MI maximization criterion.

In Figure 1, the waveform without SNR constraint outperforms that with SNR con-
straint in parameter estimation, whereas the orthogonal waveform exhibits inferior per-
formance than the waveforms in the other two cases. The SGMI waveform with SNR
constraint performs better than that without SNR constraint, which was mainly due to its
larger fluctuation range of each hypothesis probability. The SNR constraint reduces the
fluctuations caused by the product sum of the hypothesis probability and the waveform.
The DBMI-NoSNR waveform achieves the best performance because MI is used as the
optimization criterion in both stages, which focuses on target information extraction.

At the initial moment of the simulation, the MMSE of the target parameter is 30◦, and
under the multi-hypothesis probability iterations, the MMSE of the target parameter is
reduced at a high rate. The DBKLD-NoSNR waveform exhibits better performance before
the 11th pulse, with a high decline rate, which results from the fact that the KLD criterion
rapidly separates the distance between probabilities. Nonetheless, from the perspective of
parameter estimation, the KLD criterion is inferior to the MI criterion, and this finding is
in accordance with [28]. At the 25th pulse, the target parameter MMSE of the orthogonal
waveform reaches 2◦, while the target parameter MMSE of the DBMI-NoSNR waveform
can reach 0.35◦. The DBMI-NoSNR and DBKLD-NoSNR waveforms proposed in this paper
outperform the DBKLDRef-NoSNR waveform [17].

5.2. Performance of Target Detection

Although three targets in the space are illuminated by the radar waveform, seven
hypotheses contain targets in multi-hypothesis tests. Among them, hypotheses H1, H2, and
H3 contain one target; hypotheses H4, H5, and H6 contain two; and hypothesis H7 contains
three, with the error probability of εij = 0.01. During the sequential detection, the initial

probability of each hypothesis is P(0)
i = 1/7.

The initial transmission waveform is designed without prior information, and the
parameter Φk is estimated based on the first echo signal. As the waveform is adaptively
adjusted, the probability of each hypothesis is updated with change in the output data.
Through the simulation, the DBMI-NoSNR waveform achieves a correct decision hypothesis
H7 when transmitting the 25th pulse, as shown in Figure 2.
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As observed in Figure 2, the probability of each hypothesis fluctuates with increasing
pulse number, which is related to the change in the target response covariance matrix in
the hypothesis. The estimated parameters change after the transmission of each waveform,
thus leading to fluctuations in the probability of each hypothesis. The relations of the
DBMI-NoSNR waveform and the corresponding angular PDF with the transmitted pulse
number are depicted in Figure 3.
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pulse number, which is related to the change in the target response covariance matrix in 
the hypothesis. The estimated parameters change after the transmission of each wave-
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According to Figure 3, with an increase in the pulse number, the targets present a
more concentrated probability distribution at three angles: −33◦, 0◦, and 30◦, reaching the
maximum probability distribution at pulse number 25. However, when the pulse number
is 14, the three targets already show a concentrated angular probability distribution. In
this case, the probability of H7 is higher than that of the other hypotheses, approaching 1.
Before the 14th pulse, the mean square error of the target parameters changes more sharply
with faster improvement in detection performance, suggesting that adaptive waveform
design always supersedes changes in the target detection performance and estimation
performance. The target detection performance of the nine adaptive waveform types is
presented in Figure 4.

Figure 4 depicts that as the parameter estimation accuracy is improved with an increase
in the pulse number, the SNR obtained by the current pulse and the detection probability
both increase simultaneously, and the DBKLD-NoSNR waveform achieves the best target
detection performance. This is because this waveform enables the estimated parameters to
meet the corresponding requirements faster. However, at a small pulse number, its detection
performance is weaker than that of the DBMI-NoSNR waveform. The comparison results
of the detection performance are in accordance with the conclusion in [28], i.e., the KLD
waveform is more suitable for improving the detection performance. As the detection
probability is significantly influenced by the target parameter estimation, the detection
probability of the designed waveform in this paper is directly proportional to the parameter
estimation performance.
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6. Conclusions

To improve multi-target detection performance, the constraint relations of the hypoth-
esis test decision with parameter estimation and ASN are analyzed in this study. Next, a
waveform design based on single-hypothesis MI maximization under an SNR constraint is
proposed to enhance the parameter estimation performance. On this basis, a waveform
design method based on the criterion of dual-hypothesis MI minimization and KLD max-
imization is proposed to reduce the ASN, thus realizing a two-stage waveform design
based on the information theoretic criteria. The simulation results show that the waveform
design based on the MI minimization criterion performs better in parameter estimation
throughout the waveform design. Due to the small error probability in the sequential test,
the decision frequency fails to match the target detection probability. Therefore, a direction
for future waveform design lies in exploring a method facilitating adaptive changes in the
decision threshold of hypothesis tests.
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