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1. Introduction

Deep neural networks have found broad applications in many areas and disciplines,
such as computer vision, speech and audio recognition and natural language processing.
Two of the main characteristics of a given class of neural networks are its complexity and
approximating capability. Once the activation function is selected, a class of networks is
determined by the specification of the network architecture (namely, its depth and width)
and the choice of network weights. Hence, the estimation of the complexity of a given class
is carried out by regularizing (one of) those parameters, and the approximation properties
of obtained regularized classes of networks are then investigated.

The capability of shallow networks of depth 1 to approximate continuous functions is
shown in the universal approximation theorem ([1]), and approximations of integrable func-
tions by networks with fixed width are presented in [2]. Network-architecture-constrained
approximations of analytic functions are given in [3], where it is shown that ReLU networks
with depth depending logarithmically on 1/ε and width d + 4 can ε-approximate analytic
functions on the closed subcubes of (−1, 1)d.

The weight regularization of networks is usually carried out by imposing an lp-related
constraint on network weights, p ≥ 0. The most popular types of such constraints include
the l0, l1 and the path norm regularizations (see, respectively, [4–6] and references therein).
Approximations of β-smooth functions on [0, 1]d by l0-regularized sparse ReLU networks
are given in [5,7], and exponential rates of approximations of analytic functions by l0-
regularized networks are derived in [8].

Path-norm-regularized classes of deep ReLU networks are considered in [4], where,
together with other characteristics, the Rademacher complexities of those classes are es-
timated. The network size independence of those estimates makes the path norm regu-
larization particularly remarkable. As the estimation only uses the Lipschitz continuity
(with Lipschitz constant 1), the idempotency and the non-negative homogeneity of the
ReLU function, it can be extended to networks with the absolute value activation function.
Network characteristics similar to the path norm are also considered in the works [9,10],
where they are called, respectively, a variation and a basis-path norm, and statistical features
of classes of networks are described in terms of those characteristics.

The objective of the present paper is the construction of path-norm-regularized net-
works that exponentially fast approximate analytic functions. Our goal is to achieve
such convergence rates with activations that are idempotent, non-negative homogeneous
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and Lipschitz continuous with Lipschitz constant 1 so that the constructed path-norm-
regularized networks fall within the scope of network classes studied in [4]. It turns out
that networks with an absolute value activation function may suit this goal better than the
networks with an ReLU activation function. More precisely, we show that analytic functions
can be ε-approximated by networks with an absolute value activation function a(x) and
with the path norm, the depth, the width and the weights all depending logarithmically
on 1/ε. Such an approximation holds (i) on any subset (0, 1− δ]d ⊂ (0, 1)d for analytic
functions on (0, 1)d with absolutely convergent power series; (ii) on the whole hypercube
[0, 1]d for functions that can be analytically continued to certain subsets of Cd. Note that, as
the network weights, as well as the total number of weights, depend logarithmically on
1/ε, then the l1 weight norms of the constructed approximating deep networks are also of
logarithmic dependence on 1/ε.

Note that the absolute value activation function considered in this paper is among
the common built-in activation functions of the software-based neural network evolving
method NEAT-Python ([11]). Training algorithms for networks with an absolute value
activation function are developed in the works [12,13]. In addition, the VC-dimensions
and the structures of the loss surfaces of neural networks with piecewise linear activation
functions, including the absolute value function, are described in the works [14,15].

Notation: For a matrix W ∈ Rd1×d2 , we denote by |W| ∈ Rd1×d2 the matrix obtained by
taking the absolute values of the entries of W: |W|ij = |Wij|. For brevity of presentation,
we will say that the matrix |W| is the absolute value of the matrix W (note that, in the
literature, there are also other definitions of the notion of an absolute value of a matrix).
The path norm of a neural network f is denoted by ‖ f ‖×. For x = (x1, . . . , xd) ∈ Rd

and k = (k1, . . . , kd) ∈ Nd
0, the degree of the monomial xk = xk1

1 · · · · · x
kd
d is defined

to be ‖k‖1 = ∑d
i=1 ki. To assure that the matrix–vector multiplications are able to be

accomplished, the vectors from Rd, according to the context, may be treated as matrices
either from Rd×1 or from R1×d.

2. The Class of Approximant Networks

Neural networks are constituted of weight matrices, biases and nonlinear activation
functions acting neuron-wise in the hidden layers. The biases, also called shift vectors,
can be omitted by adding a fixed coordinate 1 to the input vector and correspondingly
modifying the weight matrices. As the definition of the path norm of networks does not
assume the presence of shift vectors, we will add a coordinate 1 to the input vector x and
will consider classes of neural networks of the form

Fα(L, p) = { f : [0, 1]p → RpL+1 | f (x) = WL ◦ α ◦WL−1 ◦ α ◦ · · · ◦ α ◦W0(1, x)},

where Wi ∈ Rpi+1×pi are the weight matrices, i = 0, . . . , L, and p = (p0, p1, . . . , pL+1) is
the width vector, with p0 = p + 1. The number of hidden layers L determines the depth
of networks from Fα(L, p) and, in each layer, the activation function α : R → R acts
element-wise on the input vector. For f ∈ Fα(L, p) given by

f (x) = WL ◦ α ◦WL−1 ◦ α ◦ · · · ◦ α ◦W0(1, x), (1)

let

‖ f ‖× :=
∥∥∥∥ L

∏
i=0
|Wi|

∥∥∥∥
1

(2)

be the path norm of f , where ‖ · ‖1 denotes the l1 norm of the p0(= p + 1) dimensional
vector ∏L

i=0 |Wi| obtained as a product of absolute values of the weight matrices of f .
For B > 0, let

Fα(L, p, B) = { f ∈ Fα(L, p), ‖ f ‖× ≤ B}
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be a path-norm-regularized subclass of Fα(L, p). As the results obtained in [4] indicate,
the path norm regularizations are particularly well-suited for networks whose activation
function α is

• Lipschitz continuous with Lipschitz constant 1;
• Idempotent, that is, α(α(x)) = α(x), x ∈ R;
• Non-negative homogeneous, that is, α(cx) = cα(x), for c ≥ 0, x ∈ R.

We therefore aim to choose an activation α possessing those properties such that ana-
lytic functions can be approximated by networks from Fα(L, p, B) with a small path norm
constraint B. The most popular activation functions satisfying the above conditions are the
ReLU function σ(x) = max{0, x} and the absolute value function a(x) = |x|. Below, we
show that, with the absolute value activation function, the path norms of approximant
networks may be significantly smaller than the path norms of the ReLU networks.

The standard technique of neural network function approximation relies on approx-
imating the product function (x, y) 7→ xy, which then allows us to approximate mono-
mials and polynomials of any desired degree. In [7], the approximation of the product
xy = ((x + y)2 − x2 − y2)/2 is achieved by approximating the function x 7→ x2. The latter
is based on the observation that, for the triangle wave

gs(x) = g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸
s times

(x), (3)

where g : [0, 1]→ [0, 1] is defined by

g(x) =

{
2x, 0 ≤ x < 1/2,
2(1− x), 1/2 ≤ x ≤ 1,

and for any positive integer m,

|x2 − fm(x)| ≤ 2−2m−2,

where

fm(x) := x−
m

∑
s=1

gs(x)
22s . (4)

The approximation of x2 by networks with the ReLU activation function σ(x) then
follows from the representation

g(x) = 2σ(x)− 4σ(x− 1/2). (5)

Thus, in this case, we will obtain matrices containing weights 2 and 4, which will
make the path norm of approximant networks big. Note that the same approach is also
used in [3] for constructing ReLU network approximations of analytic functions. In [5], the
approximation of the product

xy = h
(

x− y + 1
2

)
− h
(

x + y
2

)
+

x + y
2
− 1

4

is achieved by approximating the function h(x) := x(1− x), which, in turn, is based on the
observation that, for the triangle wave

Rk = Tk ◦ Tk−1 ◦ · · · ◦ T1,

where Tk : [0, 22−2k]→ [0, 2−2k] is defined by

Tk(x) := σ(x/2)− σ(x− 21−2k), (6)
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and for any positive integer m,

|h(x)−
m

∑
k=1

Rk(x)| ≤ 2−m, x ∈ [0, 1].

Although in the representation (6), the coefficients (weights) are all in [−1, 1], the ap-
proximant ∑m

k=1 Rk(x) in this case does not have the factors 2−2s presented in the approxi-
mant fm(x) in (4), which, again, will result in big values of path norms. Therefore, in order
to take advantage of the presence of those reducing weights, we would like to represent the
function g(x) in (5) by a linear combination of activation functions with smaller coefficients.
This is possible if, instead of σ(x), we deploy the absolute value activation function a(x).
Indeed, in this case, we have that g(x) can be represented on [0, 1] as

g(x) = 1− 2a(x− 1/2). (7)

In the next section, we use the above representation (7) to show that analytic functions
can be ε-approximated by networks from Fa(L, p, B) with each of L, ‖p‖∞ and B, as well as
the network weights having logarithmic dependence on 1/ε. As all networks will have the
same activation function a(x) = |x|, in the following, the subscript a will be omitted.

3. Results

We first construct a neural network with activation function a(x), that, for the given
γ, m ∈ N, simultaneously approximates all d-dimensional monomials of a degree less than
γ up to an error of γ24−m. The depth of this network has order m log2 γ and its width is of
order mγd+1. Moreover, the entries of the product of the absolute values of matrices of the
network have an order of at most γ5 (note the independence of m).

For γ > 0, let Cd,γ denote the number of d-dimensional monomials xk with degree
‖k‖1 < γ. Then, Cd,γ < (γ + 1)d and the following holds:

Lemma 1. There is a neural network Mond
m,γ ∈ F (L, p) with L ≤ dlog2 γe(2m + 5) + 2,

p0 = d + 1, pL+1 = Cd,γ and ‖p‖∞ ≤ 6γ(m + 2)Cd,γ such that∥∥∥∥Mond
m,γ(x)− (xk)‖k‖1<γ

∥∥∥∥
∞
≤ γ24−m, x ∈ [0, 1]d.

Moreover, the entries of the Cd,γ× (d + 1)-dimensional matrix obtained by multiplying the absolute
values of matrices presented in Mond

m,γ are all bounded by 144(γ + 1)5.

Taking in the above lemma γ, m = dlog2
1
ε e, we obtain a neural network from F (L, p),

with L and ‖p‖∞ having logarithmic dependence on 1/ε, which simultaneously approx-
imates the monomials of a degree at most of γ with error ε (up to a logarithmic factor).
Moreover, the entries of the product of absolute values of matrices of this network will
also have logarithmic dependence on 1/ε. Below, we use this property to construct a
neural network approximation of analytic and analytically continuable functions with an
approximation error ε and with network parameters having logarithmic order.

Theorem 1. Let f (x) = ∑k∈Nd
0

akxk be an analytic function on (0, 1)d with ∑k∈Nd
0
|ak| ≤ F.

Then, for any ε, δ ∈ (0, 1), there is a constant C = C(d, F) and a neural network Fε ∈ F (L, p, B)
with L ≤ C(log2

1
δ )(log2

2
1
ε ), ‖p‖∞ ≤ C

δd+1 (log2
1
ε )

d+2 and

B ≤ 104dF
(

log2((2F + 16)/ε)

δ

)5

,
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such that
|Fε(x)− f (x)| ≤ ε

δ2 , for all x ∈ (0, 1− δ]d.

Note that an exponential convergence rate of deep ReLU network approximants on
subintervals (0, 1− δ]d is also given in [3]. In our case, however, not only the depth and
the width but also the path norm ‖Fε‖× of the constructed network Fε have logarithmic
dependence on 1/ε. Note that, in the above theorem, as δ approaches to 0, both ‖p‖∞ and
B, as well as the approximation error, grow polynomially on 1/δ. In the next theorem, we
use the properties of Chebyshev series to derive an exponential convergence rate on the
whole hypercube [0, 1]d. Recall that the Chebyshev polynomials are defined as T0(x) = 1,
T1(x) = x and

Tn+1(x) = 2xTn(x)− Tn−1(x).

Chebyshev polynomials play an important role in the approximation theory ([16]), and,
in particular, it is known ([17], Theorem 3.1) that if f is Lipschitz continuous on [−1, 1], then
it has a unique representation as an absolutely and uniformly convergent Chebyshev series

f (x) =
∞

∑
k=0

akTk(x).

Moreover, in case f can be analytically continued to an ellipse Eρ ⊂ C with foci −1 and 1
and with the sum of semimajor and semiminor axes equal to ρ > 1, then the partial sums
of the above Chebyshev series converge to f with a geometric rate and the coefficients ak
also decay with a geometric rate. This result was first derived by Bernstein in [18] and its
extension to the multivariate case was given in [19]. Note that the condition z ∈ Eρ implies
that z2 ∈ N1,h2 , where h = (ρ− ρ−1)/2 and, for d, a > 0, Nd,a ⊂ C denotes an open ellipse
with foci 0 and d and the leftmost point −a. For F > 0, ρ > 1 and h = (ρ− ρ−1)/2, let
Ad(ρ, F) be the space of functions f : [0, 1]d → R that can be analytically continued to the
region {z ∈ Cd : z2

1 + · · ·+ z2
d ∈ Nd,h2} and are bounded there by F. Using the extension of

Bernstein’s theorem to the multivariate case, we obtain

Lemma 2. Let ρ ≥ 2
√

d. For f ∈ Ad(ρ, F), there is a constant C = C(d, ρ, F) and a polynomial

p(x) = ∑
‖k‖1≤γ

bkxk, x ∈ [0, 1]d,

with
|bk| ≤ C(γ + 1)d (8)

and
| f (x)− p(x)| ≤ Cρ−γ/

√
d, for all x ∈ [0, 1]d.

Combining Lemma 1 and Lemma 2, we obtain the following.

Theorem 2. Let ε ∈ (0, 1) and let ρ ≥ 2
√

d. For f ∈ Ad(ρ, F), there is a constant C = C(d, ρ, F)
and a neural network Fε ∈ F (L, p, B) with L ≤ C log2

2
1
ε , ‖p‖∞ ≤ C(log2

1
ε )

d+2 and B ≤
C(log2

1
ε )

2d+5 such that

|Fε(x)− f (x)| ≤ ε, for all x ∈ [0, 1]d.

We conclude this part by estimating the l1 weight regularization of networks con-
structed in Theorem 2. First, the total number of weights in those networks is bounded
by (L + 1)‖p‖2

∞ = O(log2
1
ε )

2d+6. From (7), it follows that all of the weights of network
Mond

m,γ from Lemma 1 are in [−2, 2]. In Theorem 2, the network Fε is obtained by adding
to a network Mond

m,γ, with γ = m = O(log2
1
ε ), a layer with coefficients of partial sums of
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power series of an approximated function. Thus, using (8), we obtain that the l1 weight
norm of the network Fε constructed in Theorem 2 has order O(log2

1
ε )

4d+6.

4. Proofs

In the following proofs, Ik denotes an identity matrix of size k × k and all of the
networks have activation a(x) = |x|. The proof of Lemma 1 is based on the following
two lemmas.

Lemma 3. For any positive integer m, there exists a neural network Multm ∈ F (2m + 3, p),
with p0 = 3, pL+1 = 1 and ‖p‖∞ = 3m + 2, such that

|Multm(x, y)− xy| ≤ 3 · 2−2m−3, for all x, y ∈ [0, 1], (9)

and the product of absolute values of the matrices presented in Multm is equal to(
3

m

∑
k=1

2k − 1
22k , 2− 2−m, 2− 2−m

)
.

Proof. For k ≥ 2, let Rk denote a row of length k with a first entry equal to −1/2, last entry
equal to 1 and all other entries equal to 0. Let Ak be a matrix of size (k + 1)× k obtained by
adding the (k + 1)-th row Rk to the identity matrix Ik. That is,

Ak =

(
Ik

− 1
2 0 0 . . . 0 1

)
.

In addition, let Bk denote a matrix of size k× k given by

Bk =


Ik−1

0
0
...
0
0

1 0 0 . . . 0 0 −2


.

It then follows from (7) that

Bm+2 ◦ a ◦ Am+1 ◦ · · · ◦ B3 ◦ a ◦ A2

(
1
x

)
=



1
x

g1(x)
g2(x)
·
·
·

gm(x)


,

where gs(x) is the function defined in (3), s = 1, . . . , m. Thus, if Sm+2 is a row of length
m + 2 defined as

Sm+2 =

(
0, 1,− 1

22·1 ,− 1
22·2 , . . . ,− 1

22·m

)
,

then

Sm+2 ◦ a ◦ Bm+2 ◦ a ◦ Am+1 ◦ · · · ◦ a ◦ B3 ◦ a ◦ A2

(
1
x

)
= fm(x),
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where fm is defined by (4). We have that

|Sm+2| · |Bm+2| · |Am+1| · · · · · |B3| · |A2| =
( m

∑
k=1

2k+1 − 2
22k , 2− 2−m

)
.

As xy = 1
2
(
(x + y)2− x2− y2), then, in the first layer of Multm, we will obtain a vector

1 0 0
0 1 0
1 0 0
0 0 1
1 0 0
0 1 1


1

x
y

 := C

1
x
y

 =



1
x
1
y
1

x + y


and will then apply the network in a parallel manner from the first part of the proof to each
of the pairs (1, x), (1, y) and (1, x + y). More precisely, for a given matrix M of size p× q,
let M̃ be a matrix of size 3p× 3q defined as

M̃ =

M 0 0
0 M 0
0 0 M

.

Then, for the network

Multm(x, y) =
(
− 1

2
,−1

2
,

1
2

)
◦ a ◦ S̃m+2 ◦ a ◦ B̃m+2 ◦ a ◦ Ãm+1 ◦ · · · ◦ B̃3 ◦ a ◦ Ã2 ◦ a ◦C

1
x
y


we have that

Multm(x, y) =
1
2
( fm(x + y)− fm(x)− fm(y)),

which, together with | fm(x) − x2| < 2−2m−2 and the triangle inequality, implies (9). It
remains to be noted that the product of absolute values of the matrices presented in Multm
is equal to(

1
2

,
1
2

,
1
2

)
· |S̃m+2| · |B̃m+2| · |Ãm+1| · · · · · |B̃3| · |Ã2| · |C| =

(
3

m

∑
k=1

2k − 1
22k , 2− 2−m, 2− 2−m

)
,

which completes the proof of the lemma. �

Lemma 4. For any positive integer m, there exists a neural network Multr
m ∈ F (L, p), with

L = (2m + 5)dlog2 re+ 1, p0 = r + 1, pL+1 = 1 and ‖p‖∞ ≤ 6r(m + 2) + 1, such that

|Multr
m(x)−

r

∏
i=1

xi| ≤ r24−m for all x = (x1, . . . , xr) ∈ [0, 1]r,

and, for the (r + 1)-dimensional vector Jr
m obtained by multiplication of absolute values of matrices

presented in Multr
m, we have that ‖Jr

m‖∞ ≤ 144r4.

Proof. First, for a given k ∈ N, we construct a network Nk
m ∈ F (L, p) with L = 2m + 4,

p0 = 2k + 1 and pL+1 = k + 1, such that

Nk
m(x1, x2, . . . , x2k−1, x2k) = (1, Multm(x1, x2), . . . , Multm(x2k−1, x2k)).
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In the first layer, we obtain a vector for which the first coordinate is 1 followed by
triples (1, x2l−1, x2l) l = 1, . . . , k, that is, the vector (1, 1, x1, x2, 1, x3, x4, . . . , 1, x2k−1, x2k).
Nk

m is then obtained by applying in parallel the network Multm to each triple (1, x2l−1, x2l)
while keeping the first coordinate equal to 1. The product of absolute values of the matrices
presented in this construction is a matrix of size (k + 1)× (2k + 1) having a form

1 0 0 0 0 0 . . . 0 0 0
am bm bm 0 0 0 . . . 0 0 0
am 0 0 bm bm 0 . . . 0 0 0
· · · · · · · · · ·

am 0 0 0 0 0 . . . 0 bm bm

,

where am = 3 ∑m
k=1

2k−1
22k and bm = 2− 2−m are the coordinates obtained in the previous

lemma. Let us now construct the network Multr
m. The first hidden layer of Multr

m computes

(1, x1, . . . , xr) 7→ (1, x1, . . . , xr, 1, 1, . . . , 1︸ ︷︷ ︸
2q−r

),

where q = dlog2 re. We then subsequently apply the networks N2q
m , N2q−1

m , . . . , N2
m and, in

the last layer, we multiply the outcome by (0, 1). From Lemma 3 and triangle inequality,
we have that |Multm(x, y)− tz| ≤ 3 · 2−2m−3 + |x− t|+ |y− z|, for x, y, t, z ∈ [0, 1]. Hence,
by induction on q, we obtain that |Multr

m(x)−∏r
i=1 xi| ≤ 3q2−2m−3 ≤ 3r22−2m−3 ≤ r24−m.

Note that the product of absolute values of matrices in each network Nk
m has the above

form, that is, in each row, it has at most three nonzero values, each of which is less than
2. As the matrices given in the first and the last layer of Multr

m also satisfy this property,
then each entry of the product of absolute values of all matrices of Multr

m will not exceed
12q+2 ≤ 144r4. �

Proof of Lemma 1. We have that, if ‖k‖1 = 0, then xk = 1, and if ‖k‖1 = 1, then k has only
one non-zero coordinate, say, k j, which is equal to 1 and xk = xj. Denote N = Cd,γ − d− 1
and let k1, . . . , kN be the multi-indices satisfying 1 < ‖ki‖1 < γ, i = 1, . . . , N. For k =
(k1, . . . , kd) with ‖k‖1 > 1, denote by xk the (‖k‖1 + 1)-dimensional vector of the form

xk = (1, x1, . . . , x1︸ ︷︷ ︸
k1

, . . . , xd, . . . , xd︸ ︷︷ ︸
kd

).

The first layer of Mond
m,γ computes the

(
d+ 1+∑N

i=1(‖k
i‖1 + 1)

)
-dimensional vector

(1, x, xk1 , . . . , xkN )ᵀ

by multiplying the input vector by matrix Γ of size
(

d + 1+ ∑N
i=1(‖k

i‖1 + 1)
)
× (r + 1). In

the following layers, we do not change the first d + 1 coordinates (by multiplying them by

Id+1), and, to each xki , we apply in parallel the network Mult‖k
i‖1

m . Recall that, in Lemma 4,
Jr
m denotes the (r + 1)-dimensional vector obtained from the product of absolute values of
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the matrices of Multr
m. We then have that the product of the absolute values of the matrices

of Mond
m,γ has the form

M =



Ik
J‖k

1‖1
m 0

J‖k
2‖1

m

0 . . .

J‖k
N‖1

m


· Γ.

As the matrix Γ only contains entries 0 and 1, then, applying Lemma 4, we obtain that
the entries of M are bounded by

max
1≤i≤N

∣∣∣∣∣∣∣∣J‖ki‖1
m

∣∣∣∣∣∣∣∣
1
≤ 144(γ + 1)5.

�

Proof of Theorem 1. Let γ =
⌈ log2((2F+16)/ε)

log2(1−δ)−1

⌉
. Then, for x ∈ (0, 1− δ]d, we have that

∣∣∣∣ f (x)− ∑
‖k‖1<γ

akxk
∣∣∣∣ = ∣∣∣∣ ∑

‖k‖1≥γ

akxk
∣∣∣∣ ≤ (1− δ)γF ≤ εF

2F + 16
≤ ε

2
≤ ε

2δ2 . (10)

Applying Lemma 1 with m = dlog2
4F+16

ε e, we obtain that, for all x ∈ [0, 1]d

∥∥∥∥Mond
m,γ(x)− (xk)‖k‖1<γ

∥∥∥∥
∞
≤ γ24−m ≤

(
4

log2
2(1− δ)−1

)(
log2

2
2F + 16

ε

)(
ε

4F + 16

)2

≤ 4(2F + 16)ε2

δ2ε(4F + 16)2 ≤
ε

2Fδ2 , (11)

where we used the inequalities log2(1− δ)−1 ≥ δ, δ ∈ (0, 1), and log2
2 r ≤ r for r ≥ 16.

In order to approximate the partial sum ∑‖k‖1≤γ akxk, we add one last layer with the
coefficients of that partial sum to the network Mond

m,γ+1. As the sum of absolute values of
those coefficients is bounded by F, then, combining (10) and (11), for the obtained network
Fε we obtain

|Fε(x)− f (x)| ≤ ε

δ2 , for all x ∈ (0, 1− δ]d.

From Lemma 1 it follows that

‖Fε‖× ≤ 144(d + 1)F(γ + 1)5 ≤ 104dF
(

log2((2F + 16)/ε)

δ

)5

.

�

Let us now present the result from [19] that will be used to derive Lemma 2. First,
if f ∈ Ad(ρ, F), then ([20], Theorem 4.1) f has a unique representation as an absolutely and
uniformly convergent multivariate Chebyshev series

f (x) =
∞

∑
k1=0
· · ·

∞

∑
kd=0

ak1,...,kd
Tk1(x1) . . . Tkd

(xd), x ∈ [0, 1]d.
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Note that, for k := (k1, . . . , kd), the degree of a d-dimensional polynomial
Tk1(x1) . . . Tkd

(xd) is ‖k‖1 = k1 + · · ·+ kd. Then, for any non-negative integers n1, . . . , nd,
the partial sum

p(x) =
n1

∑
k1=0
· · ·

nd

∑
kd=0

akTk1(x1) . . . Tkd
(xd) (12)

is a polynomial truncation of the multivariate Chebyshev series of f of degree d(p) =
n1 + · · ·+ nd. It is shown in [19] that

Theorem 3. For f ∈ Ad(ρ, F), there is a constant C = C(d, ρ, F) such that the multivariate
Chebyshev coefficients of f satisfy

|ak| ≤ Cρ−‖k‖2 (13)

and, for the polynomial truncations p of the multivariate Chebyshev series of f , we have that

inf
d(p)≤γ

‖ f (x)− p(x)‖[0,1]d ≤ Cρ−γ/
√

d.

Proof of Lemma 2. Note that, from the recursive definition of the Chebyshev polynomials,
it follows that, for any k ≥ 0, the coefficients of the Chebyshev polynomial Tk(x) are all
bounded by 2k. Let p now be a polynomial given by (12) with degree d(p) ≤ γ. As the
number of summands in the right-hand side of (12) is bounded by (γ+ 1)d, then, using (13),
we obtain that p can be rewritten as

p(x) = ∑
‖k‖1≤γ

bkxk,

with
|bk| ≤ C(γ + 1)d2‖k‖1 ρ−‖k‖2 ≤ C(γ + 1)d2

√
d‖k‖2 ρ−‖k‖2 ≤ C(γ + 1)d,

where the last inequality follows from the condition ρ ≥ 2
√

d. �

Proof of Theorem 2. The proof follows from Lemmas 1 and 2 by taking γ = m = dlog2
1
ε e

and adding, to the network Mond
m,γ+1, the last layer with the coefficients of the polynomial

p(x) from Lemma 2. For the obtained network Fε we have that

‖Fε‖× ≤ 144C(d + 1)Cd,γ+1(γ + 2)d(γ + 2)5 ≤ 144C(d + 1)(γ + 2)2d+5,

where C is the constant from Lemma 2. �

5. Discussion

Although various activation functions, including the ReLU, sigmoid and the Gaussian
function, have already been used in the literature for neural network approximations
of smooth and analytic functions (see [3,8,21]), approximating properties of neural net-
works with an absolute value activation function, which is a built-in activation function of
software-based neural network evolving methods (such as NEAT-Python, [11]), has been
barely covered previously. Whereas the algorithms developed in the works [12,13] allow us
to train neural networks with an absolute value activation function, in the present paper, we
study the capabilities of those networks to approximate analytic functions. While popular
types of constraints imposed on approximating neural networks are either controlling the
lp norms of network weights or adjusting their architectures, in the present work, we study
approximating properties of neural networks with regularized path norms and show that
networks with an absolute value activation function and with network path norms having
logarithmic dependence on 1/ε can ε-approximate functions that are analytic on certain
regions of Cd. The sizes and the weights of constructed networks also have logarithmic
dependence on 1/ε.
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