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Abstract: Nowadays, it is increasingly necessary to improve the encryption and secure transmission
performance of images. Therefore, in this paper, a bit-level permutation algorithm based on hyper
chaos is proposed, with a newly constructed 5-D hyperchaotic system combined with DNA sequence
encryption to achieve bit-wide permutation of plaintexts. The proposed 5-D hyperchaotic system
has good chaotic dynamics, combining hyperchaotic sequence with bit-level permutation to enhance
the pseudo-randomness of the plaintext image. We adopt a scheme of decomposing the plaintext
color image into three matrices of R, G, and B, and performing block operations on them. The
block matrix was DNA encoded, operated, and decoded. The DNA operation was also determined
by the hyperchaotic sequence, and finally generated a ciphertext image. The result of the various
security analyses prove that the ciphertext images generated by the algorithm have good distribution
characteristics, which can not only resist differential attacks, but also have the advantages of large
cryptographic space.

Keywords: 5-D hyperchaotic system; color image encryption; bit-level permutation; DNA encoding

1. Introduction

With the rapid development of the digital economy, the application of the Internet is
becoming more and more widespread, which is making people’s lives change radically.
Work and study are no longer confined to books, and there is a growing trend toward mobile
portable devices. In today’s world of huge amounts of data, the field of application of
digital images as a vehicle for information dissemination is constantly being expanded, and
images have the natural advantage of being informative and easy to transmit. Therefore,
the security of digital images has become a key to image processing technology [1,2]. The
security of images can affect both national security and personal life. In the past, there was
a basis for digital watermarking technology [3–6]. Thus, due to the initial value sensitivity
and randomness of chaotic systems, many scholars have applied them to image encryption.

In recent years, the commonly used encryption algorithms are mainly AES and DES
algorithms, which can be applied to image encryption technology in theory, but for digital
images with large data volume, high redundancy and high correlation, the encryption
efficiency using AES and DES is low. However, image encryption algorithms based on
chaotic systems are easy to implement in both software and hardware, which makes chaotic
image encryption increasingly researched and widely used by scholars. In 2016, Ref. [7]
proposed a new one-dimensional discrete chaotic system, co-controlled it with a logistic
map for the encryption algorithm, and used both chaotic systems to jointly construct an
S-box for permutation and diffusion. Later, Cavusoglu et al. [8] took a 3-D chaotic system
to create S-Box for image encryption. In 2019, Ref. [9] proposed a dual image encryption
algorithm based on a spatio-temporal chaotic system, and the results showed good security.
Subsequently, Alawida et al. [10] took an image encryption algorithm based on hybrid chaos
and chaotic perturbation of pixels, which allows for a larger parameter range and optimal
chaotic behavior by coupling two one-dimensional discrete chaotic systems. Recently,
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Ref. [11] proposed a new discrete chaotic system TM-DFSM, combining a Tent map and
finite state machine, where ciphertext images are obtained by two rounds of permutation
and diffusion, and the complexity and larger key space of the chaotic system is improved
by TM-DFSM. Ref. [12] proposed a three-dimensional Rubik’s cube for permutation and
a one-dimensional logistic for diffusion. Zheng et al. [13] proposed an improved two-
dimensional logistic chaotic map for image encryption, using a combination of logistic and
sinusoidal mappings to enhance the chaotic properties. In 2020, Ref. [14] proposed a new
chaotic system that combines a two-dimensional Lorenz chaotic system with a logistic map
that was used for image encryption. Subsequently, Ref. [15] used a 3-D chaotic map with
prime modular for pixel alignment, and row diffusion and hill diffusion were used for pixel
replacement. By contrast, most of the image encryption algorithms are designed on the
basis of low-dimensional discrete chaotic systems, which lead to a small key space for the
encryption algorithms and can easily perform exhaustive attacks on their algorithms to
decrypt ciphertext images. The control parameters and state variables of a hyperchaotic
system are more than those of a low-dimensional chaotic system. Moreover, the structure
of the hyperchaotic system is more complex, and the dynamics of the generated chaotic
sequence is even better, so the encryption performance based on the hyperchaotic system is
more secure. Therefore, in this paper, by designing a new 5-D hyperchaotic system, and
analyzing the characteristics of the new 5-D hyperchaotic system, the results show that the
new 5-D hyperchaotic system has good chaotic characteristics, and can be used in chaotic
image encryption.

Chaotic image encryption algorithms are usually based on scrambling and diffusion,
which are the main techniques with the purpose of obscuring the statistical properties
of plaintext images. The combination of scrambling and diffusion can yield statistically
better ciphertext images. Nowadays, there are only three common types of scrambling
algorithms: the first is row scrambling, column scrambling and cross scrambling of image
matrices; then, the second one converts the image matrices into one-dimensional vectors
for position scrambling; the last one uses the scrambling matrices to change the positions of
pixel points. In 2017, Zhang et al. [16] put forward an MIE algorithm that is based on mixed
image elements and permutation, which improves the encryption efficiency by comparing
with the traditional Arnold permutation algorithm, but has weaker resistance to cropping.
In 2019, Ref. [17] proposed a neural network-based simultaneous dislocation and diffusion
encryption algorithm that performs the dislocation diffusion part simultaneously, and can
resist attackers against a single dislocation and overcome the drawbacks of the classical
dislocation diffusion structure. In 2020, Ref. [18] proposed an image encryption algorithm
using chaos and a Mandelbrot set, where the choice of Arnold map is associated with
plaintext, which can avoid brute force attacks. In 2021, Ref. [19] proposed a color image
encryption algorithm based on Fisher-Yates permutation algorithm and DNA sequence
operation. The color image was decomposed into three components, R, G and B, and was
subjected to Fisher-Yates permutation operation; their experimental results proved that the
algorithm has good robustness. Moreover, a permutation method based on chaotic Josephus
perturbations was chosen in ref. [20], where the permutation and diffusion matrices were
generated by a chaotic sequence. The combination of chaotic sequences and Josephus is
used to improve randomness. In 2021, Ref. [21] divided the image into eight bit-planes,
randomly divided into three parts using binary tree, flip scrambling and index scrambling,
and diffusion operation by improving the GF(257) domain. However, the anti-differential
performance was poor. Nevertheless, the single use of row disarrangement and column
disarrangement reduces the ciphertext security, and using the plaintext attack method, only
a certain amount of plaintext is required to restore half of the information in the ciphertext
image. The chaos matrix is cyclic, and will restore the plaintext image after multiple chaotic
iterations: thus, the security is extremely low. Although more and more chaotic image
encryption algorithms are proposed, most of the schemes are weak against differential
attacks. The key is that these encryption schemes do not achieve strong permutation:
bit-level permutation has good encryption effect compared with pixel-level permutation,
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which only changes the pixel position, while bit-level permutation can change both position
and size. In this paper, by designing a new bit-level permutation method, and reordering
and diffusing pixel values, we show through our results that our proposed method has a
good performance advantage.

DNA coding is used for image encryption by many scholars studying image encryption
due to its biological self-encryption properties. Research has shown that DNA computing
can simulate DNA biological operations to encrypt information, thus improving the security
and efficiency of image encryption algorithms. At present, scholars have combined DNA
coding and chaotic systems to propose some new image encryption algorithms. Thus,
ref. [22] proposed a rule matrix for DNA encoding and decoding with 2D-LASM, where
the images are encoded according to the generated DNA encoding rules, the plaintext
DNA matrix is rank-swapped, and the final plaintext matrix is obtained by heterodyning
the DNA matrix with a key matrix. In addition, ref. [18] combined Arnold mapping with
DNA coding, that is, coding the R, G and B components separately, and finally performing
DNA operations on the matrix generated by Arnold mapping and shifting it through the
Mandelbrot dataset. In this paper, by dividing the pixel matrix into blocks, the block-based
matrix performs DNA operations. The randomness of the encryption algorithm is further
improved.

2. Related Work

Recent studies have shown that traditional chaotic mapping suffers from the phe-
nomenon of cycles [23,24], i.e., an encryption algorithm that uses an Arnold chaotic map-
ping will revert to a plaintext image after repeated iterations, which reduces the security
of the encryption algorithms. In this paper, an image encryption algorithm based on a
hyperchaotic system is proposed. The ciphertext can be disrupted and diffused at the
same time by bit-level permutation, and the DNA encoding, decoding and operation are
performed on the R, G, B surfaces after permutation and diffusion. The initial value of the
hyperchaotic system is determined by the information in the plaintext image, while the
DNA encoding and decoding is determined by the hyperchaotic sequence. The chaotic
matrix is generated by a one-dimensional discrete chaotic system, which performs a DNA
operation with the ciphertext matrix; the result of the calculation is then subjected to rank
index permutation. From the above operations, the final ciphertext image is obtained. The
algorithm security verification results prove that the proposed algorithm in this paper has
a uniform pixel distribution, low pixel correlation, high security and can effectively resist a
range of attacks.

The rest of this paper is arranged as follows: In Section 3, a new 5-D hyperchaotic
system and the corresponding bit-level dislocation rules are proposed; and the dynamics of
the hyperchaotic system will be presented. Furthermore, hyperchaotic systems are designed
as specific circuits to meet practical requirements. The specific steps of the encryption
algorithm in this paper will be discussed in Section 4. Then, in Section 5, the experimental
results are given and the security of the encryption algorithm is analyzed. Finally, this
paper is concluded in Section 6.

3. Preliminaries
3.1. A New 5-D Hyperchaotic System

Hyperchaotic systems have been the focus of attention since they were first pro-
posed [25]. Hyperchaotic systems have more complex dynamic characteristics than chaotic
systems, and hyperchaotic systems have more control parameters. In this paper, a new 5-D
hyperchaotic system is proposed, and the mathematics expression is defined as
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.
x = ay− bx + yz + cw2 + d
.
y = a1x− b1y− xz− c1u
.
z = d1z + xy
.

w = hyz +
.
jw

.
u = ky

(1)

where x, y, z, w, u are the state variables of the hyperchaotic system, and a, b, c, d, a1, b1, c1,
d1, h, j, k are the control parameters of the hyperchaotic system. When a = 23.8, b = 14.2,
c = 0.35, d = 0.2, a1 = 30.9, b1 = −4.39, c1 = 1.07, d1 = −1, h = −0.38, j = −10.6, k = 1,
the system behaves in a hyperchaotic state. After introducing each of the above parameters
into the hyperchaotic system, the motion characteristics of chaos can be directly observed
in the phase diagram, and the phase diagram of the hyperchaotic system is represented in
Figure 1.

Figure 1. Phase diagrams of the hyperchaotic system: (a) x-y-z plane (b) x-y-u plane (c) y-z plane
(d) x-y plane (e) x-z plane and (f) w-u plane.

The Lyapunov exponent and the bifurcation diagram are analyzed to determine
whether the chaotic system has the important characteristics contained in the chaotic
behavior. Likewise, the above parameters are brought into the system and the initial values
are chosen as [2, 1, 25, 1, 1]. Figure 2 shows the evolution curves of the five Lyapunov
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exponents as a function of the parameter k: when the parameter k = 1, the Lyapunov
exponents of the 5-D hyperchaotic system are calculated as LE1 = 2.635, LE2 = 0.138,
LE3 = 0, LE4 = −10.371 and LE5 = −13.535.
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Figure 2. Lyapunov exponent spectrum: (a) k ∈ [4, 0); (b) k ∈ [0.9, 1.1].

The Lyapunov exponent has two positive numbers, one 0, and two negative numbers.
Therefore, the proposed chaotic system is a hyperchaotic system. The transition of a system
from regularity to irregularity is characterized by the bifurcation diagram of a chaotic
system. By keeping the remaining control parameters constant and choosing the value of k
as [0, 4), the bifurcation diagram of the hyperchaotic system is shown in Figure 3.

Figure 3. Bifurcation diagram with k ∈ [4, 0).

The complexity of a chaotic system refers to the degree to which a chaotic sequence is
close to a random sequence by using a correlation algorithm. The larger the complexity
value, the closer the sequence is to a random sequence. In this paper, the Spectral Entropy
(SE) is used to test the discrete chaotic sequence, and the result is shown in Figure 4. It can
be seen from the figure that the complexity value of the chaotic sequence is very large, and
the complexity of the chaotic system is very high.
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Figure 4. SE of the discrete chaotic sequence.

3.2. Dissipativity of the Chaotic System

The dissipativity of the hyperchaotic system is calculated as

∇V =
∂

.
x

∂x
+

∂
.
y

∂y
+

∂
.
z

∂z
+

∂
.

w
∂w

+
∂

.
u

∂u
= −b− b1 + d1 + j + 0 (2)

where b = 14.2, b1 = −4.39, d1 = −1 and j = −10.6.
Hence, based on Equation (2), the hyperchaotic system proposed by this paper is

a dissipative system which converges at an exponential rate e−21.41t. For the volume
element, V0 converges to V0e−21.41t at time t, and as t→ ∞ , V0 → 0 . Since the phase point
trajectory curves of the system will all be confined to a set whose volume is 0, the designed
hyperchaotic system in this paper with singular attractors is effectively confirmed.

3.3. Equilibrium Point Analysis of the Chaotic System

The mathematical formula for the equilibrium points of the hyperchaotic system can
be described as 

ay− bx + yz + cw2 + d = 0
a1x− b1y− xz− c1u = 0
d1z + xy = 0
hyz + jw = 0
ky = 0

(3)

According to Equation (3), the unique equilibrium point O (0.0141, 0, 0, 0, 0.4067) of
the hyperchaotic system can be obtained. Thus, the Jacobi matrix is expressed as

J =


−b a + z y 2cw 0
a1 −b1 −x 0 −c1
y x d1 0 0
0 hz hy j 0
0 k 0 0 0

 (4)

The eigenvalues of the matrix are 23.7325, 0.0191, −1, −10.6 and−33.5616. When one
of the real parts of all the eigenvalues of the Jacobi matrix is positive, this corresponds to
an unstable equilibrium state. It follows that the system has two eigenvalues greater than 0.
Therefore, the point O is an unstable point where chaotic attractors can be formed.
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3.4. A Simple Chaotic Pseudo-Random Number Generator

Most chaotic sequence quantization methods are mainly composed of basic operations
such as modulo, rounding, and expansion. While these methods improve the randomness
of chaotic sequences, they also have the disadvantage of a large amount of computation.
Therefore, in this paper, we proposed a quantization method with XOR transformation,
which is not only simple to operate, but also enhances the randomness of chaotic sequences.
Notably, the chaotic pseudo-random sequence is denoted as xn, and this quantization
method is introduced as

Step 1. d(i) = x(n + 1)− x(n)

Step 2. s1(i) =

{
1 d(i) > 0
0 d(i) < 0

Step 3. s2(i) = mod( f loor(x(n) ∗ 28), 2)
Step 4. s(i) = bitxor(s1(i), s2(i))

where d(i) is the latter term minus the former term in the chaotic sequence. The result of
s1(i) depends on the value of d(i). The result of s2(i) is obtained by modulo and rounding
operations on xn, XOR s1(i) and s2(i) to get s(i). s(i) is the quantized chaotic sequence.
Based on the above operation steps, the quantized results s(i) were run through version
2.1.2 of the NIST SP-800-22 test [26]. The experiment results are listed in Table 1. The
results have shown that the chaotic sequences quantized by XOR have excellent pseudo-
random performance.

Table 1. Results of the NIST test for the quantized results s(i).

Test p-Value Result

Approximate Entropy 0.946734 Pass
Block Frequency 0.586564 Pass

Cumulative Sum 1 0.133011 Pass
Cumulative Sum 2 0.137823 Pass

FFT 0.652959 Pass
Frequency 0.818092 Pass

Linear Complexity 0.878124 Pass
Longest Run 0.213469 Pass

Nonoverlapping Template 0.238582 Pass
Overlapping Template 0.429132 Pass

Random Excursion 0.245937 Pass
Random Excursions Variant 0.314578 Pass

Rank 0.866239 Pass
Runs 0.352398 Pass

Serial 1 0.190145 Pass
Serial 2 0.306519 Pass

Universal 0.114032 Pass

3.5. Cosine-Transform-Based Chaotic System

The digitization of a chaotic system will lead to the degradation of dynamic character-
istics [27], in order to get the chaotic map to have more complex dynamic behavior. Based
on cosine transform, Hua et al. [28] proposed a chaotic system which can produce complex
dynamic behavior with the purpose of effectively resisting the dynamic degradation un-
der the influence of limited accuracy. The mathematical expression of the chaotic map is
described as

xi+1 = cos(ß(4rxi(1− xi) + (1− r) sin(πxi)− 0.5)) (5)

Figure 5 shows the bifurcation diagrams of the cosine and logistic maps with varying
parameter r. From the bifurcation diagram, it is obvious that the dynamic behavior of the
cosine chaotic map is more complex.
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Figure 5. Bifurcation diagrams of different chaotic maps: (a) cosine map, and (b) logistic map.

3.6. Chaotic Circuit Simulation

In this paper, we use the general idea of modular circuit design and the specific chaotic
circuit is shown in the Appendix A. The input and output voltages were put in the range of
±10 to ±50 V, which exactly corresponds to the range of values for each state variable. The
time domain waveforms and phase diagrams of the chaotic system were obtained through
Multisim hardware circuit simulation, and the results were consistent with the numerical
simulation results of MATLAB, which established that the chaotic circuit designed and the
simulation of Multisim software are fully practicable. The attractor plots from the Multisim
simulation can be found in Figure 6. The purpose of the circuit simulation is to provide the
basis for the subsequent hardware implementation.

Figure 6. Multisim hardware circuit simulation: (a) circuit attractor simulation, and (b) circuit chaotic
sequence simulation.

3.7. Bit-Level Permutation

This paper used a combination of bit-level permutation and chaotic sequences. While
the randomness is further improved, it can also achieve the purpose of diffusion. First, the
size of the image is M × N, the chaotic sequence a is sorted with a size of 1 × 4 MN in
ascending order, and the index vector b is generated by sorting. Next, the first to fourth
columns of the high 4 bit-plane are joined into a 1 × 4 MN one-dimensional 0–1 vector,
which is denoted as vector c, and this is rearranged according to the index position of the
vector b. The aligned one-dimensional vector thus generated is denoted as vector d. Finally,
the vector d is rearranged into an MN × 4 two-dimensional matrix. The whole process can
be described in Figure 7.
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Figure 7. Flow chart of Bit-level permutation.

Since the chaotic sequences are determined by the plaintexts, the plaintext relevance of
the algorithm is greatly enhanced. Correspondingly, choosing a different plaintext means
the scrambling position will also be different. Therefore, three different chaotic sequences
will be used for the R, G and B bits of the image. Accordingly, the randomness and security
of this algorithm will be greatly enhanced by the combination of bit-level permutation and
chaotic sequences.

3.8. DNA Coding

DNA in biology consists of base pairs. Base pairs are made up of A (adenine), T
(thymine), G (guanine), and C (cytosine). Accordingly, DNA coding is borrowed from
DNA in biology, where DNA coding encodes binary 00, 11, 10 and 01 as the corresponding
base pairs A, T, G and C. According to Watson–Crick’s rule of complementarity, out of
4! = 24 codes, only 8 codes fit the rule. The coding rules are shown in Table 2.

Table 2. DNA encoding rules.

Rule 1 2 3 4 5 6 7 8

00 A A T T C C G G
11 T T A A G G C C
01 C G C G A T A T
10 G C G C T A T A

When an encryption algorithm takes one of the encoding rules to encode while another
decoding rule is taken, it will effectively encrypt the pixel values. DNA can be encoded and
then subjected to DNA operations, which include addition, subtraction, XOR and XNOR
operations. For example, we adopted rule 1 from the table to encode the pixel value 228,
while obtaining a DNA sequence with a value of TGCA, respectively, and then, decoded
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it with rule 4 to obtain a pixel value of 27. The whole process proved to be effective in
protecting the plaintext. Tables 3–5 list the specific rules of the above DNA operations.

Table 3. DNA addition rules.

+ A T G C

A A T G C
T T G C A
G G C A T
C C A T G

Table 4. DNA subtraction rules.

− A T G C

A A C G T
T T A C G
G G T A C
C C G T A

Table 5. DNA XOR rules.

XOR A T G C

A A T G C
T T A C G
G G C A T
C C G T A

4. Color Image Encryption Algorithm

The process of the encryption algorithm proposed in this paper can be illustrated in
Figure 8.

Figure 8. The overall frame structure of the proposed image encryption algorithm.

In order to explain the encryption algorithm proposed in this paper, we use a color
image of size M × N as a plaintext image to demonstrate the flow of the encryption
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algorithm. Correspondingly, the decryption algorithm is the inverse of the encryption
algorithm. The process of encryption algorithm is as follows:

Step 1. First, decompose the color image into three planes, R, G, and B, which are
represented as red, green, and blue, which correspond to the constituent elements of a color
image. As shown in Equation (6), the three decomposed matrices are called Y1, Y2, Y3.

Y1 = Y(:, :, 1)
Y2 = Y(:, :, 2)
Y3 = Y(:, :, 3)

(6)

Step 2. Next, in order to increase the adaptability of the encryption algorithm, it needs
to be filled with 0 before the block so that the three matrices can be divided into blocks of
the same size; therefore, the size of the matrix must satisfy the following conditions:{

mod(M, t) = 0
mod(N, t) = 0

(7)

where t is the size of the block, 0 makes both M and N divisible by t, and the matrices
Y1, Y2, Y3 can be decomposed into t× t sized blocks.

Step 3. Then, the M × N decimal matrices Y1, Y2, Y3 are transformed into binary
8 ×MN matrices, and the upper 4-bit plane 4 ×MN matrix is rearranged using bit level
permutation. Equally, the lower 4-bit planes are combined from top to bottom for odd-
numbered columns, and from bottom to top for even-numbered columns. The scrambled
matrices are re-reduced to M × N decimal matrices, P1, P2, P3.

Step 4. The cosine map function is iterated M × N + 3000 times, discarding the first
3000 times to obtain better randomness. In order to avoid the degradation of the chaotic
sequence with finite accuracy, a small perturbation of the initial value is performed every
3000 iterations, the initial value after the perturbation is

xi+1 = xi + 0.002 ∗ sin(xi) (8)

where {Si} is the generated chaotic sequence, whereas the initial values x0 and r are
denoted as one of the keys. Furthermore, the chaotic sequence {Si} is transformed into a
decimal number from 0–255, which can be converted into an M × N matrix P4, and we take
the Reshape function, in which the x0 can be expressed as

x0 =
sum(Y1(:)) + sum(Y2(:)) + sum(Y3(:))

255 ∗M ∗ N ∗ 3
(9)

According to Equation (9), we can obtain the result that x0 is the average of the pixel
greyscale of Y1, Y2, Y3.

Step 5. Iterate the five-dimensional hyperchaotic system, the initial value of the system
is selected by Equation (10), and the five chaotic sequences {Xi}, {Yi}, {Zi}, {Wi}, {Ui}
are obtained 

X(0) = sum(sum(bitand(P1, 129)))/(129×M× N)
Y(0) = sum(sum(bitand(P2, 66)))/(66×M× N)
Z(0) = sum(sum(bitand(P3, 36)))/(36×M× N)
W(0) = sum(sum(bitand(P1, 24)))/(24×M× N)
U(0) = sum(sum(bitand(P2, 17)))/(17×M× N)

(10)

where five chaotic sequences {Xi}, {Yi}, {Zi}, {Wi}, {Ui} are done AND operation of 129,
and the average of the first and eighth planes of P1 can be obtained. Thus, we convert {Xi}
into a random integer from 1 to 8 to determine the DNA encoding rules for the sub-blocks
in the same position of P1, P2, P3. Similarly, transforming {Yi} into a random integer from 1
to 8 determines the coding rules for P4; and transforming {Zi} into random integers from
1 to 4 will determine the DNA operation rules for P1, P2, P3 and P4. In addition, the DNA
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decoding rules that are determined as above after the DNA manipulation are converted to
random integers {Wi} from 1 to 8, and alongside {Ui} are used to form the index matrix
required for bit-level scrambling.

Step 6. Divide P1,P2, and P3 into blocks, and the size of each sub-block is t× t. In
order to improve the efficiency of the encryption algorithm, the same position sub-blocks
of P1, P2 and P3 are used for the same DNA encoding method, DNA operation and DNA
decoding. The end of the operation is transformed into a decimal matrix.

Step 7. The cosine map function is adopted to generate two chaotic sequences {Sx}
and

{
Sy
}

with sizes M and N. The selection of the initial value is determined by Equation
(11), and the index matrix is obtained by descending order, taking Ux, Uy sequence values
and their corresponding indices as row and column exchange coordinates, and Equation
(12) is used to perform row and column permutation to improve the cropping resistance of
the image.  x01 = sum(Y1(:))+sum(Y2(:))

255×M×N×2

x02 = sum(Y2(:))+sum(Y3(:))
255×M×N×2

(11)

{
Ux = sort

(
Sx, ‘descend′

)
Uy = sort

(
Sy, ‘descend′

) (12)

Step 8. Finally, based on the above steps, combine the encrypted three two-dimensional
matrices into a three-dimensional matrix to obtain the final ciphertext image.

5. Image Algorithm Security Analysis
5.1. Encryption and Decryption Results

In order to verify the effectiveness of the algorithm, we conducted experiments on
Lena, Baboon and Pepper of size 512 × 512 under a Windows 10 environment using
MATLAB 2018b. The experimental results are shown in Figure 9, from which it can be
established that the original image and the decrypted image have no distortion or data loss,
while the cipher image has lost all features of the plaintext image: thus, the experimental
results prove that the algorithm has better security.

Figure 9. Encryption and decryption results. (a) Lena original image; (b) ciphered image of Lena;
(c) decrypted image of Lena; (d) Baboon original image; (e) ciphered image of Baboon; (f) decrypted
image of Baboon; (g) Pepper original image; (h) ciphered image of Pepper; (i) decrypted image
of Pepper.
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5.2. Keyspace Analysis

The ability of an encryption algorithm to resist exhaustive attacks is reflected by the
size of the key space. That is to say, if the key space is larger than 2128, this means that it
is better resistant to exhaustive attacks. The key in the encryption process of this paper
includes the control and initial values of the cosine map, as well as the initial values of the
5-D hyperchaotic system. Therefore, when computational precision is 32, the key space
is roughly equal to 213×32. According to the result above, the key space of the algorithm
proposed in this paper is large enough to resist exhaustive attack.

5.3. Key Sensitivity Analysis

Key sensitivity is an important feature in evaluating the quality of an encryption
algorithm, and a small change in key can produce extremely strong sensitivity. We changed
the initial value x0 of the cosine map from 0.5012 to 0.5012000000000001, and obtained the
encrypted image shown in the Figure 10, which is proof that even with small changes, the
encrypted image is completely different.

Figure 10. Encrypted image: (a) Lena cipher image; (b) on changing the initial value to encrypt the
ciphertext; (c) differential image of (a,b).

5.4. Correlation Analysis

As there is a correlation between pixels in the plaintext image, the encryption algorithm
is used to reduce the correlation and the encrypted correlation should ideally be 0. The
equations to calculate the correlation are given as

rxy =
|Cov(x, y)|√
D(x)× D(y)

(13)

Cov(x, y) =
1
N

N

∑
i=1

(xi − E(x))(yi − E(y)) (14)

E(x) =
1
N

N

∑
i=1

xi (15)

D(x) =
1
N

N

∑
i=1

(xi − E(x))2 (16)

Similarly, the detailed data for calculating the correlations for this algorithm are
shown in Table 6. The correlation between the plaintext and ciphertext in each direction is
represented separately in Figure 11. In conclusion, the encrypted pixel point correlation is
low and the encryption algorithm proposed in this paper shows a high level of security to
protect against statistical analysis of the ciphertext information by attackers.
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Table 6. RGB Correlation coefficients.

Correlation Coefficients Original Image Ciphered Image

Horizontal
R 0.9625 −0.0020
G 0.9798 0.0012
B 0.9650 0.0002

Vertical
R 0.9691 −0.0010
G 0.9832 −0.0043
B 0.9609 0.0014

Diagonal
R 0.9573 −0.0044
G 0.9675 0.0051
B 0.9411 −0.0013

Figure 11. Correlations between plaintext and ciphertext in each direction: (a) plaintext image;
(b) horizontal pixel correlation of plaintext image; (c) vertical pixel correlation of plaintext image;
(d) diagonal pixel correlation of plaintext image; (e) ciphertext image; (f) horizontal pixel correlation
of ciphertext image; (g) vertical pixel correlation of ciphertext image; (h) diagonal pixel correlation of
ciphertext image.

5.5. Statistical Characterization

The histogram defines the gray level frequency of the image, and the RGB image
histograms of plaintext and ciphertext are shown in Figure 12, which clearly shows the
average amount of data in the ciphertext, indicating that the encrypted image masks all the
original information. The grey level frequency of the image is defined by the histogram.
The RGB image histogram for both plaintext and ciphertext is shown in Figure 11, which
clearly shows the average amount of data in the ciphertext and indicates that the encrypted
image masks all the original information.
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5.6. Information Entropy

The uncertainty of the image information can be expressed by the information entropy
of the image, which is calculated as

H = −
L

∑
i=0

p(i) log2 p(i) (17)

where the image gray level is denoted as L, and the probability of occurrence of gray value
is denoted as p(i). In addition, the ideal value of H is 8. Lena 256 was evenly selected for
the information entropy measure.

The comparison of the information entropy of this algorithm with other cryptographic
algorithms is shown in Table 7. The ciphertext image information entropy of this algorithm
is close to the ideal value, with high uncertainty and little visible information. Based on the
above results, the algorithm proposed in this paper is proved to be highly secure.

Table 7. Information entropy.

Algorithm
Information Entropy

R G B Mean

Our scheme 7.9976 7.9974 7.9975 7.9975
Ref. [29] 7.9967 7.9973 7.9970 7.9970
Ref. [30] 7.9974 7.9962 7.9972 7.9969
Ref. [31] 7.9973 7.9969 7.9971 7.9971
Ref. [32] 7.9974 7.9974 7.9974 7.9974
Ref. [33] 7.9975 7.9972 7.9977 7.9975
Ref. [34] 7.9970 7.9972 7.9967 7.9970

5.7. Noise Attack

During image acquisition and transmission, the encrypted image will certainly be
affected by some noise. Hence, the ability to resist certain noise interference is a measure of
the cryptographic algorithm’s performance. In this paper, pepper noise of strength 0.05
and 0.1 is added to the encrypted image and decrypted with the correct key. The results are
shown by Figure 13, which proved that the algorithm can still largely recover the plaintext
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image even though a certain amount of noise interference is added, which indicates that
the algorithm is highly resistant to interference.

Figure 13. Decryption results for encrypted image: (a) without adding noise; (b) with 0.05 density
noise; (c) with 0.2 density noise.

5.8. Anti-Crop Analysis of Ciphertext Images

Attackers can intercept and corrupt parts of the data in the ciphertext image during
image transmission, and in general, the information will be very difficult to recover after
loss. Corrupting the inter-pixel correlation can greatly improve the cropping resistance of
the algorithm. In this paper, different levels of cropping attacks are applied to different
locations of the ciphertext image, and the test results are shown in Figure 14, which
confirming that the algorithm can still have some ability to recover the plaintext under
cropping attacks, thus demonstrating the strong robustness of the algorithm.

Figure 14. Different levels of crop attacks on different positions of cipher text images: (a) ciphertext
crop 1/4; (b) decrypted image of (a); (c) ciphertext crop 1/4; (d) decrypted image of (c); (e) ciphertext
crop 1/16; (f) decrypted image of (e); (g) ciphertext crop 1/2; (h) decrypted image of (g).

5.9. Differential Attack

In our next step, we perform a differential attack on the encryption algorithm by
making small changes to the plaintext, and the difference between the cipher text before
and after the changes could obtained. The encryption algorithm is sensitive to changes in
the plaintext, that is to say, a small change in the plaintext will cause a large change in the
ciphertext. NPCR (Number of Pixel Change Rate) and UACI (Uniform Average Change
Intensity) are used to encrypt images to measure the variation in the degree of difference
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between encrypted images. The ideal value for NPCR is 99.6094%; similarly, the ideal value
for UACI is 33.4635%, which is calculated as

NPCR =

M
∑

i=1

N
∑

j=1
D(i, j)

M× N
× 100% (18)

UACI =

M
∑

i=1

N
∑

j=1
|P1(i, j)− P2(i, j)|

255×M× N
× 100% (19)

where the relationship between P1(i, j) and P2(i, j) is

D(i, j) =

{
0 P1(i, j) = P2(i, j)
1 P1(i, j) 6= P2(i, j)

(20)

Tables 8 and 9 list the various comparisons between the encryption algorithm proposed
in this paper and those introduced in other papers. Based on Table 9, it is shown that the
NPCR and UACI of the encryption algorithm proposed in this paper are closer to the
ideal values than many other encryption algorithms, and that the proposed algorithm can
effectively resist the anti-contrast attack.

Table 8. Different images of NPCR and UACI.

Image NPCR (%) UACI (%)

Lena 99.6084 33.4513
Baboon 99.6133 33.4730
Pepper 99.6108 33.4473

Table 9. Comparison of NPCR and UACI.

Algorithms NPCR (%) UACI (%)

Our scheme (Lena) 99.6084 33.4513
Ref. [35] 99.6124 33.4438
Ref. [36] 99.6300 33.5200
Ref. [37] 99.6206 30.5300
Ref. [38] 99.5789 33.4549
Ref. [39] 99.6095 33.4705
Ref. [40] 99.7570 33.1200
Ref. [41] 99.6200 33.5700

6. Discussion

In this paper, a new 5-D hyperchaotic system is proposed, which has not only a large
Lyapunov exponent but also other good properties. The larger the Lyapunov exponent,
the faster the divergence of adjacent trajectories of the system; and this is the source of the
sensitive dependence of chaos on initial conditions. In addition, a combination of bit-level
permutation and DNA sequences were used to encrypt the color images. The plaintext
color image is decomposed into three matrices, R, G and B, and a chunking operation is
performed on these matrices, followed by DNA encoding, computation, and decoding.
Simultaneously, the DNA operations are based on hyperchaotic sequences. The generated
cryptographic images have been tested in various security tests and the experimental
results have proved the excellent performance of the algorithm proposed in this paper.
Finally, circuit simulations of chaos are performed, which provide the basis for future
practical applications of color image encryption algorithms.
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