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Abstract: Irreversible entropy production (IEP) plays an important role in quantum thermodynamic
processes. Here, we investigate the geometrical bounds of IEP in nonequilibrium thermodynamics
by exemplifying a system coupled to a squeezed thermal bath subject to dissipation and dephasing,
respectively. We find that the geometrical bounds of the IEP always shift in a contrary way under
dissipation and dephasing, where the lower and upper bounds turning to be tighter occur in the
situation of dephasing and dissipation, respectively. However, either under dissipation or under
dephasing, we may reduce both the critical time of the IEP itself and the critical time of the bounds
for reaching an equilibrium by harvesting the benefits of squeezing effects in which the values of the
IEP, quantifying the degree of thermodynamic irreversibility, also become smaller. Therefore, due to
the nonequilibrium nature of the squeezed thermal bath, the system–bath interaction energy has a
prominent impact on the IEP, leading to tightness of its bounds. Our results are not contradictory
with the second law of thermodynamics by involving squeezing of the bath as an available resource,
which can improve the performance of quantum thermodynamic devices.

Keywords: squeezed thermal bath; irreversible entropy production; geometrical bounds

1. Introduction

Over the past two decades, the nonequilibrium phenomena and thermodynamic
irreversibility quantified by irreversible entropy production (IEP) have drawn much atten-
tion, since this fundamental concept is one of the cornerstones of classical and quantum
thermodynamics [1–10]. As is well-known, the positivity of entropy production has been
universally captured by the conventional second law of thermodynamics (SLT) [9], which
quantitatively characterizes the interplay between the exchange of energy and the irre-
versibility by introducing the state function entropy [11,12]. In addition, through specifying
a lower bound for the irreversible entropy change, the related Clausius inequality provides
a fundamental feature of irreversible phenomena. Note that this lower bound (zero) is
trivially independent of how far from equilibrium a process operates [6].

Recently, with restriction to a specific class of nonequilibrium phenomena, such as
thermal relaxation process, rich features of thermodynamic irreversibility have been found
successively [2]. Such a lower bound for classical, near-equilibrium transformation pro-
cesses has been derived by means of a geometric approach [13]. S. Deffner and E. Lutz
treated the system’s Hilbert space as a Riemannian manifold and extended the classical
case [13] to the nonequilibrium closed quantum system. The obtained generalized Clau-
sius inequality states that the thermodynamic irreversibility is bounded in terms of the
Bures length between the final state and the corresponding equilibrium state by using
information geometry [6]. Soon afterwards, they broadened the closed quantum system
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further to the weakly coupled open quantum system, then obtained the exact microscopic
expressions for the nonequilibrium entropy production [7]. Along this direction, refer-
ence [11] theoretically and experimentally determined a sharper geometrical bound for
a qubit thermalization process and obtained a tighter version of the Clausius inequality
following a similar approach.

In many cases of interest, however, having a sharper lower bound is essential. A case in
point is the optimization of the performance of real finite-time thermodynamic processes [14,15].
Therefore, the abovementioned progress stimulated successive studies on the tightness
of the geometrical bounds on irreversibility in open quantum systems [6–11]. These
recent publications tried to develop theories to further understand the thermodynamic
irreversibility inherent to nonequilibrium processes. In particular, based on the variational
principle and time-reversed map, the authors in reference [10] obtained an information–
theoretical bound for entropy production in a relaxation process by a geometric distance on
the Riemannian manifold [16], which was experimentally validated by a single ultracold
trapped ion 40Ca [17].

T. V. Vu and Y. Hasegawa strengthened the Clausius inequality and proved that IEP is
bounded from below by a modified Wasserstein distance (quantum generalization of the
Wasserstein metric) between the initial and final states [8]. Thereafter, they extended this
single-bath case to the case of multiple-bath, and refined the bound in a quantum regime,
through deriving the fundamental bound on irreversibility for thermal relaxation processes
of Markovian open quantum systems [9].

On the other hand, quantum bath engineering techniques are powerful tools that enable
the realization of arbitrary thermal and nonthermal environments [18–25]. Additionally, due
to the unique vantage of the quantum control, bath engineering has aroused widespread
interest in the context of quantum thermodynamical processes. Various strategies have at-
tempted to improve the performance of thermodynamic devices [26–34], whose efficiency
is usually reduced by the presence of IEP [7]. For instance, the use of a squeezed thermal
bath as shown in Figure 1 allows us to operate thermodynamic devices beyond the clas-
sical bound [25,26]. In particular, the experiment in reference [32] demonstrated that the
efficiency of the quantum heat engine may go beyond the standard Carnot efficiency by
employing a squeezed thermal bath.

Figure 1. Schematic diagram for two-level system (excited state |e〉 and ground state |g〉) interacting
with a squeezed thermal bath at temperature T with squeezing parameter s. The transition frequency
between the two levels is ω0. The evolution induced by the system-bath interaction produces
irreversible entropy.
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However, the influence of squeezed thermal bath on the bounds of IEP in the quantum
thermodynamics has been largely unexplored. A precise characterization of the IEP in such
an uncharted domain, and a general framework providing a deeper understanding of the
associated quantum thermodynamic phenomena therefore appear necessary. Therefore,
it is instructive to look into the role th squeezed thermal bath plays during the process of
thermodynamic irreversibility.

In this work, we study and quantify the geometrical bounds on irreversibility of a
quantum system in contact with a squeezed thermal bath. Here, we consider two distinct
situations, including the dissipation model and dephasing model, respectively. Starting
with the Born–Markovian quantum master equation in the weak coupling limit, we derived
analytical expressions for time-dependent reduced density matrix of system, in which the
squeezing parameter of the bath is involved. Then, through quantifying the degree of
irreversibility by the IEP, we find that the geometrical bounds of IEP decrease (increase)
with the growth of degree of squeezing in the case of the dissipation (dephasing) model,
respectively. Additionally, the common feature is that the critical times of the IEP itself
and that of IEP’s bounds reaching equilibrium, as well as the values of IEP quantifying the
degree of thermodynamic irreversibility are reduced due to the presence of the squeezing
effect for these two models. Therefore, due to the nonequilibrium nature of a squeezed
thermal bath, the interaction energy between the system and the bath brought an important
impact on the irreversibility, as well as the tightness of its bounds. As expected, our finding
obeys the principles of thermodynamics and reveals richer features of the thermodynamics
relaxation process, and the presence of a quantum property, such as the squeezing effects
included in the bath, could be used to serve as an available resource to improve the
performance of the quantum thermodynamic devices.

The paper is organized as follows. We give a brief account of the method about
geometrical bounds on irreversibility in an open quantum system (Section 2). We evaluate
the geometrical bounds on irreversibility for a squeezed thermal bath in the dissipation
model (Section 3.1) and dephasing model (Section 3.2), respectively, and we conclude and
give prospects for future developments in Section 4.

2. Materials and Methods
Geometrical Bounds of Irreversible Entropy Production

Considering an arbitrary quantum system with the Hamiltonian coupled to a thermal
bath, the quantum system is usually initialized in a given state ρ0, then interacts with a bath
at temperature T. The evolution induced by the interactions brings the system in a state
ρ(t) and produces irreversible entropy. Furthermore, the system will thermalize with the
bath and then asymptotically reach the unique canonical equilibrium state ρth if the system
Hamiltonian H remains constant. The total entropy variation of the system is defined as

∆Stot = ∆Sir + ∆Sre = S[ρ(t)]− S[ρ0], (1)

where S[ρ] = −tr(ρ ln ρ) is the von Neumann entropy. The IEP (irreversible part of the
total entropy variation ∆Stot) is denoted by

∆Sir(t) = S(ρ0‖ρth)− S(ρ(t)‖ρth), (2)

which is the thermodynamic irreversibility under consideration in the present work [2,11].
S(ρ1‖ρ2) = tr(ρ1 ln ρ1)− tr(ρ1 ln ρ2) represents the quantum relative entropy of ρ1 to ρ2.
The entropy flow between the system and the environment (reversible part of the total
entropy variation ∆Stot) is ∆Sre = ∆Q/T, where ∆Q = tr(Hρ(t)) − tr(Hρ0) is the heat
absorbed by the system [11]. On the other hand, the Clausius inequality ∆Sir ≥ 0 putting
forward the lower limit of IEP is always non-negative. In order to deepen the understand-
ing of how much energy in the irreversible process is consumed, it is essential to search a
sharper or tighter bound on irreversibility. By treating the Hilbert space of the system as
a Riemannian manifold, the relationship between IEP and the geodesic distance D corre-
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sponding to the metric that is contractive under complete positive and trace preserving
maps can be directly established, and a generalized form of the Clausius inequality can
be obtained by deriving the Wigner–Yanase length between the initial and final states of
the system. Note that the only cases in which an analytical expression for the geodesic dis-
tance is known are the Wigner-Yanase metric DWY(ρ1, ρ2) = arccos

[
tr
{√

ρ1
√

ρ2
}]

and the
quantum Fisher information metric DQF(ρ1, ρ2) = arccos

[
tr
{√√

ρ1ρ2
√

ρ1
}]

[11]. Based
on these analytical expressions, one can obtain the geometric lower bound (LB) of IEP
as [11,35,36]

∆Sir(t) ≥
8

π2 max
{X=QF,WY}

D2
X(ρ0, ρ(t)), (3)

and the geometrical upper bound (UB) is

∆Sir(t) ≤ S(ρ0‖ρth)−
8

π2 max
{X=QF,WY}

D2
X(ρ(t), ρth). (4)

From the above two relations, one can define the related bound gap as

∆U = UB− LB, (5)

and the deviation of the IEP from the LB or UB is given by

∆δL = ∆Sir(t)− LB, (6)

or
∆δU = UB− ∆Sir(t), (7)

respectively. In this paper, we say an LB (UB) is relatively tighter if the LB (UB) takes a
larger (smaller) value compared with the case of a conventional thermal bath.

3. Results
3.1. Geometrical Bounds on Irreversibility in the Dissipation Model

Here we consider the dissipation model, taking into account the effect of the squeezed
thermal bath with temperature T in the case of single-excitation. The total Hamiltonian is
(in units of h̄ = 1)

H = HS + HB + HSB

= ω0σ̂+σ̂− + ∑
k

ωk b̂†
k b̂k + ∑

k
(gkσ̂+ b̂k + H.c.), (8)

where HS, HB, and HSB stand for the Hamiltonians of the system, bath, and system–bath
interaction, respectively; σ̂+(σ̂−) = |e〉〈g|(|g〉〈e|) and ω0 are the inversion operator and
transition frequency of the system with |e〉 and |g〉 being the excited and ground states;
b̂†

k (b̂k) are the creation (annihilation) operators of the k-th mode of the bath. The coupling
strength between the system and the bath is denoted by gk.

The master equation in the interaction picture is given by the following Lindblad
form [37,38]

ρ̇s(t) =
γN
2

D[σ+]ρs(t) +
γ(1 + N)

2
[σ−]ρs(t)

−γMσ+ρs(t)σ+ − γM∗σ−ρs(t)σ−, (9)

where ρ̇s(t) = dρs(t)/dt, and D[A]ρ = 2AρA+ − A+Aρ− ρA+A. The spontaneous emis-
sion rate of the system is γ and N = Nth

[
cosh2(s) + sinh2(s)

]
+ sinh2(s), and M =

− sinh(2s)eiφ(2Nth + 1)/2 with s and φ the bath squeezing strength and phase, respec-
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tively. Nth = 1/
(
eω0β − 1

)
is the Plank distribution, where β = 1/kBT with kB = 1 the

Boltzmann constant.
Rewriting the density matrix as ρs(t) = (I +~r(t) ·~σ)/2 by means of the Bloch vector

~r(t) = Tr[~σρs(t)] with the identity matrix I, we can transform the master Equation (9) into
the Bloch equation

d
dt
~r(t) = ξ~r(t) + ~m, (10)

with

ξ =

 − γ̃+2γM
2 0 0

0 − γ̃−2γM
2 0

0 0 −γ̃

 (11)

and ~m = (0, 0,−γ0)
T . Here, γ̃ = γ(2N + 1) is the total transition rate. Assuming the

system to be initially in the ground state (|e〉+ |g〉)/
√

2, a straightforward calculation
yields the analytical solution

ρs(t) =

(
1−ν+(1−ν)〈σz〉ss

2 µ〈σ−〉ss

(1− e
−γst

2 )〈σ+〉ss
1+ν−(1−ν)〈σz〉ss

2

)
, (12)

Here, 〈σ±〉ss and 〈σz〉ss are the stationary solutions of differential Equation (10); µ = {γs −
e(−4γ̃+γs)t/4[γs cos(γst/4)+ (γs +γM) sin(γst/4)]}/γs and ν = γ̃e(−4γ̃+γs)t/4[cos(γst/4)−
sin(γst/4)]/γs, where γs = γ̃ + 2γM.

The time dependence of the IEP and its geometrical bounds are explored by numeri-
cally calculating the quantities (Equations (2)–(4)) and plotted in Figure 2. It is clear from
Figure 2 that IEP and its bounds (UB and LB) increase monotonically with time toward
the corresponding equilibrium values for a squeezed thermal bath. For the non-squeezing
case (s = 0), our results based on the quantum master equation are fully consistent with
that for the thermal bath in reference [11] using the method of Kraus operators. In the
case of a squeezed thermal bath (s > 0), with an increase in the degree of squeezing, the
UB becomes higher in the early stage of evolution t . 0.15 and then becomes reduced
with the growth of s when t & 0.45, compared with the thermal bath (s = 0), as shown in
Figure 2a. In addition, the dynamical behavior of LB shares similar features with that of
UB. Another common feature between UB and LB is that their equilibrium times decrease
with the growing degree of squeezing. For instance, the equilibrium times for UB (LB) are
4.5 (7.5), 2 (1.4), and 0.15 (0.2) when s = 0, 1, and 2, respectively. The physical picture is that
the evolution time from the pure state to the maximum mixed state becomes shorter with
the growth of squeezing parameter. We conclude that the summarized overall trends of
geometrical bounds (LB and UB) found in reference [11] also hold for a squeezed thermal
bath, while only the UB becomes tighter in the longtime limit, and the LB exhibits subtle
tightness in the early stage of evolution compared with the traditional thermal bath [11].

Let us next examine the time dependence of the IEP. The numerical simulation plotted
in Figure 2b,c suggests that the values of IEP are well bounded in the region between the
LB and UB. Furthermore, the squeezed thermal bath has prominent influences in both
the concrete values of IEP and the critical times Tc of IEP reaching equilibrium, where the
values of Tc become less for growing values of s. Another observation in Figure 2b is that
the deviation ∆δL (Equation (6)) increases monotonically and gradually coincides with
∆U (Equation (5)), whereas the deviation ∆δU (Equation (7)) decreases monotonically and
gradually disappears to zero in the case of s = 0. With the increase of squeezing strength,
i.e., s = 2, as shown in Figure 2c, the deviation ∆δL (∆δU) increases (decreases) gradually
to a fixed value 0.51 (0.542), and the rates of change of deviations ∆δL and ∆δU become
slower. From the above results we deduce that the actual amount of IEP departs from its
UB gradually and approaches its LB with the growth of s.
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Figure 2. (a) Time dependence of LB and UB of IEP under different degree of squeezing s in the
dissipation model. Time dependence of IEP (blue solid line) and its LB (red dotted line) and UB
(green dashed line) in the case of (b) s = 0 and (c) s = 2. The initial state of system is (|e〉+ |g〉)/

√
2.

Hereafter, we choose ω0 as the frequency unit, T = 0.34, and φ = 0.

To obtain a clear picture of how the IEP evolves in the parameter space of {s, t},
we plot the evolution of IEP in Figure 3. It shows that the values of IEP are obviously
dependent on the squeezing parameters of the bath. Here, we provide remarks on the
parameter dependence. Although the values of s are not directly related to the system–bath
interaction, they depend on both correlation time and occupation number of the bath and
then immensely affect the relaxation dynamics and steady state of the relevant system
during the thermodynamic process. As a result, any change of this key parameter will have
significant influence on the irreversibility, and the inherent squeezing effect stemming from
the bath plays a crucial role in understanding the relative tightness of the bounds. As we
have shown analytically in the previous paragraphs, the above summarized dependence of
bounds and IEP on the squeezing parameter is reflected in Equations (3), (4) and (12).

(a) (b)

1 2 3 4 5
0.0

0.4

0.8

1.2

1.6

ir

t

 s=0

 s=0.5

 s=1

 s=1.5

 s=2

Figure 3. (a) The values of the IEP 4Sir in the parameter plane of {s, t} in the dissipation model;
(b) time dependence of IEP4Sir under the different degrees of squeezing s.

Traditionally, the IEP could be used to evaluate the performance of thermodynamic
devices, such as the ergotropy (or energy) that can be extracted from a given system, and
the maximal useful work, which is usually reduced by the presence of irreversibility [7,39].
It implies that the irreversibility can be restrained by controlling the amount of IEP through
adjusting the degree of the squeezing effect, as shown in Figure 3b, where the values of IEP
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become less for growing values of s. From the perspective of quantum bath engineering,
employing a squeezed thermal bath is a promising avenue of using a squeezing effect as a
quantum resource to improve the performance of thermodynamic devices [25,26,32].

As we know, a squeezing effect that is rooted in Heisenberg’s uncertainty principle
can be defined as the reduction in the uncertainty of some observable at the cost of the
build-up in the conjugate one [28,40,41]. Physically, the squeezing involved in the bath
thereby inevitably modifies the nonunitary relaxation dynamics of the system and the
relevant irreversibility during the thermodynamic process. Compared with the thermal
bath, the squeezed thermal bath is taken out of thermodynamic equilibrium through the
squeezing operation, with the consequence that its excitation number changes from Nth to
N = Nth(cosh2 r + sinh2 r) + sinh2 r [28,42], which can be seen as an increase in its effective
temperature Te f f = ωh/kB ln[1/(N−1

th + 1)] with a higher frequency ωh > ω0. Therefore,
being purely quantum mechanical fuel in nature, a squeezed thermal bath is beneficial in
its own way by providing us with more compact energy storage and a higher effective
high temperature bath without actually being too hot [5]. That is to say, the squeezed
thermal state has the same entropy as the Gibbs state, but increased mean energy, which is
instrumental in the suppression of irreversibility.

3.2. Geometrical Bounds on Irreversibility in the Dephasing Model

Next, we focus on the dephasing model with respect to the squeezed thermal bath,
where the bath operator is simply a sum of linear couplings to the coordinates of a contin-
uum of harmonic oscillators described by a spectral density function J(ω) [43–48], and the
decay of the coherence occurs without a decay of the corresponding populations. Now, the
total Hamiltonian is

H = HS + HB + HSB

= ω0σ̂+σ̂− + ∑
k

ωk b̂†
k b̂k + σ̂z ∑

k
(gk b̂k + H.c.). (13)

The dynamics of the system can be characterized by the reduced density matrix which
is obtained by tracing out the degrees of freedom of the bath. In the interaction picture,
using the rotating wave approximation, the reduced density matrix of the system can be
written as [46–50]

ρs(t) =
[

ρee ρegΓ(t)
ρgeΓ∗(t) ρgg

]
, (14)

where the phase decay behavior of the qubit under the influence of the bath is denoted
by the factor Γ(t) = TrBρB ∏k exp[αk(t)b̂†

k − α∗k (t)b̂k], and αk(t) = 2 gk
ωk

(
1− eiωkt) [46]. The

associated master equation is given by

ρ̇s(t) =
−iε̃(t)

2
[σz, ρs(t)] +

D̃(t)
2

[σzρs(t)σz − ρs(t)], (15)

where D̃(t) = − d ln(|Γ(t)|)
dt and ε̃(t) = −Im[ dΓ(t)/dt

Γ(t) ].
In the following, we consider that the bath starts from a squeezed thermal state [49–52]

ρB(0) = ς̂ρth ς̂†, (16)

where ρth = e−βHB /Zβ is the thermal state with Zβ the partition function; ς̂ = ∑k ŝk, where

ŝk = e[(s
∗
k e−iφk b̂2

k−skeiφk (b̂†
k )

2)/2] is the squeezing operator for the boson bath mode b̂k with
sk and φk being the bath squeezing strength and phase, respectively. In this situation,
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the function Γ(t) could be evaluated under the summation of the modes of the squeezed
thermal bath as [46–50]

Γ(t) = e
[−∑k

4|gk |
2

ω2
k

(1−cos ωkt)γk(t) coth(
ωk
2T )]

(17)

with γk(t) = cosh 2sk − sinh 2sk cos(ωkt− ∆φk) and ∆φk is the phase difference between
the squeezing phase φk relative to the phase of the coupling strength gk.

Substituting the coupling spectral density J(ω) = 2π ∑k|gk|2δ(ω−ωk) into Equation (17),
we can transform the above summation in Γ(t) into an integral for continuous bath modes as

Γ(t) = exp{−
∫ ∞

0

dω

πω2 2J(ω)(1− cos ωt) coth(ω/2T)

×[cosh(2s)− sinh(2s) cos(ωt− ∆φ)]}. (18)

In the present work, we adopt the Ohmic coupling spectral density J(ω) = ηωe−ω/v

with v cutoff frequency, and η is the coupling strength [53]. Note that such engineering
of the spectrum’s Ohmicity seems possible when simulating the dephasing model using
a trapped ultracold atom, as demonstrated in reference [54,55]. In the high-temperature
regime, the approximation coth(ω/2T) ≈ 2T/ω has been taken, and in the case of v >> T,
the dephasing process is Markovian, and after straightforward algebra, one finds

Γ(t) = e{−
2ηTt

π [π cosh(2s)−ln 4 sinh(2s) sin ∆φ]}. (19)

Expression (Equation (19)) is the exact analytic for the time-dependent dephasing rate Γ(t)
in the present model.

Special attention was paid to the time dependence of the IEP as well as its geometrical
bounds, as shown in Figure 4, where one can find that all the quantities exhibit asymptotic
behaviors approaching their stationary values. They correspond to relaxations of the sys-
tem through the dephasing channel due to the system–bath coupling. Regarding the time
dependence of the bounds, we encounter another common feature that the equilibrium
times of bounds decrease with the growing degree of squeezing. For instance, the equilib-
rium times for UB (LB) are 3 (7.3), 2.5 (3.3), and 0.4 (0.6) when s = 0, 1, and 2, respectively.
However, unlike the dissipation model, both UB and LB increase monotonically as the
squeezing character of the bath grows, and only the LB becomes tighter (compared with
the thermal bath) during the whole dynamic process in the dephasing model. As a contrast,
the tightness of LB only appears in the early stage of evolution for the dissipation model.
By comparing the time evolutions of IEP with the two blue solid-lines in panel (b,c) of
Figure 4, we find that the IEP is well located inside the region between the LB and the UB
and reaches its stationary value faster with the increase of the squeezing parameter s, and
the values of the IEP are reduced due to the existence of the squeezing effect.

In Figure 5, we provide numerical estimates of the IEP in the parameter space of {s, t}.
Figure 5 tells us that one can precisely control the thermodynamic irreversibility through
adjusting the parameters of the bath. As shown in Figure 5b, under the dephasing model,
the IEP reaches equilibrium faster as the squeezed parameter increases, and the value of
the IEP in longtime limit4Sirr(∞) will eventually converge together, irrespective of the
values of parameter s. It means that in the dephasing model, the squeezing effect could
not make too much impact on the thermodynamic irreversibility in the longtime limit,
although the existence of squeezing drives the system into equilibrium faster. Physically,
on a fundamental level, quantum coherence and the related dephasing process could
also alter the possible state transitions in thermodynamic processes [56] and may even
modify the fluctuation–dissipation relation [57,58] and quantum nonequilibrium work
relation [59]. Additionally, when a system relaxes to equilibrium through contact with
a thermal bath, quantum coherences are known to contribute an additional term to the
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IEP [60–62]. Different from the dissipation case where the system can exchange energy
with its bath, in the dephasing model, this open system can never exchange energy with
its bath. However, the information and correlation exchange between the system and the
bath are dominant during the dynamics, and this exchange also influence the IEP. As a
result, any alteration in the von Neumann entropy (basis of IEP and its bound) resulting
from the relaxation process (dissipation or dephasing) has contributions not only from the
change in population but also from decoherence. In this regard, it was pointed out that the
entropy production can be split in two contributions, an incoherent one (stemming from
populations) and a coherent one (stemming from quantum coherences) [63–65].
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Figure 4. (a) Time dependence of LB and UB of IEP under different degrees of squeezing s in the
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dashed line) in the case of (b) s = 0 and (c) s = 1; the initial state of the system is (|e〉+ |g〉)/
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Figure 5. (a) The values of the IEP 4Sir in the parameter plane of {s, t} in the dephasing model;
(b) time dependence of IEP 4Sir under the different degrees of squeezing s; here, the parameter
∆φ = π/4.

4. Discussions and Conclusions

The ideal physical system to verify our prediction is a linear optics system or quantum
photonic simulator, as demonstrated in Ref. [11]. From an experimental point of view, one
of the key elements in the present work is the squeezing thermal bath. Here, we could use
the experimental approach of using coherent states to seed the parametric process that gen-
erates the bright squeezed states [66] or use the approach of applying the squeezing unitary
on the input seed coherent states [67]. As an alternative, the universal and reversible low-
loss broadband squeezer [68] has demonstrated the efficient and deterministic squeezing
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of a single photon [69]. Optical squeezing has been promoted from an offline experimental
resource to a controllable online operation which is needed for our purposes. This work
demonstrated that squeezing low-photon-number states has become an achievable feat,
and it has lots of potential applications in quantum information processing and quantum
thermodynamics. Therefore, the abovementioned technologies are highly suitable for the
simulation of a squeezing thermal bath. On the other hand, the dissipation model can be
realized by an amplitude damping channel through the qubits injected in the photonic
setup which performs the logical operations [11], and the dephasing model can be realized
using the approach in Ref. [70].

The study of IEP is of importance due to its intimate relation with the arrow of time
in classical and quantum systems [71,72], the SLT [73–75], thermodynamic operations and
thermal machines [76–79], and quantum and classical speed limits [8,80,81]. Therefore,
tightening the bounds of IEP not only deepens our understanding of how much entropy
production changes during the thermodynamic process but also provides insights into
how to improve the performance of quantum thermodynamic devices. Additionally, the
memory effect of non-Markovian dynamics in open quantum systems is often believed
to be useful for quantum information processing. The reason is that a non-Markovian
bath could be taken as a memory resource which could return the information of the open
systems [82]. Therefore, the influence from the non-Markovian bath on the irreversibility of
an open system is also interesting, which is the topic of our future work.

Interaction with a squeezed thermal bath is not the only generalized process that goes
beyond the typical settings in classical thermodynamics. Our findings demonstrate how
to utilize the squeezing effect of a bath as a resource to control the irreversibility, where
the use of a nonthermal bath offers more degrees of control and manipulation, such as
the amount of squeezing. Note that quantum bath engineering techniques have become
powerful tools that enable the realization of arbitrary thermal and nonthermal baths. For
instance, experimental realizations of squeezed thermal states range from superconducting
circuit QED [83–85] to optomechanical mechanical oscillators [86,87]. The key parame-
ters considered in our numerical simulation, such as the inverse temperature β and the
degree of squeezing s, could be experimentally controlled using the current technologies
demonstrated in the abovementioned experiments. Additionally, there have been many
experiments focused on the assessment of nonequilibrium thermodynamic irreversibility
using the technology of quantum trajectories of stochastic dynamics in nuclear magnetic
resonance setups [3], superconducting qubit [88], and mechanical resonator [89], respec-
tively. Our results reveal more detailed properties of thermodynamic irreversibility that
are stronger than the conventional SLT for a given restricted class of irreversible processes.
Along with other studies addressing squeezing effects in quantum thermodynamics, we
hope that our analyses help to unveil the role of squeezing effects in quantum thermody-
namic devices.

In summary, we studied the influence of squeezed characteristics of a bath on the
IEP of open quantum systems. The results show that the equilibrium rates of IEP and its
bounds become faster, and the values of IEP are reduced through harvesting the benefits
of squeezing effects in the case of both a dissipation model and a dephasing model. In
the dissipation model, the summarized overall trends of geometric bounds (LB and UB)
found in reference [11] also hold for a squeezed thermal bath, while only the UB becomes
tighter in the longtime limit, and the LB exhibits subtle tightness in the early stage of
evolution compared to the thermal bath. Unlike the dissipation model, both UB and LB
increase monotonically as the squeezing character of the bath grows, and only the LB
becomes tighter (compared to the thermal bath) during the whole dynamic process in the
dephasing model.

Moreover, the above-summarized trends for the bounds are independent of system
size and hold for systems having more degrees of freedom. Our results do not contradict
the SLT, which is modified by the inclusion of squeezing as an available resource in the
bath. It is worth noting that a general evolution and the associated geometrical bounds of



Entropy 2023, 25, 128 11 of 14

irreversibility of two-level system in thermal bath were theoretically analyzed and experi-
mentally demonstrated in [11]. Here, we further highlight the role of adjustable parameters
in bath, such as temperature and squeezing degree, on the reduction of thermodynamic irre-
versibility. It is expected that the present work helps in developing a better understanding
of the irreversibility under ambient conditions.
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