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Abstract: The second-order Kuramoto equation describes the synchronization of coupled oscil-
lators with inertia, which occur, for example, in power grids. On the contrary to the first-order
Kuramoto equation, its synchronization transition behavior is significantly less known. In the case
of Gaussian self-frequencies, it is discontinuous, in contrast to the continuous transition for the
first-order Kuramoto equation. Herein, we investigate this transition on large 2D and 3D lattices
and provide numerical evidence of hybrid phase transitions, whereby the oscillator phases θi exhibit
a crossover, while the frequency is spread over a real phase transition in 3D. Thus, a lower critical
dimension dO

l = 2 is expected for the frequencies and dR
l = 4 for phases such as that in the massless

case. We provide numerical estimates for the critical exponents, finding that the frequency spread
decays as ∼ t−d/2 in the case of an aligned initial state of the phases in agreement with the linear
approximation. In 3D, however, in the case of the initially random distribution of θi, we find a faster
decay, characterized by ∼ t−1.8(1) as the consequence of enhanced nonlinearities which appear by the
random phase fluctuations.

Keywords: synchronization; hybrid phase transition; criticality; chaoticity

1. Introduction

Synchronization within interacting systems is an ubiquitous phenomenon in nature. It
has been observed in biological, chemical, physical, and sociological systems. Much effort
has been dedicated to developing a theoretical understanding of its general features [1–3].
A paradigmatic model of N globally coupled oscillators was introduced and solved in the
stationary state in the limit N → ∞ by Kuramoto [4] and the macroscopic evolution of the
system was later shown to be governed by a finite set of nonlinear ordinary differential
equations [5]. An interesting property of the so-called first-order Kuramoto model is
that it has a continuous phase transition, with a diverging correlation size, separating a
synchronized phase from an unsynchronized one. Due to the chaoticity, emerging from
nonlinearity, it obeys a scaling theory which is analogous to stochastic systems at the
critical point and the whole set of critical exponents are known [4–7]. The corresponding
universality class is termed as mean-field since, due to the all-to-all coupling, the individual
oscillators interact with a mean-field of the rest of the oscillators. A challenging research
direction aims to study the possibility and nature of the synchronization transitions in
extended systems, where oscillators are fixed at regular lattice sites of finite dimension d
and the interaction, in the extreme case, is restricted to that of nearest neighbors [6,8–10].

The so-called second-order Kuramoto model was proposed to describe power grids,
analogous to the swing equation of AC circuits [11]. This is the generalization of the
Kuramoto model [4] with inertia. One of the main consequences of this inertia is that the
second-order phase synchronization transition—observed in the mean-field models of the
massless first-order Kuramoto models—turns into a first-order one [12].

However, in lower dimensions, this has not been studied systematically. In [13], the
numerical integration on 2D lattices suggested crossover transitions, with hysteresis in the

Entropy 2023, 25, 164. https://doi.org/10.3390/e25010164 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25010164
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-9259-5352
https://orcid.org/0000-0002-1952-8599
https://doi.org/10.3390/e25010164
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25010164?type=check_update&version=1


Entropy 2023, 25, 164 2 of 12

case of the phase-order parameter. This means that the steady-state values depend on the
initial conditions. Note that, due to the inherent heterogeneity of the quenched external
torques ω0

i , proportional to the self-frequencies of the nodes, rare-region effects may occur,
leading to frustrated synchronization and chimera states [13–16].

As real power grids are connected via complex networks, topological heterogeneity
is also present, which can smear a phase transition, strengthening possible rare-region
effects. However, even if topological heterogeneity is not present, it has still not yet been
proven whether the massive model exhibits real phase transitions at low dimensions. Only
conjectures, wherein the massive model has the same lower and upper critical dimensions
as the first-order Kuramoto model (in the case of single peaked self-frequency distribution),
are available. Accordingly, the mean-field phase transition for d ≥ 4 of the phase-order
parameter and a crossover below it [2] should occur (however, even the dc = 4 conjecture
is debated, some studies concluded dc = 5 or higher [9]).

Thus, the upper and lower critical dimensions may be identical: dc = dl = 4.
For the frequency entrainment of the massless model, the lower critical dimension is

expected to be at dO
l = 2, similarly to the Mermin–Wagner theorem [17] for the planar XY

spin model, which is supported by finite size scaling analysis [9]. Thus, for intermediate
dimensions 2 < d < 4, real, nontrivial continuous phase transitions should occur. Analo-
gously, for the massive case [13,16,18], entrainment phase transition is also expected for
dimensions 2 < d < 4, as a very recent power-grid study [16] has indicated it for networks
with graphs dimensions 2 < d < 3.

This has recently been published for the high-voltage power-grid networks of the USA
and Europe and now we shall investigate it in the cases of pure 2D and 3D lattices, using
finite size scaling. In another work [16], the linear approximation, which is expected to be
valid for large couplings, provided a frequency spread decay law Ω ∼ t−d/2. Now, we test
the applicability of this approximation at the phase transition points.

Besides the dynamical scaling, the frequency order parameter exhibited a hysteresis
and a discontinuity [16], which is known in statistical physics [19] as hybrid or mixed-
type phase transition, for example, at tricriticality [20,21], or in other nonequilibrium
systems [22–24]. Now, we investigate in detail this transition, which arises by the inertia in
the Kuramoto model and results in hysteresis as we change the synchronization level of
the initial states.

2. Models and Methods
2.1. The Second-Order Kuramoto Model

The time evolution of power grid synchronization is described by the swing equa-
tions [25], set up for mechanical elements with inertia. It is formally equivalent to the
second-order Kuramoto Equation [11], for a network of N oscillators with phases θi(t):

θ̇i(t) = ωi(t) (1)

ω̇i(t) = ω0
i − αθ̇i(t) + K

N

∑
j=1

Aij sin[θj(t)− θi(t)] .

Here, α is the damping parameter, which describes the power dissipation or an instanta-
neous feedback [18]; K is the global coupling related to the maximum transmitted power
between nodes; and Aij is the adjacency matrix of the network which contains admittance
elements. The quenched external drive, denoted by ω0

i , which is proportional to the self-
frequency of the i-th oscillator and carries a dimension of inverse squared time [1/s2],
describes the power in/out of a given node when Equation (1) is considered to be the
swing equation of a coupled AC circuit; however, here, we chose it to be a zero-centered
Gaussian random variable as the rescaling invariance of the equation allows to transform it
within a rotating frame. For simplicity, one can assume that ωi(0) is drawn from the same
distribution as ω0

i and numerically set ωi(0) = ω0
i , amounting to taking [s] = 1.
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In our present study, the following parameter settings were used: the dissipation
factor α was chosen to be equal to 0.4 to meet the expectations for power grids with the
[1/s] inverse time physical dimension assumption. For modeling instantaneous feedback
or an increased damping parameter, we also investigated the α = 3.0 [1/s] case, similarly
to the work performed in in [16,18].

To generally solve the differential equations, we used the adaptive Bulirsch–Stoer
stepper [26], which provides more precise results for large K coupling values than the
Runge–Kutta method. The solutions depend on the ω0

i values and become chaotic, espe-
cially at the synchronization transition, and thus, to obtain reasonable statistics, we needed
strong computing resources, using parallel codes running on GPU clusters. The corre-
sponding CUDA code allowed us to achieve ∼100× speedup on GeForce GTX 1080 cards
as compared to Intel(R) Core(TM) i7-4930K CPU @ 3.40 GHz cores. The details of the GPU
implementation will be discussed in a separate publication [27].

We obtain larger synchronization if the initial state is set to be phase synchronized:
θi(0) = 0, but due to the hysteresis, one can also investigate other uniform random
distributions such as: θi(0) ∈ (0, 2π). The initial frequencies were set as: θ̇i(0) = ω0

i .
To characterize the phase transition properties, both the phase-order parameter R(t)

and the frequency spread Ω(t), termed the frequency-order parameter, were studied. We
measured the Kuramoto phase order parameter:

z(tk) = r(tk) exp iθ(tk) = 1/N ∑
j

exp [iθj(tk)] , (2)

by exponentially increasing the sampling time steps:

tk = 1 + 1.08k , (3)

where 0 ≤ r(tk) ≤ 1 gauges the overall coherence and θ(tk) is the average phase. Here,
the value 1.08 was used as a compromise in sampling a sufficient rather than an excessive
number of time steps in order to allow one to observe asymptotic scaling within reasonable
storage allocation. However, the calculation of the derivatives was performed adaptively
at small time steps via the Bulirsch–Stoer stepper. The set of Equations (1) was numerically
solved for 103–104 independent initial conditions, initialized by different ω0

i -s and different
θi(0)-s if disordered initial phases were invoked. Then, the sample averages for the phases

R(tk) = 〈r(tk)〉 (4)

and for the variance of the frequencies

Ω(tk, N) =
1
N

N

∑
j=1

(ω(tk)−ωj(tk))
2 (5)

were determined, where ω(tk) denotes the mean frequency within each respective sample.
In the steady state, which we determined by the visual inspection of the mean values

R(tk), we measured the standard deviations σ(R) of the order parameters R(tk) in order
to locate the transition point by fluctuation maxima. However, the transition point for
Ω(tk, N) is characterized by a sudden drop in the Ω(t→ ∞, N) or by an emergence of an
algebraic decay of Ω(t) as we increase K. In the case of the first-order Kuramoto equation,
the fluctuations of both order parameters show a maximum at the respective transition
points [28]. For the second-order Kuramoto, only the σ(R(tk)) seems to have a peak at K′c,
while for Ω(tk, N), we located a different transition point Kc, where the saturation of the
steady-state value changed to a decay in the t→ ∞ limit.
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2.2. Linear Approximation for the Frequency Entrainment

In Ref. [16], we showed that, similarly to the first-order Kuramoto model, the frequency-
order parameter (5) decays as Ω ∝ t−d/2 on a d-dimensional lattice in the large-system size
and large coupling constant limit [9]. By applying the linear approximation sin(x) ∝ x
and casting the continuum second-order Kuramoto equations into the momentum space,
the phase velocity [ω(x, t) ≡ θ̇(x, t)] is obtained [16]

ω(k, t) =e−
1
2 t(α+∆)

[
ω(k, 0)

(
(∆ + 2− α)e∆t

+ α + ∆− 2
)
− 2Kk2θ(k, 0)

(
e∆t − 1

)]
/2∆ , (6)

where ∆ =
√

α2 − 4Kk2. Hence, in this linear approximation, given α > 0, the factor
e−1/2αt always ensures a full frequency entrainment for all K > 0. When an initial disor-
dered condition is considered, say θ(x, 0) is uniformly distributed over (0, θmax), one has
〈θ(x)θ(x′)〉 = θ2

max/4, suggesting that 〈θ(k, 0)θ(k′, 0)〉 = δd(k)δd(k′). Hence, in the linear
approximation, disorder from the initial condition does not affect the frequency spread
(note that 〈ω(k, 0)θ(k, 0)〉 = 0) and we have (the same as in Ref. [16]):

Ω(t) =
1
Ld

∫
ddx〈[ω(x, t)− ω̄(t)]2〉

=Cd

∫ π/a

2π/L
dkkd−1 e−t(α+∆)

4∆2

[
α + ∆− 2

+ (∆− α + 2)e∆t
]2

, (7)

where ω̄(t) denotes the spatial average of ω(x, t), while a and Cd are the lattice spacing
and the geometric factor, respectively. Note that due to the lack of external noises, for every
single run, depending on the initial ω̄(0), α, and the system size (but not K), the simulation
results indicate that ω̄(t) always transits into a finite value that is not too far away from ω̄(0).
However, it should decay exponentially according to the Equation (6) for infinite systems.

As shown in Ref. [16], Equation (7) gives rise to the t−d/2 law for any K > 0, which
manifests a rapid cutoff for large couplings in a typical finite system. However, in the
regime where a linear approximation is invalid, weak couplings fail to maintain a narrow
frequency entrainment and Ω is bound to be stationary after some time. Hence, a frequency
entrainment phase transition from a finite stationary Ω value to an infinitely decaying Ω
is expected.

3. Synchronization Transition in 2D

We solved the system of Equations (1) on large square lattices with periodic boundary
conditions for the linear sizes L = 200, 400, 1000, 2000. The lattice structure is reflected
by choosing Aij equal to 1 for the nearest neighbors and equal to zero otherwise. The self-
frequencies were chosen randomly from a zero-centered Gaussian distribution with unit
variance. The order parameters were calculated by ensemble averages over many samples.

3.1. Frequency Entrainment Phase Transition

It is known that the frequency order parameter (5) decays as Ω ∝ t−d/2 in the case of
the first-order Kuramoto model in the large coupling limit if we start from a random initial
state [9]. We have also shown that the same is true for the second-order Kuramoto model
in the linear approximation in [16]. Now, we investigate this at the neighborhood of the
frequency entrainment transition point.

As Figure 1, shows the density decays as Ω ∝ t−1 at the critical coupling strength,
Kc = 3.4(1) in the case of ordered phase initial conditions, and for the α = 3 damping
factor. The decay behavior follows the same power law for K ≥ Kc before the finite size
cutoff can take effect, and we see a saturation to finite values for K < Kc.
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Figure 1. The frequency spread in 2D at α = 3 for different K values, shown by the legends,
for L = 2000, in the case of ordered initial conditions. The dashed line marks a numerical fit at
the critical point Kc = 3.4(1) with t−d/2. Inset: the finite size scaling of the frequency entrainment
transition point Kc for various system sizes in 2D (black asterisks) and 3D (red boxes), for α = 3
and under ordered initial conditions. One can see a logarithmic growth in 2D and a convergence to
Kc = 1.15(5) constant value in 3D.

The same is true for α = 0.4: following a longer initial transient, we can see a decay
at Kc = 3.5(5) characterized by Ω ∝ t−1. as shown by Figure 2. An exponential finite
size cutoff already occurs for t > 1000 in contrast to the α = 3 case, where this happened
above t > 104.
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Figure 2. The frequency spread in 2D at α = 0.4 for different K values, shown by the legends,
for L = 2000, using ordered initial conditions. The dashed line marks a numerical fit at the critical
point Kc = 3.5(5) with t−1.03(3). Inset: Steady state values obtained by starting from ordered (black
bullets) and disordered (red boxes) initial conditions.

For smaller system sizes, the Kc-s do not move a lot, as we can see from the inset of
Figure 1. The available data precision restricts finite size scaling, however, still we attempted
it as shown in the inset of Figure 1. Assuming a logarithmic growth dependence, which is
expected at the lower critical dimension [9], we obtained Kc(1/L) ∝ −1.7(1) ln(1/L).
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In the case of fully disordered initial conditions, θi(t = 0) ∈ (0, 2π), we found the same
behavior as in case of the phase-synchronized starts, as one can see in Figure 3 for α = 3
and Figure A1 for α = 0.4 shown in the Appendix A.

The steady-state values, appearing for t > 104 near the critical point of the α = 0.4
damping factor case, are also determined and plotted in the inset of Figure 2 for L = 200.
We can see two branches, depending on the initial conditions. The upper branch corre-
sponds to the disordered, the lower to the phase-ordered initial states. Thus, we can see a
hysteresis-like behavior near the phase transition. However, the approach of Ω(K → Kc) is
rather smooth, which is not surprising at a crossover point.
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Figure 3. The frequency spread in 2D at α = 3 for different K values, shown by the legends,
for L = 2000, in the case of disordered initial conditions. The dashed line marks a numerical fit at the
critical point at Kc = 8.0(5) with t−1.09(5). Inset: Part of the hysteresis loop of R in 2D obtained by
ordered (black bullets) and disordered (red boxes) initial conditions for α = 3 and L = 200.

3.2. Phase-Order Parameter Transition

We determined the steady state values of R(t, L) by starting the systems from phase-
coherent states up to tmax = 104–5× 104 followed by a visual inspection. For a certain
system size L, we obtain the dependence of the stationary phase-order parameter R∞ on
K. Figure 4 shows one such example for L = 200 and α = 3 in 2D. The transition point K′c
could then either be located by the peaks of σ(R), as chaoticity takes a maximum value
at K′c [16,28,29], or be estimated by the half value R(L, K′c) ' 0.5. However, this transition
point did not coincide with the critical point Kc determined by the order parameter Ω.
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Figure 4. Steady -state Kuramoto order parameter (black dots) in 2D and its variance (red squares) at
α = 3 at different K values for L = 200. Inset: R(t, L = 200) for K = 1, 2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14,
20, 25, 35, 45 (bottom to top curves).
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As remarked in the Introduction, we conjecture that the Kuramoto-order parameter
R exhibits a real discontinuous transition above dR

l > 4, while for d ≤ dR
l , a crossover

transition ensues. To verify this conjecture, we estimate the transition point K′c and check
whether it diverges in an infinite system. The crossover transition nature (rather than a real
transition) is immediately clear, as demonstrated by Figure 5, in which we see an evident
shift in the transition point as the system size is varied. The σ(R) also became wider and
wider as we increased the size.

Particularly, the inset suggests that the transition point shifts linearly with L in 2D
[K′c(L) ∝ L]. Hence, the transition points exhibit a power-law growth with exponents,
suggesting that K′c(L)→ 0 as L→ 0 and K′c(L)→ ∞ as L→ ∞.

0 50 100 150 200

K’

0

0.2

0.4

0.6

0.8

1

R

L=200

L=400

L=1000

L=2000

0 500 1000 1500 2000

L

0

50

100

K
’ c

Figure 5. Finite-size behavior of R in 2D for α = 3 and ordered initial conditions shows a crossover.
Inset: finite-size scaling of K′c as estimated by the half values of R (black boxes) and by the σ(R) peaks
(red bullets) exhibit a linear growth.

For disordered initial conditions, we can find much lower steady state values indicated
by the inset of Figure 3. The hysteresis loop closes at very large K values only, as was also
demonstrated in [16] for power-grid networks.

4. Synchronization Transition in 3D

In 3D, following the results of the first-order Kuramoto model we expect a real phase
transition of the frequency-order parameter, but a crossover for the phases. Similarly to
2D, we solved the system of Equation (1) on large cubic lattices with periodic boundary
conditions for following linear sizes L = 50, 100, 150, 200, 250 in order to perform finite
size analysis. Again, the interaction is described by choosing Aij equal to 1 for nearest
neighbors and zero otherwise.

4.1. Frequency Entrainment Phase Transition

In the case of phase-ordered initial states, the frequency spread decays with the law
Ω(t) ∝ t−d/2 above Kc ' 1.1, followed by a finite-size cutoff as shown on Figure 6 for
L = 200. Doing the finite-size scaling of the transition point, we find that Kc does not
change within error margins for L ≥ 150 and we estimate a finite value Kc = 1.15(5) as
shown in the inset of Figure 1.
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Figure 6. The frequency spread in 3D at α = 3 for K = 0.1, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.05, 1.1,
2 (top-to-bottom curves) for L = 200 linear sized lattices and phase-ordered initial conditions. The
dashed line marks a numerical fit at the critical point Kc = 1.02(2) with t−d/2. Inset: Steady state
values obtained by starting from ordered (black bullets) and disordered (red boxes) initial conditions.

However, in case of the fully random phase initial condition, the decay at the critical point
seems to deviate from the t−d/2 law. It can be fitted by Ω(t) ∝ t−1.8(1) at K = Kc ' 7, as
shown on Figure 7. Note, that around criticality, in the t > 103 region, where finite-size
effects emerge, the slopes of the curves increase, suggesting a nontrivial correction as in
case of the first-order Kuramoto model [10]. Due to the limited computing power, this
excludes the possibility of seeing a crossover towards a Ω(t) ∝ t−d/2 asymptotic behavior
obtained by the linear approximation. We investigated this behavior for the other levels of
randomness in the initial state θmax = 1, 1.75, 1.9, but only found it in the fully random
phase case.
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Figure 7. The frequency spread in 3D at α = 3 for different K values, shown by the legends,
for L = 200 and disordered initial conditions. The dashed line marks a numerical fit at the critical
point K = Kc ' 7 with t−1.8(1).

In the case of disordered initial conditions, the level-off of Ω(t), thus, Kc also occurs
at a much higher coupling, than in the ordered initialization case as the consequence of
the phase transition. Therefore, we conjecture a possible different scaling behavior, if any,
at the higher Kc value. The steady-state behavior of Ω is also shown in the inset of Figure 6.
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At first sight, it may not suggest a discontinuous transition, but as we applied log-log scales
to observe the rapid changes, two branches emerge and we can see the occurrence of a
wide hysteresis loop as the consequence of different initial conditions.

4.2. Phase-Order Parameter Transition

We determined the Kuramoto-order parameter values in the steady state for cubes
with linear sizes of L = 50, 100, 150, 200, 150, using α = 3 and ordered initial conditions.
We display the results for L = 100 in the Appendix A, as can be seen in Figure A2.
We attempted a finite size scaling analysis as in 2D, as shown in Figure 8. The σ(R)
distributions become very smeared as L → ∞, making it difficult to locate the peaks.
However, nonetheless, a reasonable power-law fit could be obtained, in agreement with
the half-value method described in Section 3.2: K′c ∝ L0.42(1), as one can see in the inset of
Figure 1. Thus, we still find a crossover behavior in 3D, with a lower K′c growth exponent
than in 2D, which is expected to decrease as we increase the dimension approaching the
lower critical dimension.

0 1 2 3 4 5

K’

0

0.2

0.4
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R
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L=100
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L=200
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Half values, L
0.42(1)

σ(R) peaks

Figure 8. Finite-size behavior of R in 3D for α = 3 and the ordered initial conditions, shows a
crossover. Inset: finite-size scaling of K′c as estimated by the half values of R (black bullets) as well as
by the σ(R) peaks (red boxes) exhibit a power-law growth.

5. Conclusions

We performed an extensive numerical study of the synchronization transition of
the second-order Kuramoto model in 2D and 3D. We provided numerical evidence that,
while the phase-order parameter exhibits crossover transition, which diverges with the
system size in a power-law manner, the frequency-spread-order parameter exhibits real
phase transition in 3D. In the latter case, the finite size dependence of the critical point
is negligible on the system sizes we investigated, and the transition point for an infinite
system, estimated through extrapolation, is also very close to those measured in finite
systems except for a logarithmic correction in 2D. However, the transitions of both order
parameters exhibit hysteresis behavior, with the steady-state values, which depend on the
initial conditions.

However, the variance of R, representing chaoticity over the initial self frequency
choices, has a smeared peak around the crossover point, with a growing spread as we
increase L. This makes the location of the crossover point difficult to determine, but we
used an alternative method, using half values of R, consistently with the peak locations,
as a reliable way of obtaining it. While the K′c(L) grows linearly with L in 2D, in 3D, we
found a nontrivial power-law dependence: K′c(L) ∝ L0.42(1).

For the Ω order parameter, we did not find a peak at the critical point, in contrast
with the case of the massless Kuramoto model, in agreement with a first-order type phase
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transition behavior. However, we found asymptotic power-law decay: Ω(t) ∝ t−d/2 for
K ≥ Kc, which agrees with the linear approximation result. This allowed us to perform
a crude finite size scaling of Kc, which exhibits a logarithmic growth of Kc in 2D and a
saturation in 3D. Thus, similarly to the massless Kuramoto [9], we claim dO

l = 2 for the
lower critical dimension.

We also found a deviation from the linear approximation law in d = 3 in case of
disordered initial states: Ω(t) ∝ t−1.8. This behavior might be the consequence of a slow
crossover in time or the nonlinearities due to the phase fluctuations on the upper branch
of the frequency-order hysteresis curve. This behavior may be observable in real-power
grid situations, as we found in [16], in the case of larger damping factors. For α = 0.4, this
anomalous power-law region is less extended, but this is true for all the PL-s we see: the
damping factor elongates the scaling regions in agreement with the rescaling invariance of
the differential equation, as shown in [16].

The coexistence of power-law dynamics of Ω and the hysteresis in the steady states
thus classifies this as a hybrid or mixed type of phase transition, which would be interesting
to study further.
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Appendix A

In this appendix, we show results in 2D for the Ω(t) decay solution in the case of
disordered initial conditions at α = 0.4.
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Figure A1. The frequency spread in 2D at α = 0.4 for different K values, shown by the legends for
L = 2000, with disordered initial conditions. The dashed line marks a numerical fit at the critical
point at Kc = 9.5(5) with t−0.96(5).
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Furthermore, we also plot the steady-state behavior of R in 3D, for α = 3, at L = 100
and under ordered initial conditions. One can observe a peak in σ(R) at K ' 0.85, where
R ' 0.5.
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Figure A2. Steady state Kuramoto-order parameter (black ‘+’) in 3D and its variance (red ‘∗’) at
α = 3 for different K′ values for L = 100. Inset: R(t, L = 100).
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