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Cătălina Cîrneci 1,† and Iulia Ghiu 1,2,*,†

1 Faculty of Physics, University of Bucharest, 405 Str. Atomistilor, 077125 Magurele, Romania
2 Research Institute of the University of Bucharest (ICUB), 90-92 Sos. Panduri, 5th District,

050657 Bucharest, Romania
* Correspondence: iulia.ghiu@g.unibuc.ro
† These authors contributed equally to this work.

Abstract: We apply the local optimal universal asymmetric cloning machine on an initially pure
entangled state of two qubits. As output, we obtain two final states which present quantum correla-
tions. We analyze three types of quantum correlations among the final states, namely, concurrence,
quantum discord, and consonance. A detailed comparison between concurrence, quantum discord,
and consonance is made, and we find that consonance is greater than quantum discord, which is in
turn greater than concurrence.
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1. Introduction

Quantum technologies have become a widely used expression in the last few years.
They involve a large number of branches of physics: quantum information, quantum
computing, quantum optics, quantum communication, etc. All these areas are based on
an important number of resources, such as: entanglement [1–25], nonclassicality [26–31],
non-Gaussianity [32–35], quantum discord [36–42], and quantum coherence [43–49].

Our purpose in this paper is to investigate the behaviour of three kinds of quantum
correlations, namely, entanglement, quantum discord, and consonance, of the output states
obtained from the protocol called asymmetric broadcasting of entanglement. Suppose
that two spatially separated observers, Alice and Bob, share a two-qubit system found
in the entangled state α| 00 〉 + β| 11 〉. Each of them applies the local 1 → 2 optimal
universal symmetric cloning machine [50] on this state, and they obtain two identical final
states. The symmetric broadcasting of entanglement is realized when the output states are
inseparable [51].

On the other hand, a different cloning machine was proposed, namely, one that gener-
ates two different clones but still keeps the information carried by the initial state. Such
a cloning machine is known in the scientific literature as the 1 → 2 optimal universal
asymmetric cloner [52,53]. The asymmetric cloning machine is important in the context
of quantum key distribution in quantum cryptography. Namely, it was proven that in the
case of asymmetric cloning, the best eavesdroping strategy is obtained [54–56]. With the
help of this cloner, we have proposed the asymmetric broadcasting of entanglement [57,58]
in the case when the initial state is a pure one. This concept was generalized to the
case when the initial state is any inseparable two-qubit mixed state [59]. For the anal-
ysis of the broadcasting of entanglement in the previous articles, the Peres–Horodecki
criterion [60,61] was employed, and no further investigations regarding the degree of
entanglement were conducted.

The paper is organized as follows: In Section 2, we show that the two output states
obtained in the protocol of asymmetric broadcasting of entanglement are X states and
determine their concurrence. Section 3 is dedicated to the evaluation of the quantum
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discord of the states generated by the broadcasting of entanglement. We plot the quantum
A-discord of these states in terms of the parameter α, which characterizes the initial state,
and p, which describes the asymmetric cloner. The investigation of consonance is presented
in Section 4, where we also illustrate the behaviour of this measure in terms of α and p.
Furthermore, a detailed comparison between the concurrence, quantum A-discord, and
consonance is presented. Our conclusions are outlined in Section 5. In Appendix A, we
describe the approach of Li et al. [62] for computing the quantum discord for arbitrary
X states.

2. The Concurrence of the States Obtained by the Local Optimal Universal
Asymmetric Cloning Machines

Consider that two spatially separated observers, Alice and Bob, share a two-qubit
system found in the entangled state:

|ψ 〉(12) = α| 00 〉+ β| 11 〉, (1)

with α and β being complex such that |α|2 + |β|2 = 1. Alice also has two qubits found in
the states | 0 〉(3) and | 0 〉(5), and Bob has two other qubits described by the states | 0 〉(4)
and | 0 〉(6), as one can see in Figure 1.

1

2

Alice

Bob

|ψ⟩12

3 5

4 6

Figure 1. The initial state of the total system.

Alice and Bob want to generate two inseparable states by locally applying the optimal
universal asymmetric cloner on their qubits. This cloner is characterized by the unitary
operator found in Ref. [57]:

U(p)| 0 〉| 00 〉 = 1√
1 + p2 + q2

(| 000 〉+ p| 011 〉+ q| 101 〉),

U(p)| 1 〉| 00 〉 = 1√
1 + p2 + q2

(| 111 〉+ p| 100 〉+ q| 010 〉), (2)

where p + q = 1. N.B.: The symmetric cloner is obtained for p = 1/2.
Let us denote by | ξ 〉 the state obtained when the two observers apply the cloner U(p)

characterized by an identical parameter p for both Alice and Bob:

| ξ 〉 = U(p)⊗U(p)|ψ 〉(12)| 00 〉(35)| 00 〉(46). (3)

The two states ρ(14) and ρ(23) shared by Alice and Bob are given by the reduced
density operators:
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ρ(14) = Tr2356| ξ 〉〈 ξ | = 1
(1 + p2 + q2)2 {[p

2q2 + |α|2(1 + p2 + q2)]| 00 〉〈 00 |

[p2q2 + |β|2(1 + p2 + q2)]| 11 〉〈 11 |+ 4pqαβ∗| 00 〉〈 11 |+ 4pqα∗β| 11 〉〈 00 |
+(|β|2q4 + |β|2q2 + |α|2 p4 + |α|2 p2)| 01 〉〈 01 |
+(|β|2 p4 + |β|2 p2 + |α|2q4 + |α|2q2)| 10 〉〈 10 |} (4)

and

ρ(23) = Tr1456| ξ 〉〈 ξ | = 1
(1 + p2 + q2)2 {[p

2q2 + |α|2(1 + p2 + q2)]| 00 〉〈 00 |

[p2q2 + |β|2(1 + p2 + q2)]| 11 〉〈 11 |+ 4pqαβ∗| 00 〉〈 11 |+ 4pqα∗β| 11 〉〈 00 |
+(|β|2 p4 + |β|2 p2 + |α|2q4 + |α|2q2)| 01 〉〈 01 |
+(|β|2q4 + |β|2q2 + |α|2 p4 + |α|2 p2)| 10 〉〈 10 |}. (5)

A density operator is said to be an X state if the non-zero elements belong to the
diagonal and the anti-diagonal [63–65]:

ρx =


ρ11 0 0 ρ14
0 ρ22 ρ23 0
0 ρ32 ρ33 0

ρ41 0 0 ρ44

, (6)

with ρjj being real (j = 1, 2, 3, 4) and the off-diagonal elements being complex.
On the other hand, we compute the local density operators of the state ρ(13) which

belongs to Alice, and the state ρ(24), which belongs to Bob, respectively:

ρ(13) = ρ(24) =
1

(1 + p2 + q2)2 [|α|
2(1 + p2 + q2)| 00 〉〈 00 | + |β|2(1 + p2 + q2)| 11 〉〈 11 |

+(p2q2 + |β|2q4 + |β|2q2 + |α|2 p4 + |α|2 p2)| 01 〉〈 01 |
+(p2q2 + |β|2 p4 + |β|2 p2 + |α|2q4 + |α|2q2)| 10 〉〈 10 |
+(pq + p3q + pq3)(| 01 〉〈 10 |+ | 10 〉〈 01 |)]. (7)

The density operators of the two states are equal, and they are also X states.
Two necessary conditions needed to be satisfied in order to say that the input state

|ψ〉12 has been broadcast [51] are:

• The local reduced density operators ρ(13) and ρ(24) are separable;
• The nonlocal states ρ(14) and ρ(23) are inseparable.

The broadcasting of entanglement is shown in Figure 2.
We will use the concurrence as a measure of entanglement in this paper [66,67]. The

concurrence of two qubits found in an X state has the expression [68]:

C(ρx) = 2 max{0, |ρ23| −
√

ρ11 ρ44, |ρ14| −
√

ρ22 ρ33}. (8)

First, we evaluate the concurrence of the local states ρ(13) and ρ(24) and obtain the
following, according to (8):

C(ρ(13)) = C(ρ(24)) = 2 max
{

0,
pq− |α| |β|
1 + p2 + q2

}
. (9)

These local states are separable if |α| |β| ≥ p q, which is equivalent to

1
2

[
1−

√
1− 4p2(1− p)2

]
≤ |α|2 ≤ 1

2

[
1 +

√
1− 4p2(1− p)2

]
. (10)
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1

2

1

4

3

2

−→

Inital state Final States

Figure 2. The broadcasting of the entanglement process implies that having an initially pure entangled
state |ψ 〉(12), we will end up with two entangled mixed states and two separable states.

On the other hand, by using Equation (8), we compute the concurrence of the X states
ρ(14) and ρ(23) and found that they are equal:

C(ρ(14)) = C(ρ(23)) = 2 max

{
0,

1

(1 + p2 + q2)
2

[
4pq|α||β|−

−
√
(|β|2 p4 + |β|2 p2 + |α|2q4 + |α|2q2)(|β|2q4 + |β|2q2 + |α|2 p4 + |α|2 p2)

]}
.

In Figure 3, we plot the concurrence of the output states obtained in the process of
asymmetric broadcasting of entanglement in terms of |α|, which characterizes the initial
state, and parameter p, which describes the asymmetric cloner.

We want now to find the position of the maximum of the concurrence. Therefore, we
need to solve the equation ∂C

∂|α| = 0. This has the solution |α| = 1√
2
, i.e., the initial state is

a maximally entangled one. In addition, the equation ∂C
∂p = 0 leads to the solution p = 1

2 ,
which corresponds to the case of the symmetric cloning machine.

C

0.0

0.5

1.0

p
0.0

0.5

1.0

ÈΑÈ
0.00

0.05

0.10

0.15

Figure 3. Concurrence of the two output states ρ(14) and ρ(23) generated by asymmetric broadcasting
of entanglement. We proved that C(ρ(14)) = C(ρ(23)).

3. The Quantum Discord of the States Obtained by the Local Optimal Universal
Asymmetric Cloning Machines

A quite recently introduced measure of quantum correlations is the so-called quantum
discord, defined in Ref. [36]. Suppose again that Alice and Bob share two qubits found in
the entangled state of Equation (1). Following the protocol of asymmetric broadcasting
of entanglement presented in Section 2, they end up with the mixed states ρ(14) and ρ(23)



Entropy 2023, 25, 29 5 of 13

given in Equations (4) and (5), respectively. Our purpose here is to analyze the behaviour
of the quantum discord of the two output states ρ(14) and ρ(23).

In classical information theory, there are two definitions for a concept called mutual
information, which are based on the Shannon entropy H and the conditional Shannon
entropy H(A|B):

I(A : B) = H(A) + H(B)− H(A, B); (11)

J(A : B) = H(A)− H(A|B). (12)

An important result in classical information is that the two above definitions (11) and (12)
are equivalent. This is not valid in the case of the generalization to the quantum case.

Suppose that two parties share a bipartite quantum system found in the mixed state
ρAB. The von Neumann entropy has the expression

S(ρ) = −Tr(ρ log2 ρ),

and let ρA(B) = TrB(A) (ρAB) be the reduced states of the two subsystems. The quantum
mutual information between the two subsystems, A and B, was defined in Ref. [36]:

I(ρAB) = S(ρA) + S(ρB)− S(ρAB). (13)

On the other hand, the generalization to the quantum case of the definition (12) is quite
difficult, since it involves measurements on the second subsystem B. Suppose that these
measurements are described by the projectors {ΠB

k }. The output state of the subsystem
A, obtained after the von Neumann measurement on the second subsystem is performed,
leading to the result j, has the expression [36]:

ρA|ΠB
j
=

1
pj

TrB(I ⊗ΠB
j ρAB I ⊗ΠB

j ), (14)

Above pj represents the probability of obtaining the output j:

pj = Tr(ρAB I ⊗ΠB
j ).

The expression of the quantum conditional entropy is given by:

S(ρA|{ΠB
j }
) = ∑

j
pj S(ρA|ΠB

j
). (15)

The quantum mutual information, which is the analogue of the classical definition (12), is:

J (ρAB)|{ΠB
j }

= S(ρA)− S(ρA|{ΠB
j }
). (16)

A different concept introduced in Refs. [36,37] is the so-called classical correlation,
which is obtained by taking the supremum over all the possible measurements on the
second subsystem B:

CA(ρAB) = sup
{ΠB

j }
J (ρAB)|{ΠB

j }
. (17)

Finally, we arrive at the definition of the quantum A-discord [36]:

DA(ρAB) = I(ρAB)− CA(ρAB). (18)

Until now, we have considered only quantum measurements performed on the second
subsystem B. By performing measurements on the first subsystem, A, one leads to the
definition of quantum B-discord DB(ρAB). One can prove that DA(ρAB) 6= DB(ρAB).
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Any X state can be brought to its canonical form, where all the elements of the density
matrix are real and non-negative, by applying the following local unitary operator [69–72]:

UA ⊗UB = e−i (ϕ14+ϕ23) σ3/4 ⊗ e−i (ϕ14−ϕ23) σ3/4. (19)

Therefore, the canonical form of the density operator ρx is [69]:

ρcan
x = UA ⊗UB ρx U†

A ⊗U†
B =


ρ11 0 0 |ρ14|
0 ρ22 |ρ23| 0
0 |ρ32| ρ33 0
|ρ41| 0 0 ρ44

. (20)

One knows that quantum correlations remain invariant when local unitary operators
are applied. In order to evaluate the quantum discord of the output X states ρ(14) and
ρ(23) given in Equations (4) and (5), respectively, and obtained by asymmetric broadcasting
of entanglement, a first step is to bring them to their canonical form with the help of the
operator (19). Furthermore, we follow the method proposed by Li et al. [62], as one can see
in Appendix A.

We compute the five parameters r, s, c1, c2, and c3 of the two states by using Equation (A2)
in Appendix A. First for the state ρ(14):

r(14) =
p(2|α|2 − 1)
p2 − p + 1

s(14) =
q(2|α|2 − 1)
p2 − p + 1

c(14)
1 =

2pq|α||β|
(p2 − p + 1)2

c(14)
2 = − 2pq|α||β|

(p2 − p + 1)2

c(14)
3 =

pq
(p2 − p + 1)2 .

Second, for the state ρ(23) we find:

r(23) = s(14)

s(23) = r(14)

c(23)
1 = c(14)

1 (21)

c(23)
2 = c(14)

2

c(23)
3 = c(14)

3 .

This is equivalent to the replacement r ↔ s in the expression of ρ(14), all the other three
parameters c1, c2, and c3 remaining invariant:

ρ(23) = ρ(14)
∣∣∣
r↔s

, (22)

according to Equation (A1) from the Appendix A.
By using Equation (A3) of the Appendix A, we remark that the eigenvalues of the state

ρ(14) are identical to the eigenvalues of the state ρ(23). According to the expression (A5) and
Equation (21), we arrive at an interesting equivalence:

I(ρ(14)) = I(ρ(23)). (23)

The classical correlation CA(ρAB) is numerically evaluated, and finally, by employing
Equation (18), we obtain the expression of quantum A-discord. Due to the fact that the
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classical correlation is different in the case of the two states: CA(ρ
(14)) 6= CA(ρ

(23)), we
obtain that the quantum A-discord is also distinct for the two states:

DA(ρ
(14)) 6= DA(ρ

(23)).

The dependence of quantum discord of the states ρ(14) and ρ(23) in terms of |α|, which
characterizes the initial state, and parameter p, which describes the asymmetric cloner, is
shown in Figure 4.

DAH ΡH14LL

0.0

0.5

1.0

p
0.0

0.5

1.0

ÈΑÈ0.00

0.05

0.10

0.15

0.20

DAH ΡH23LL

0.0

0.5

1.0

p
0.0

0.5

1.0

ÈΑÈ0.00

0.05

0.10

0.15

0.20

Figure 4. Quantum A-discord of the two output states ρ(14) and ρ(23) generated by asymmetric
broadcasting of entanglement.

The maximum of the quantum A-discord was numerically obtained, and it corre-
sponds to |α| = 1√

2
, i.e., the initial state is a maximally entangled one. On the other hand,

the maximum over the parameter p is obtained for p = 1
2 , which corresponds to the case of

the symmetric cloning machine.
We discussed in Appendix A, that quantum B-discord can be obtained from the

formula of quantum A-discord by performing the replacement r ↔ s. On the other hand,
we have found in Equation (22) that the state ρ(23) can be determined from the state ρ(14)

also with the replacement r ↔ s. Therefore, we arrive at the conclusion that

DA(ρ
(14)) = DB(ρ

(23)),

DB(ρ
(14)) = DA(ρ

(23)). (24)

4. Consonance

In this section, we propose to investigate a different type of quantum correlation,
which was defined in Ref. [73]. Let ρ be the density operator of a bipartite system that is
expressed in its general form as:

ρ = ∑
i,j

∑
m,n

ρijmn | ij 〉〈mn |. (25)

The consonance is defined as follows [73]:

Cons(ρ) = ∑
i,j

∑
m,n
|ρc

ijmn(1− δim)(1− δjn), (26)

where ρc = (UA ⊗UB)ρ(U†
A ⊗U†

B) is obtained such that the local coherence L is canceled.
The local coherence was introduced in Ref. [73]:

L = ∑
i 6=m

∣∣∣∣ ∑
j=n

ρc
ijmn

∣∣∣∣+ ∑
j 6=n

∣∣∣∣ ∑
i=m

ρc
ijmn

∣∣∣∣. (27)
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In the case of X mixed states, the local coherence is equal to zero, and therefore, no
local unitary operators are applied [73].

We proved that the two output states ρ(14) and ρ(23) obtained in the process of broad-
casting of entanglement are X states. We evaluate the consonance of these states by using
definition (26), as well as Equations (4) and (5), and obtain:

Cons(ρ(14)) = Cons(ρ(23)) =
8pq|α| |β|

(1 + p2 + q2)2 . (28)

In Figure 5, we plot the consonance of the output states obtained in the process of
asymmetric broadcasting of entanglement in terms of the parameters |α| and p.

Consonance

0.0

0.5

1.0

p
0.0

0.5

1.0

ÈΑÈ

0.0
0.1

0.2

0.3

0.4

Figure 5. Consonance of the two output states ρ(14) and ρ(23) generated by asymmetric broadcasting
of entanglement. We proved that Cons(ρ(14)) = Cons(ρ(23)).

Let us now find the position of the maximum of the consonance. By solving the
equation ∂Cons

∂|α| = 0, one obtains the solution |α| = 1√
2
. In addition, the equation ∂Cons

∂p = 0
leads to three solutions:

p =
1
2

, p =
1
2
(1−

√
5), p =

1
2
(1 +

√
5).

By imposing the physical condition p ∈ [0, 1], we remark that only the solution p = 1/2
is valid, which corresponds to the case of symmetric cloning machine.

5. A Comparison between the Concurrence, the Quantum A-Discord, and Consonance
of the Output States

Our purpose in this section is to make a comparison between the concurrence of the
two states obtained in the process of the broadcasting of entanglement (we proved that
C(ρ(14)) = C(ρ(23))), the quantum A-discord of the states ρ(14) and ρ(23), and consonance
(we proved that Cons(ρ(14)) = Cons(ρ(23))).

In Figure 6a, we plot the concurrence, quantum A-discord of the state ρ(14), quantum
A-discord of the state ρ(23), and consonance when the parameter is α, which characterizes
the initial entangled state is equal to 1/2. We remark that the consonance is larger than
the A-discord, which is larger than the concurrence. In addition, in the case when α = 1/4,
we notice in Figure 6b that the states ρ(14) and ρ(23) are separable (C = 0), and at the same
time, their quantum A-discord is non-zero, as is their consonance, this being an example
of separable states characterized by different kinds of correlation—quantum discord and
consonance.
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Figure 6. The comparison between concurrence C(ρ(14)) = C(ρ(23)) (solid red curve), quantum A-
discord of the state ρ(14) (black dashed curve), quantum A-discord of the state ρ(23) (blue dot-dashed
curve), and consonance Cons(ρ(14)) = Cons(ρ(23)) (dotted purple curve). We have considered a fixed
initial state: (a) α = 1/2, (b) α = 1/4.

On the other hand, we present a comparison between concurrence, quantum A-discord,
and consonance for some fixed values of the parameter p, which describes the cloning
machine. The case of an optimal universal symmetric cloning machine corresponds to
p = 1/2, and this is shown in Figure 7a, where we see that the consonance is larger than
discord, which is larger than the concurrence. When the symmetric cloning machine is
applied, the two output states coincide: ρ(14) = ρ(23); therefore, the quantum A-discord of
the two states is the same. Finally, we plot the concurrence, A-discord, and consonance in
Figure 7b in the case when the asymmetric cloning machine, characterized by p = 0.4, is
applied. Again, we have:

Cons > DA > C. (29)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

ÈΑÈ

HaL

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

ÈΑÈ

HbL

Figure 7. The comparison between concurrence C(ρ(14)) = C(ρ(23)) (solid red curve), quantum A-
discord of the state ρ(14) (black dashed curve), quantum A-discord of the state ρ(23) (blue dot-dashed
curve), and consonance Cons(ρ(14)) = Cons(ρ(23)) (dotted purple curve). We have considered a fixed
cloner: (a) p = 1/2, (b) p = 0.4.

6. Conclusions

In this paper, we have investigated the behaviour of three important types of quantum
correlations used in quantum information theory: entanglement, quantum discord, and
consonance. The analyzed systems were the two states of the outputs generated in the
asymmetric broadcasting of entanglement, denoted by ρ(14) and ρ(23).

We have computed the concurrence of the states ρ(14) and ρ(23), and we have arrived
at the conclusion that:

C(ρ(14)) = C(ρ(23)). (30)

Then, we have plotted the concurrence in terms of |α|, which characterizes the initial
state and p, which denotes the asymmetric cloner.
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By using the fact that the state ρ(23) is obtained from the state ρ(14) with the replacement
r ↔ s, we have found that:

DA(ρ
(14)) = DB(ρ

(23)),

DB(ρ
(14)) = DA(ρ

(23)).

We have computed the expression of the consonance and plotted it in terms of the pa-
rameters |α| and p. We have emphasized that the maxima of the three types of correlations—
concurrence, discord, and consonance—are obtained when the initial state is a maximally
entangled one (|α| = 1/

√
2) and when the symmetric cloning machine is applied (p = 1/2).

A detailed comparison of the concurrence, quantum A-discord of the state ρ(14), quan-
tum A-discord of the state ρ(23), and consonance was performed. We have found that the
consonance is greater than quantum discord, which is in turn greater than the concurrence.
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Appendix A. The Evaluation of Quantum Discord for Two Qubits Found in the Canonical
Form of the X State

In this appendix, we describe the algorithm found by Li et al. [62] for evaluating the
quantum discord of two qubits found in the canonical form of the X state. The canonical
expression of the Fano parameterization of an X state is [65,74]:

ρcan
x =

1
4

(
I ⊗ I + r σ3 ⊗ I + s I ⊗ σ3 +

3

∑
j=1

cj σj ⊗ σj

)
. (A1)

The parameters r, s, c1, c2, and c3 are related to the elements of the X-state matrix via
the formulae [65]:

r = ρ11 + ρ22 − ρ33 − ρ44,

s = ρ11 − ρ22 + ρ33 − ρ44,

c1 = 2 (|ρ23|+ |ρ14|), (A2)

c2 = 2 (|ρ23| − |ρ14|),
c3 = ρ11 − ρ22 − ρ33 + ρ44.

In Ref. [62], the expression of the eigenvalues of the canonical X state (A1) was
obtained as follows:

λ1,2 =
1
4

[
1− c3 ±

√
(r− s)2 + (c1 + c2)2

]
,

λ3,4 =
1
4

[
1 + c3 ±

√
(r + s)2 + (c1 − c2)2

]
. (A3)

For x ∈ [0, 1], we use the following expression for the function:

u(x) = −1− x
2

log2(1− x)− 1 + x
2

log2(1 + x). (A4)
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The von Neumann entropies associated with the two subsystem have the expressions:

S(ρA) = 1 + u(r);

S(ρB) = 1 + u(s).

The quantum mutual information can be computed with the help of Equation (13) and
of the above relations:

I(ρAB) = 2 + u(r) + u(s) +
4

∑
j=1

λj log2 λj. (A5)

In Ref. [62], three functions, f A
1 , f A

2 , and f A
3 , were introduced as follows:

f A
1 = −1 + r + s + c3

4
log2

1 + r + s + c3

2(1 + s)
− 1− r + s− c3

4
log2

1− r + s− c3

2(1 + s)

−1 + r− s− c3

4
log2

1 + r− s− c3

2(1− s)
− 1− r− s + c3

4
log2

1− r− s + c3

2(1− s)
,

f A
2 = 1 + u

(√
r2 + c2

1

)
,

f A
3 = 1 + u

(√
r2 + c2

2

)
.

The classical correlation CA(ρAB) can be evaluated with the help of the following
formula found by Li et al. [62]:

CA(ρAB) = S(ρA)−min{ f A
1 , f A

2 , f A
3 }. (A6)

In conclusion, after determining the value of the classical correlation, one needs to
employ Equation (18) in order to find the quantum A-discord of the canonical form of the
X state.

If we are interested in evaluating the quantum B-discord, then we have to make the
replacement r ↔ s in the above approach. We arrive at the conclusion that the quantum
B-discord is obtained from the expression of A-discord DA with the replacement r ↔ s.
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