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Abstract: Broken rotor bars in induction motors make up one of the typical fault types that are
challenging to detect. This type of damage can provoke adverse effects on the motors, such as
mechanical and electrical stresses, together with an increase in electricity consumption, causing
higher operative costs and losses related to the maintenance times or even the motor replacement
if the damage has led to a complete failure. To prevent such situations, diverse signal processing
algorithms have been applied to incipient fault detection, using different variables to analyze, such as
vibrations, current, or flux. To counteract the broken rotor bar damage, this paper focuses on a motor
current signal analysis for early broken bar detection and classification by using the digital Taylor–
Fourier transform (DTFT), whose implementation allows fine filtering and amplitude estimation
with the final purpose of achieving an incipient fault detection. The detection is based on an analysis
of variance followed by a Tukey test of the estimated amplitude. The proposed methodology is
implemented in Matlab using the O-splines of the DTFT to reduce the computational load compared
with other methods. The analysis is focused on groups of 50-test of current signals corresponding to
different damage levels for a motor operating at 50% and 75% of its full load.

Keywords: induction motor; broken bar; stator current; fault detection; statistical analysis; digital
Taylor–Fourier transform

1. Introduction

High efficiency, low cost, and low maintenance make up some of the main features of
induction motors (IM) that make them the preferred machine type in the industry. For this
reason, early fault detection becomes critical to schedule maintenance and prevent further
damage to the motor [1].

Various factors can produce a fault in an IM, such as manufacturing defects, corrosion,
overloading, and overheating [2]. The most common damages in IMs are related to bearing
faults, stator faults, and broken rotor bar faults [3,4]. Among these, the broken bar damages
are the most difficult to detect because this condition does not show any effect on the motor
at the early stages of the fault.

Suppose the broken bar damage is not conveniently detected and treated. In that case,
the unbalanced currents flowing through the rest of the rotor bars lead to thermal and
mechanical stresses that may conduct the IM to complete failure. Moreover, this condition
affects the operative cost of the machine, considering that this type of fault can significantly
increase power consumption.

To achieve a convenient detection of broken bars, diverse techniques have been studied
in recent years; some of them are based on vibration signals, some others on current analysis,
and magnetic flux, among others [5–11]. For example, Morales-Perez et al. [5] explored the
use of trained dictionaries to decompose vibration signals using the orthogonal matching
pursuit algorithm. Panagiotou et al. [6] proposed the detection of broken rotor bars at steady
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state by analyzing stray flux signals. Garcia-Calva et al. [8] analyzed the speed signature of
a faulted motor in the time-frequency domain. Overall, motor current signature analysis
(MCSA) is widely used because current signals acquisition does not require additional
sensors in the IM.

Previous works have studied the broken bar problem using MCSA, relying on tra-
ditional methods such as the fast Fourier transform (FFT) or the wavelet transform. For
instance, da Costa et al. [12] used two diagnostic methods based on the FFT and Wavelet
Transform, to compare them. García-Perez et al. [13] employed the multiple signal classifi-
cation (MUSIC) method applied to current and vibration signals to identify multiple faults.
Trujillo-Guardado et al. [14] proposed an algorithm for broken bar detection hinged on the
use of two Taylor-Kalman filters in cascade.

For classification purposes, most of the recent works use artificial intelligence (AI)
methods: Support vector machines (SVM), artificial neural networks (ANN), and convolu-
tional neural networks, among others. For instance, Reljic et al. [15] introduced ANN and
SVM to perform broken bar detection. Xiao et al. [16] utilized a recurrence quantification
analysis and long short-term memory neural network to detect different faults in the IM.
Valtierra-Rodriguez et al. [17] proposed using convolutional neural networks to detect
broken rotor bars automatically. Kumar and Hati et al. [18] employed a dilated convolu-
tional neural network model to detect bearing and broken rotor faults based on vibration
signals. These techniques have proven high accuracy, but their main drawback is the high
computational resources required for their use, which may be difficult to implement for
monitoring purposes. Moreover, even with the use of AI techniques, most recent works are
able to detect no less than half-broken bars.

Aiming to improve the detection rate without consuming large computational re-
sources or requiring long computational times, the Taylor–Fourier Transform (TFT) emerges
as a good option for signal processing based on its excellent filtering characteristics. In
general terms, the TFT is an expansion of the Fourier subspace given by the modulation of
each Fourier harmonic by a Taylor polynomial of order K greater than zero. The TFT has
been mainly applied to power systems monitoring, and oscillatory signals analysis [19,20].
This transform delivers dynamic phasor estimation, which opens the possibility of work-
ing with transitory signals. Applying the TFT to a current signal offers the possibility to
estimate mainly but not only the amplitude and phase of the signal. On the other hand,
the O-splines implementation of the TFT considerably reduces the computation resources
required for signal processing.

In this paper, MCSA for broken bar fault classification is implemented using Taylor–
Fourier filters and taking advantage of the processing facilities given by the use of the
O-splines. The feature extraction is performed based on the amplitude estimation given
by the TFT. Finally, an analysis of variance is performed on each distribution to detect the
damage using the Tukey procedure.

This paper is organized as follows. In Section 2, fundamentals of the TFT and its
O-splines are presented, as well as the basis for MCSA and statistical analysis. Then, the
proposed methodology for broken bar fault classification is given in Section 3. Results are
presented in Section 4, and finally, conclusions are given in Section 5.

2. Fundamentals
2.1. Digital Taylor–Fourier Transform (DTFT)

The TFT is an expansion of the Fourier Transform. It can be seen as a Finite Impulse
Response (FIR) filter bank formed by a set of maximally flat filters with less inter-harmonic
interference than a Fourier Transform [21].

The signal model of the DTFT is given by

x(n) =
H

∑
h=−H

ph(n)ej2πh f1n, −C
N
2
≤ n ≤ C

N
2

(1)
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where n = 0, 1, . . . , N − 1 are the samples of the signal being N the number of samples per
cycle, ph(n) = a(n)ejφ(n) represents the dynamic phasor, a(n) and φ(n) are the amplitude
and phase respectively, and f1 stands for the central frequency. C is the number of cycles
defined as C = K + 1, with K being the number of Taylor polynomials used to approach
ph(n) as:

pK
h (n) = ph(n0) + ṗh(n0)(n− n0) + · · ·+ pK

h (n0)
(n− n0)

K

K!
(2)

A least square problem appears with the inclusion of (2) into (1) and leads to a factor-
ized form of a matrix B that includes the Taylor Υ and Fourier Ω terms, respectively [19]:

B = ΥΩ =


I T1 · · · 1

K! T
K
1

I T2 · · · 1
K! T

K
2

...
...

. . .
...

I TC · · · 1
K! T

K
C




WN 0 · · · 0
0 WN · · · 0
...

...
. . .

...
0 0 · · · WN

 (3)

where TK
C are diagonal submatrices containing the sequence t = [−Lh − Lh + 1 . . . Lh]

T/(NF1)
where Lh = (L− 1)/2 and L = CN; WN is a Fourier matrix given by:

WN =



1 1 1 · · · 1
1 ωN ω2

N · · · ω
(N−1)
N

1 ω2
N ω4

N · · · ω
2(N−1)
N

...
...

...
. . .

...

1 ω
(N−1)
N ω

2(N−1)
N · · · ω

(N−1)2

N


(4)

where ωN = ej2π/N is the harmonic phase factor for the Nth harmonic.
The solution of the least square problem leads to the expression for the analysis

equation, which is the core of the filtering algorithm:

ξ̂ = B̃H p, (5)

where ξ̂ encloses the Taylor–Fourier coefficients; the dual matrix, B̃, is defined by:

B̃ = B(BHB)−1 (6)

Then, considering that B = ΥΩ, we have the following expression [19]:

B̃ = Υ(ΥHΥ)−1 Ω

N
= Υ̃

Ω

N
(7)

Given that Υ is an invertible square matrix, its dual is the transposed inverse matrix [22],
this is:

Υ̃ = (Υ−1)T =
(Co f (Υ)T)T

|Υ| =
Co f (Υ)
|Υ| (8)

where Co f (Υ) and |Υ| are the matrix of cofactors and the determinant of the matrix Υ,
respectively.

Finally, the amplitude estimation α̂ is obtained from the Taylor–Fourier coefficients ξ̂
through:

α̂ = 2|ξ̂ξξ| (9)

2.2. O-Splines

In this section, the Kth O-spline and its first derivatives are calculated in closed-form
based on the expression stated in (8), where the inverse matrix of Υ is calculated. Its rows
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are concatenated in one vector B̃K
0 . For amplitude and phase estimation, only the first

vector of the dual matrix B̃(K)
0 is required.

Hence, for K = 0 we need one observation cycle with t1 = t
[− T1

2 , T1
2 )

; in this case B0 = 1

and consequently B̃0
0 = 1. The O-spline is a rectangular pulse given by [23]:

B̃(0)
0 (t) =

 1 f or − T1
2 ≤ t T1

2 ,

0 otherwise.
(10)

For K = 1 two cycles are required with t1 = t[−T1,0) and t2 = t[0,T1)
= t1 + T1; then,

we have
B(1)

o =

(
1 t1
1 t2

)
(11)

with |B(1)
o | = t2 − t1 = T1. Then:

B̃(1)
o =

(
t2 −1
−t1 1

)
T1

=
(

u1 + 1 −F1
−(u2 − 1) +F1

)
(12)

where un represents the normalized time u = tn/T1. The columns of the matrix B(1)
o

describe a triangular pulse:

B̃(1)
o (u) =


u + 1 f or −1 ≤ u < 0,

1− u f or 0 ≤ u < 1,

0 otherwise.

(13)

This process is repeated with the consecutive values of K; however, it is noteworthy to
point out that only the first two polynomials are needed to obtain the rest of the elements
of the matrix B̃(K)

0 by recursive differentiation.

2.3. Motor Current Signature Analysis (MCSA)

The MCSA method has been applied in several works to detect different types of
faults in IMs. Morever, fault detection systems are typically based on the online monitoring
of stator current signals [3]. In the particular case of broken bars ( fbb), this type of fault
induces a spurious component with a frequency pattern given by

fbb = f1(1± 2ks) (14)

where f1 is the supply frequency, k is the number of the harmonic, and s represents the
slip of the motor [24]. Considering this feature, the localization of the fault component is
known; however, it is important to note that this component is very small compared to the
fundamental frequency. Moreover, it lies very close to the supply frequency, making its
detection challenging.

2.4. Analysis of Variance and Tukey Procedure

The analysis of variance (ANOVA) allows testing equality among different data distri-
butions by comparing the variance between their distributions relative and the variance
within distributions. This test is used in several fields, such as agricultural experiments and
medical research. Depending on the type of relationship among groups or distributions, a
certain model of ANOVA is applied. For instance, to determine if any differences exist in
the means of 3 or more groups, the one-way ANOVA test is the most common method [25].
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The first step for applying this method consists in formulating the null hypothesis,
which normally is “the population means of the groups are equal” or H0 : µ1 = µ2 = µ3,
whether the alternative hypothesis would be “at least one of the group means is different”
or H1 : µ1 6= µ2 or µ1 6= µ3 or µ2 6= µ3. If at least one group differs, the null hypothesis can
be rejected [25].

The core of the ANOVA test is the F calculation, which is comprised of the variance
ratios [26]:

F =
Between groups variance
Within groups variance

=
SSRn(t)/(k− 1)
SSEn(t)/(n− k)

(15)

where SSRn(t) and SSEn(t) given by

SSRn(t) =
k

∑
i=1

ni(X̄i(t)− X̄(t))2 (16)

and

SSEn(t) =
k

∑
i=1

ni

∑
J=1

(Xij(t)− X̄i(t))2 (17)

represents the sum of squares between groups and within groups, respectively, and X̄ and
X̄i(t) represent the mean of all groups and the mean of each group, which are expressed as
follows:

X̄(t) =
1
n

k

∑
i=1

ni

∑
j=1

Xij(t) (18)

X̄i(t) =
1
ni

ni

∑
j=1

Xij(t), (19)

with i = 1, . . . , k, being k the number of groups and n the number of observations of the
group.

A large value of F provides evidence to reject H0. Thus, a subsequent method for
multiple comparisons can be applied [27]. A typical table of results for an ANOVA test
includes the sum of squares, the mean sum of squares, F, and P calculated between groups
and within groups.

Usually, ANOVA is followed by another technique to identify the pattern of differences
in the distributions. Often, this analysis consists of pairwise comparisons between the
means to determine if there is a significant difference. The Tukey test is one popular method
to perform this comparison.

This test is based on the computation of Q, which is a criterion that evaluates the
difference between the means of two groups [28].

Q =
Mi −Mj√
SSEn(

1
S )

(20)

where Mi and Mj are the mean of the groups being compared, SSEn is the sum of squares
within groups, and S is the number of observations per group. This value is then compared
against a Qcritical value from a table, which depends on the degrees of freedom, the number
of means being tested, and the significance level α [28].

3. Proposed Methodology

The diagram of Figure 1 illustrates the steps that structure the proposed methodology
for broken bar detection using the DTFT. First, current signals for different health conditions
of the motor need to be acquired. Then, the characteristics of the Taylor–Fourier filters
can be selected to perform an amplitude estimation in a frequency of interest. Afterward,
a statistical analysis is performed over each group of amplitude estimations. Then the
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variance analysis is carried out. Hence, discrimination between healthy and damaged
rotor bars can be conducted, resulting in the detection of the fault. Next, each process
is explained.

Figure 1. Flowchart of the proposed methodology for broken bar detection in IM.

3.1. Current Signals

These signals are associated with different damage levels in the rotor bar. Typically,
the analysis is focused on one broken bar, half broken bar, and so on; the healthy motor
signal also needs to be acquired. These signals do not require any pre-processing and are
analyzed according to the sampling frequency at which they were acquired.

In the presence of a level of damage in the bars, spurious components typically appear
around the fundamental frequency and its harmonics, as stated by the theory in Section 2.3.
According to this expected location of the fault component, the central frequency fc of the
filter is selected.

3.2. Filter Design

The design’s parameters need to be selected according to the characteristics of the
current signal. The first important parameter is the central frequency fc, which is selected
in the estimated location of the fault to prevent any attenuation of the signal.

Another important feature is the bandwidth of the filter fbw, which should be selected
in a way that the undesirable energy peaks in the analysis are not considered. For example,
a bandwidth narrow enough for analyzing a spurious component related to a broken bar
fault will let out the energy of the supply frequency. In this way, the filtered signal will
preserve only the features of the faulty component.

Finally, the number of Taylor polynomials (K) is another important design parameter,
considering that as this number increases, it is necessary to analyze more windows in the
time domain. Still, at the same time, the filter response around the frequency of interest
tends to be flatter and, therefore, more likely to be an ideal filter [29]. As can be observed
from the normalized power spectral density (PSD) in Figure 2, the filter corresponding to
K = 5 presents a flatter response and better harmonic rejection than, for example, the one
with K = 1, Nonetheless, the first one requires more cycles of the signal to implement it.

Once the filter is designed, a sliding window process of size L = C× N is performed
on the signal, and a single value is taken at the center of each window, forming the filtered
signal. It is important to consider that the filtering results will have a delay corresponding
to half of the number of cycles C required for the analysis; remember that this is given by
selecting the value of K.
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Figure 2. Filter response according to the value of K with a central frequency of 60 Hz.

3.3. Amplitude Estimation

After the filtering process, the amplitude estimation can be obtained using (9). A
single amplitude value is taken at each processed signal, forming a vector of size M, where
M is the number of measurements for a certain case of damage in the bar.

3.4. Statistical Analysis

The variance analysis is performed, and if the null hypothesis is successfully rejected,
the Tukey procedure is applied to detect the damage in the rotor’s bar. This can be achieved
if the damaged groups differ significantly from the healthy group. An exaggeration of
the expected behavior of the groups is depicted in Figure 3, where the broken bar induces
components that grow in amplitude according to the severity of the damage; the depicted
distributions fulfill the 3 standard deviations (σ) criteria of the Chebyshev theorem.

Healthy Broken bar

0

0.02

0.04

0.06

0.08

A
m

p
lit

u
d
e
 (

A
)

Categorized

as "Healthy"

Categorized

as "Fault"

Figure 3. Example of classification using statistical distribution.

4. Experimental Results

This work analyzed 10 different damage levels for an IM operating under load condi-
tions of 75% and 50%. Each damage level was artificially created by drilling a hole in the
bar, as can be observed in Figure 4, starting from 1 mm hole perforation and increasing by
1 mm until reaching a completely broken bar, as illustrated in Figure 5. The experimental
test was carried out through a three-phase IM WEG 00118ET3EM143TW, 1HP, 1800RPM,
220 VAC/60 Hz, and 2.98 A; the data was acquired at a sampling frequency of 3200 Hz. For
each case of damage, 50 steady-state current measurements were analyzed in this work.
For the ANOVA, a significance level of α = 0.01 was selected.
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Figure 4. Rotor bar drilling to create the damage levels.

Figure 5. Bar damage levels under analysis.

Current signals of the healthy motor and broken bar IM illustrated in Figure 6 show
that the effect of this fault is hardly noticeable in the time domain. Thus, the analysis is
focused on its frequency spectrum.

0 0.5 1 1.5 2

Samples 10
4

-5

0

5

A
m

p
lit

u
d
e
 (

A
)

Healthy motor

Broken bar

Figure 6. Current signals of healthy and broken bar IM.

Figure 7 depicts the frequency spectra of 50 signals corresponding to a half-broken bar
condition. Fault-related components were identified around 54 Hz. Thereby, the central
frequency fc of the filter was selected accordingly. Continuing with the parameters for the
filter design, a value of K = 5 was selected for all study cases, given that the filter response
is flatter enough without requiring larger segments of the signal for the analysis. This
selection implies a delay in the results of 3 cycles of the signal sampled at 3200 Hz. Then,
the associated O-spline is depicted in Figure 8.
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Figure 7. Frequency spectra of the signals for a half-broken bar IM.

0 2000 4000 6000 8000 10000

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 8. O-spline for K = 5.

It is worth noticing from Figure 7 that the spurious component represents a very small
part of the signal’s energy. Besides, it lies near the center frequency of 60 Hz. For this reason,
a bandwidth of 2 Hz was selected for the filters to avoid including other components that
are irrelevant to the analysis. To illustrate this, Figure 9 shows the same 2 Hz bandwidth
filter with a fc = 54 Hz and the frequency spectrum of a synthetic 60 Hz signal to remark
that the reduced bandwidth excludes the energy of the fundamental component.

45 50 55 60 65
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a
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S
D

Synthetic

 signal

2 Hz bandwidth 

filter

Figure 9. Filter with fc = 54 Hz and a 60 Hz synthetic signal.
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ANOVA results based on the amplitude estimations of Figure 10 are given in Table 1. The
value of p < 0.01 rejects the null hypothesis, allowing us to continue with the Tukey procedure.

Healthy 1 mm 2 mm 3 mm 4 mm 5 mm 6 mm 7 mm 8 mm 9 mm Broken

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

A
m

p
lit

u
d
e
 (

A
)

Figure 10. Boxplot of the fault amplitudes’ distribution data in a 75% loaded IM.

Table 1. ANOVA results for 75% loaded motor.

Between Groups Within Groups Overall

Sum of squares 0.2828 0.0055 0.2883

Degrees of freedom 10 539 549

Mean sum of squares 0.0283 1.03 × 10−5

F 2758.8433

P 0

On the other hand, the Tukey test results are summarized in Table 2, suggesting that
the detection is achieved when the broken bar is greater or equal to 1 mm, with a 99% of
confidence level. Remember that the groups significantly differ when Q > Qcritical .

Table 2. Tukey test results for 75% loaded motor, Qcritical = 5.227.

Comparison Q Results

Healthy vs. 1 mm 17.2663 Significantly different

Healthy vs. 2 mm 42.4258 Significantly different

Healthy vs. 3 mm 22.8229 Significantly different

Healthy vs. 4 mm 12.6416 Significantly different

Healthy vs. 5 mm 17.7610 Significantly different

Healthy vs. 6 mm 29.2188 Significantly different

Healthy vs. 7 mm 52.2714 Significantly different

Healthy vs. 8 mm 113.1296 Significantly different

Healthy vs. 9 mm 113.2316 Significantly different

Healthy vs. broken 147.8344 Significantly different

For a 50% load condition, the spurious component appears around 56 Hz; then, the
filter is centered at this frequency, similar to the one presented in Figure 7. The ANOVA is
applied to the amplitude distributions in Figure 11, resulting in Table 3, which allows the
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rejection of H0. Hence, the Tukey test results in an incipient detection starting at 1 mm, as
summarized in Table 4.

Healthy 1 mm 2 mm 3 mm 4 mm 5 mm 6 mm 7 mm 8 mm 9 mm Broken

0

0.01

0.02

0.03

0.04

0.05

A
m

p
lit

u
d

e
 (

A
)

Figure 11. Statistical distribution for a 50% loaded motor centered at 56 Hz.

Table 3. ANOVA results for 50% loaded motor.

Between Groups Within Groups Overall

Sum of squares 0.1032 0.0014 0.1046

Degrees of freedom 10 539 549

Mean sum of squares 0.0103 2.60 × 10−6

F 3968.8528

P 0

Table 4. Tukey test results for 50% loaded motor, Qcritical = 5.227.

Comparison Q Results

Healthy vs. 1 mm 5.9463 Significantly different

Healthy vs. 2 mm 14.95354 Significantly different

Healthy vs. 3 mm 1.3155 Not significantly different

Healthy vs. 4 mm 11.6383 Significantly different

Healthy vs. 5 mm 10.7525 Significantly different

Healthy vs. 6 mm 41.5717 Significantly different

Healthy vs. 7 mm 44.2730 Significantly different

Healthy vs. 8 mm 101.2017 Significantly different

Healthy vs. 9 mm 166.3308 Significantly different

Healthy vs. broken 161.2966 Significantly different

Comparison Using Fourier filters

To showcase the improvement using Taylor–Fourier filters, the proposed methodology
is repeated but using a value of K = 0, i.e., Fourier filters. As illustrated in Figure 12,
the filter exhibits a poor harmonic rejection, giving as a result, the inclusion of undesired
energy in the analysis.

Results for the ANOVA based on the distributions of Figure 13 and Figure 14 are
summarized in Table 5 and Table 6, respectively. Both cases pass the ANOVA (P < α).
Nevertheless, the Tukey test results in Tables 7 and 8 reveal that the detection is achieved at
higher damage levels than Taylor–Fourier filters. In the case of 75% of load, the start of the
detection goes from 1 mm to 4 mm; meanwhile, for the 50% load condition, the detection
decreases from 1 mm to 8 mm.
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Figure 12. Fourier filter response.

Healthy 1 mm 2 mm 3 mm 4 mm 5 mm 6 mm 7 mm 8 mm 9 mm Broken
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Figure 13. Statistical distribution for a 75% loaded motor using a Fourier filter centered at 54 Hz.
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Figure 14. Statistical distribution for a 50% loaded motor using a Fourier filter centered at 56 Hz.

Table 5. ANOVA results for 75% loaded motor using a Fourier filter.

Between Groups Within Groups Overall

Sum of squares 0.2515 0.1038 0.3553

Degrees of freedom 10 539 549

Mean sum of squares 0.0251 0.0002

F 130.5811

P 5.6 × 10−137
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Table 6. ANOVA results for 50% loaded motor using a Fourier filter.

Between Groups Within Groups Overall

Sum of squares 0.1482 0.1810 0.3292

Degrees of freedom 10 539 549

Mean sum of squares 0.0148 0.0003

F 44.1252

P 9.48× 10−64

Table 7. Tukey test results for 75% loaded motor using a Fourier filter, Qcritical = 5.227.

Comparison Q Results

Healthy vs. 1 mm 1.3594 Not significantly different

Healthy vs. 2 mm 1.3737 Not significantly different

Healthy vs. 3 mm 1.5214 Not significantly different

Healthy vs. 4 mm 5.6934 Significantly different

Healthy vs. 5 mm 4.7304 Not significantly different

Healthy vs. 6 mm 6.2172 Significantly different

Healthy vs. 7 mm 11.3767 Significantly different

Healthy vs. 8 mm 10.4901 Significantly different

Healthy vs. 9 mm 29.3997 Significantly different

Healthy vs. broken 32.3060 Significantly different

Table 8. Tukey test results for 50% loaded motor using a Fourier filter, Qcritical = 5.227.

Comparison Q Results

Healthy vs. 1 mm 0.9307 Not significantly different

Healthy vs. 2 mm 2.2843 Not significantly different

Healthy vs. 3 mm 0.1505 Not significantly different

Healthy vs. 4 mm 0.0857 Not significantly different

Healthy vs. 5 mm 2.6871 Not significantly different

Healthy vs. 6 mm 2.0041 Not significantly different

Healthy vs. 7 mm 4.8410 Not significantly different

Healthy vs. 8 mm 10.3565 Significantly different

Healthy vs. 9 mm 18.6478 Significantly different

Healthy vs. broken 14.5947 Significantly different

These results demonstrate that Taylor–Fourier filters effectively detect damages in the
bars of the rotor at earlier stages.

5. Conclusions

A methodology for early IMs broken bar detection based on the DTFT was presented
and demonstrated. A total of 1100 current signals were analyzed, considering scenarios
going from a healthy bar to a broken bar. For both load conditions, the Tukey test allowed
an incipient detection of 1 mm damage in the bar with a confidence level of 99%; for the
75% loaded motor, only the 3 mm case could not be detected. Although the median value
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for the 3 mm distribution is larger than that for the healthy bar, the data dispersion tends
to have smaller amplitude values. This drawback can be attributed not to the 3 mm case
but to the healthy bar distribution, whose current signals presented a slight damping that
tends to increase its estimated amplitude. However, the signals were purposefully not
preprocessed to assess the reach of the proposed method for early fault detection. Overall,
it is considered that the DTFT implementation for current signal analysis was successfully
carried out to perform early fault detection.

The use of the O-splines of the DTFT enabled smooth filtering without an increase in
the processing time. This is an important advantage regarding future implementation in an
FPGA. In addition, the estimated fault amplitude was the only feature used for detection,
which is a straightforward calculation due to the use of the O-splines.

In future works, we are interested in extracting more features with the TFT, such as
the phase of the signals, in performing a classification of the damage levels in the rotor
bar. Besides, this system coded in Matlab will be traduced to its equivalent in a hardware
description language (VHDL) to implement it in an FPGA, aiming to assess the system’s
performance for an IM operating under real circumstances.
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