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Abstract: In the framework of mean field approximation, we consider a spin system consisting of
two interacting sub-ensembles. The intra-ensemble interactions are ferromagnetic, while the inter-
ensemble interactions are antiferromagnetic. We define the effective number of the nearest neighbors
and show that if the two sub-ensembles have the same effective number of the nearest neighbors, the
classical form of critical exponents (α = 0, β = 1/2, γ = γ′ = 1, δ = 3) gives way to the non-classical
form (α = 0, β = 3/2, γ = γ′ = 0, δ = 1), and the scaling function changes simultaneously. We
demonstrate that this system allows for two second-order phase transitions and two first-order phase
transitions. We observe that an external magnetic field does not destroy the phase transitions but
only shifts their critical points, allowing for control of the system’s parameters. We discuss the
regime when the magnetization as a function of the magnetic field develops a low-magnetization
plateau and show that the height of this plateau abruptly rises to the value of one when the magnetic
field reaches a critical value. Our analytical results are supported by a Monte Carlo simulation of a
three-dimensional layered model.

Keywords: Ising model; free energy; critical exponents; antiferromagnetic; balanced system; effective
number of the nearest neighbors; layered media

1. Introduction

Magnetic properties of multilayer superlattices have been subject to intensive theoreti-
cal and experimental study. Special interest is given to multilayer structures consisting of
thin layers of various ferromagnetic and antiferromagnetic materials [1–3]. An example of
such structures is designs with alternating ferromagnetic and non-ferromagnetic layers.
In these structures, the thickness of the non-ferromagnetic layer can be chosen in such a
way that the long-range exchange interaction between the ferromagnetic layers is antiferro-
magnetic [4]. This sort of structure has a giant magnetoresistance. Ferromagnetic layered
structures with antiferromagnetic inter-layer interactions are theoretically investigated
in [5,6] in the framework of the Heisenberg model. These studies reveal that this kind of
system can have many distinct phases: ferromagnetic, antiferromagnetic, paramagnetic,
and a whirling phase. Papers [7,8] consider the effect of weak interaction between two
square Ising lattices on the phase transitions in this system. It is shown that if a structure
has alternating layers of different ferromagnetic materials, there might exist a compen-
sation temperature, which is a temperature below the critical value, at which the full
magnetization of the lattice is zero. The conditions for the appearance of the compensation
effect and the critical behavior of such systems near the compensation temperature are
investigated in [9–15]. In recent years, great consideration has been given to the study of
spin systems with competing ferromagnetic and antiferromagnetic interactions, or with
interactions between different groups of spins [16–19]. This sort of system usually has a
complex landscape of free energy containing many local minima separated from the global
minimum by a deep potential barrier.
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In the works [20–24], the authors investigated the spin-1 Ising models, where a spin
has three possible states. They showed that in these models the critical temperature shifts
with increasing crystal field and at the certain values of the field the transition order changes
from the second to the first order. In the present paper, we demonstrate that such critical
behavior is possible in the two-state spin systems.

This paper considers the mean field approximation for the simplest Ising-like model
having not only the global minimum, but also a local minimum of energy. Spins are divided
into two subgroups (sub-ensembles). The intra-group interaction of spins is ferromagnetic,
while spins from different sub-ensembles can interact in both a ferromagnetic and antifer-
romagnetic manner. With antiferromagnetic inter-group interaction, the ground state is the
ferromagnetic ordering within sub-ensembles and antiferromagnetic ordering among spins
of different sub-ensembles. Yet, there is also a local energy minimum corresponding to a
complete ferromagnetic order.

To compare the mean-field model characteristics with real systems, we carried out a
Monte Carlo simulation of a 3D layered model with ferromagnetic intra-layer interactions
and antiferromagnetic inter-group interactions. We took into account only the interactions
between the nearest neighbors. This model corresponds to realistic ferromagnetic structures
with giant magnetoresistance. Although it is expected that the results of the mean-field
approach will differ from the results for real systems, it is well known that this approach
approximates the 3D systems quite well. We found that the simulation results agree
qualitatively with the predictions of our model. The agreement is expected to be better for
lattices with larger dimensions.

The paper is organized as follows. State equations for the mean-field model are given
in Section 2. Section 3 investigates the critical properties of the system and derives the
values of the critical exponents. The effect of an external magnetic field on the temperature
dependencies of magnetization is considered in Section 4. Section 5 compares the results of
the Monte Carlo simulation with the analytical results obtained in the previous chapters.
The discussion and our conclusions are given in Section 6. To conclude, we would like to
mention that in our paper [25], for the first time, we used a similar technique.

2. Basic Expressions
2.1. Equations of State and Critical Temperature

Let us consider a system of N spins with a connection matrix
^
J. The system is divided

into two groups I and II holding p1N and p2N spins, respectively (N = p1N + p2N,
p1 + p2 = 1). The inter-spin connection in group I is defined by a quantity J11, in group II
by J22, and cross-connections between the spins of group I and group II are defined by a
quantity J12:

J11 =
q11

N
, J12 =

q12

N
, J22 =

q22

N
. (1)

For definiteness, in what follows, we assume that spin interaction within each group is of
ferromagnetic nature, the interaction between spins from different groups is antiferromag-
netic, and the direction of the external magnetic field H is positive:

q11 ≥ 0, q22 ≥ 0, q12 ≤ 0, H ≥ 0.

The case q12 > 0 in the absence of the external field was investigated earlier in [26,27].
The Hamiltonian of this system can be written as

EN = −
(

J11

Np1

∑
i,j=1

SiSj + J22

Np2

∑
i,j=1

S′iS
′
j + J12

Np1

∑
i=1

Np2

∑
j=1

SiS′j

)
− H

(
Np1

∑
i=1

Si +
Np2

∑
j=1

S′j

)
, (2)
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where S and S′ are the values of the spins from groups I and II, respectively. The sums in (2)
are taken over all the spins of the corresponding groups. Introducing partial magnetizations
of the two groups, m1 and m2:

m1 =
1

Np1

Np1

∑
i=1

Si, m2 =
1

Np2

Np2

∑
j=1

S′j,

We can represent the energy of the system per one spin in the mean-field approximation,
E = EN/N, as follows:

E = −1
2

(
q11 p2

1m2
1 + 2q12 p1 p2m1m2 + q22 p2

2m2
2

)
− H(p1m1 + p2m2), (3)

and the full magnetization of the system becomes: M = p1m1 + p2m2.
The statistical sum of this spin system is determined as:

Z =
Np1

∑
n1=0

Np2

∑
n2=0

(
Np1
n1

)(
Np2
n2

)
e−NKE, (4)

where K = 1/T is the inverse temperature, n1 and n2 denote, respectively, the number of
downward spins (−1) in groups I and II; n1 and n2 are related to partial magnetizations by
the following expressions:

n1 = Np1
1 + m1

2
,n2 = Np2

1 + m2

2
.

If the total number of spins N is large, then summation in Formula (4) can be replaced
by integration. Using Stirling’s formula to estimate binomial coefficients, we obtain

Z =

1∫
−1

1∫
−1

e−NF(m1,m2)dm1dm2,

where
F(m1, m2) = p1S1(m1) + p2S2(m2) + KE(m1, m2), (5)

and
Si(mi) =

1 + mi
2

ln
1 + mi

2
+

1−mi
2

ln
1−mi

2
, i = 1, 2.

Let us estimate this integral using the saddle point method. The equations for the
saddle point (∂F/∂m1 = 0, ∂F/∂m2 = 0) are

1
2K ln 1+m1

1−m1
= q11 p1m1 − q12 p2m2 + H

1
2K ln 1+m2

1−m2
= q22 p2m2 − q12 p1m1 + H.

, (6)

These equations define the equilibrium values of the partial magnetizations m1 and m2 at
a given temperature K. Substituting these values into expression (5), we obtain the free
energy per spin F.

Let us determine the critical temperature of a phase transition, Kc. Assuming H = 0
and m1 → 0 , ( K → Kc ), in the case of q12 = 0 from (6), we obtain an obvious result: a
system split into two non-interacting subsystems has two critical points:

K(1)
c =

1
q11 p1

, K(2)
c =

1
q22 p2

(7)
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Expression (7) fully agrees with the mean-field theory [8] because in the notations of (1)
and (2), the quantities q11 p1 and q22 p2 are the numbers of the nearest neighbors in groups I
and II.

In the general case of q12 6= 0, the system has one critical point, which we can find
from (6):

Kc =
2

q11 p1 + q22 p2 +
√
(q11 p1 − q22 p2)

2 + 4p1 p2q2
12

2.2. Energy Minima and Critical Value Hc

To proceed further, it is necessary to investigate the presence of energy minima to
which the system can converge when the temperature approaches zero. It is easy to see
that the energy (3) can be at its minimum only in configurations where m1 = ±1 and
m2 = ±1. The stability of such states (the presence of the minimum) is only possible when
two conditions are simultaneously met:

H1m1 > 0 and H2m2 > 0 (8)

where H1 and H2 are the local fields acting on the spins of groups I and II, respectively:

H1 = q11 p1m1 + q12 p2m2 + H, H2 = q22 p2m2 + q12 p1m1 + H. (9)

When there is no external magnetic field (H = 1), the unconditionally stable con-
figurations are S+− = S(m1 = +1, m2 = −1) and S−+ = S(m1 = −1, m2 = +1),
because spins of both groups are directed along the local fields acting on them:
H1m1 = q11 p1 + |q12|p2 > 0 and H2m2 = q22 p2 + |q12|p1 > 0. The stability conditions (8)
for configurations S++ = S(m1 = +1, m2 = +1) and S−− = S(m1 = −1, m2 = −1) are
H1m1 = q11 p1 − |q12|p2 > 0 and H2m2 = q22 p2 − |q12|p1 > 0. Simple calculations show
that these configurations correspond to energy minima only when two conditions are
met simultaneously:

q11q22 > q2
12 and

|q12|
q11 + |q12|

< p1 <
q22

q22 + |q12|
. (10)

It follows from (3) that if H = 0, the configurations S+− and S−+ correspond to a doubly
degenerate global energy minimum, while the configurations S++ and S−− are local
minima if (10) is met.

When H 6= 0, the picture becomes more complicated—the number of minima can
vary from one to four. This situation is illustrated in Figure 1, which demonstrates how
configuration energies change with the growing strength of the field H. We are interested
in the energy values in the configurations S++(m1 = 1, m2 = 1), S+−(m1 = 1, m2 = −1)
and S−+(m1 = −1, m2 = 1):

E++ = −1
2

(
q11 p2

1 + q22 p2
2

)
+ |q12|p1 p2 − H,

E+− = −1
2

(
q11 p2

1 + q22 p2
2

)
− |q12|p1 p2 − H(p1 − p2),

E−+ = −1
2

(
q11 p2

1 + q22 p2
2

)
− |q12|p1 p2 − H(p2 − p1).

The energy E−− in the configuration S−−(m1 = −1, m2 = 1) is of no interest, because it is
a minimum only when H is very small.
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Figure 1. Energies of configurations S++, S+−, S−+ and S−− as a function of the strength of the field, H:
(a) the system does not meet conditions (10); (b) the system meets conditions (10). The solid lines mark the
range of H, where a configuration is a minimum, the broken lines mark the range where a configuration
is not a minimum. Here, we use the following notations: H++ = max(|q12|p1 − q22 p2, |q12|p2 − q11 p1),
H+− = q22 p2 + |q12|p1, H−− = min(q22 p2 − |q12|p1, q11 p1 − |q12|p2) and H−+ = q11 p1 + |q12|p2.

When condition (10) is not met and the field H is small, the system has two en-
ergy minima corresponding to the antiferromagnetic configurations S+− and S−+ (see
Figure 1). When the field reaches the value H++ = max(|q12|p1 − q22 p2, |q12|p2 − q11 p1),
the ferromagnetic configuration S++ also becomes the energy minimum. The min-
ima achieved in the configurations S+− and S−+ disappear, when the field H is larger
than the values H+− = q22 p2 + |q12|p1 and H−+ = q11 p1 + |q12|p2, correspondingly.
The only one minimum remains in the configuration S++. If the condition (10) is met,
for all values of the field H there is the minimum in the configuration S++ and when
H < min(q22 p2 − |q12|p1, q11 p1 − |q12|p2) there is the fourth minimum in the configura-
tion S−−.

Let us introduce the critical value of the magnetic field as follows:

Hc = |q12|pmax, pmax = max(p1, p2). (11)

Let p1 > p2. Then, from comparing E++, E+− and E−+, we can conclude:

• when H < Hc, the antiferromagnetic configuration m1 = 1, m2 = −1 is the ground
state of the system, and the ferromagnetic configuration m1 = 1, m2 = 1 is its lo-
cal minimum;

• when H > Hc, the ground state is the ferromagnetic state m1 = 1, m2 = 1, and the
antiferromagnetic configuration m1 = 1, m2 = −1 is its local minimum.

If p1 < p2, we should swap indices 1 and 2 in these expressions. The aforesaid is
summarized in Table 1.

Table 1. Ground and metastable states in the zero-temperature limit ( K → ∞ ).

Condition Ground State
(Global Minimum)

Metastable State
(Local Minimum)

H < Hc, p1 > p2 m1 = 1, m2 = −1, M = p1 − p2 m1 = 1, m2 = 1, M = 1

H < Hc, p1 < p2 m1 = −1, m2 = 1, M = p2 − p1 m1 = 1, m2 = 1, M = 1

H > Hc, p1 > p2 m1 = 1, m2 = 1, M = 1 m1 = 1, m2 = −1, M = p1 − p2

H > Hc, p1 < p2 m1 = 1, m2 = 1, M = 1 m1 = −1, m2 = 1, M = p2 − p1



Entropy 2023, 25, 1428 6 of 29

2.3. Balanced System and “Critical” Value q12 = q∗12

Further analysis reveals that the thermodynamic characteristics of balanced and unbal-
anced systems are considerably different. We call a system balanced if it has the effective
number of spin “nearest neighbors” in the first sub-ensemble is equal to that in the second
sub-ensemble. This equality can be expressed as:

q11 p1 + q12 p2 = q22 p2 + q12 p1. (12)

Indeed, a spin from the first sub-ensemble has q11 p1 neighbors from this same sub-ensemble
and q12 p2 neighbors from the other sub-ensemble. The same is true for a spin from the
second sub-ensemble. We use the term “effective” number of neighbors because the
neighbors with antiferromagnetic interaction make a negative contribution to this number.

The balance (12) is possible only when a certain relationship between the interac-
tion parameters holds. For a symmetric system with p1 = p2 and q11 = q22, it follows
from (12) that the system is balanced for any q12. In a more general case, the balance
condition (12) can be rewritten as q12 = q∗12, where q∗12 < 0 is a certain “critical” value of
antiferromagnetic interaction:

q∗12 =
q11 p1 − q22 p2

p1 − p2
, q∗12 < 0. (13)

Below we will use notations q12 = q∗12 or q12 6= q∗12 with q∗12 defined in (13) to indicate
whether a system is balanced or unbalanced.

Note that a system can be balanced only within a specific range of parameters p1,2 and
q11, q22. Indeed, it follows from (13) that the condition q∗12 < 0 can be written as:

q∗12 < 0 i f

{ q22
q11+q22

≤ p1 < 1
2 , q11 ≥ q22

1
2 < p1 ≤ q22

q11+q22
, q11 ≤ q22.

(14)

Relationship (14) is illustrated as a phase diagram in Figure 2.
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3. Critical Behavior

Let us introduce the relative temperature t as follows

t =
T − Tc

Tc
=

Kc − K
K

.

We will consider the behavior of various physical quantities near the critical temperature,
paying special attention to the difference between critical exponents in the general case
(q12 6= q∗12) and critical exponents in the case of the “critical” antiferromagnetic interaction
(q12 = q∗12).

3.1. Spontaneous Magnetization and Critical Exponent β

1. The case q12 6= q∗12. Let us consider the equation of state (6) when H = 0 and m1,2 → 0 .
Let us expand it in small parameters m1,2 with an accuracy up to the terms of the
order of m3

1,2 and t. Then, for partial magnetizations near the critical temperature
(K > Kc), we obtain:

m2
1 = −3tD1, m2

2 = −3tD2, (15)

where
D1 = p2(1−Kcq22 p2)[2−Kc(q11 p1+q22 p2)]

p1(1−Kcq11 p1)
2+p2(1−Kcq22 p2)

2 ,

D2 = p1(1−Kcq11 p1)[2−Kc(q11 p1+q22 p2]

p1(1−Kcq11 p1)
2+p2(1−Kcq22 p2)

2 .

The full spontaneous magnetization M0 is defined as:

M0 = p1m1 + p2m2 = ±
√
−3t

(
p1
√

D1 − p2
√

D2

)
. (16)

Here, we take into account the fact that with H = 0 and q12 < 0, the inequality
m1m2 < 0 holds.

2. The case q12 = q∗12. Here, p1
√

D1 = p2
√

D2 and the parenthesized expression from
(16) become zero. It means that in the expressions resulting from the expansion of the
equation of state (6), we must retain the terms of the order of t2. Then, the spontaneous
magnetization near the critical temperature is described as

M0 = ± (−t)
3
2

√
3p1 p2(p1 − p2)

Kc
∣∣q∗12

∣∣(1− 3p1 p2)
3/2 . (17)

Thus, in an unbalanced system (q12 6= q∗12), the critical exponent β = 1/2, which
agrees with the conventional mean-field theory. In a balanced system (q12 = q∗12), the
critical exponent takes a “non-classical” value β = 3/2. Here, by the classic value, we
mean β = 1/2 for the case where the interaction is ferromagnetic only.

3.2. Jump in Heat Capacity (H = 0) and Critical Exponent α

At the critical point, the heat capacity C experiences a finite jump. Indeed, when t > 0,
the heat capacity C = 0, and when t→ 0− , the quantity C = −K dE/dK can be easily
found using (3) and (23). Then, for the heat capacity jump at the critical point, we have:

∆C = lim
t→0−

C =
3
2

Kc p1 p2
(q11 p1 − q22 p2)

2 + 4p1 p2q2
12

p1(1− Kcq11 p1)
2 + p2(1− Kcq22 p2)

2 . (18)

When q12 = q∗12, expression (18) takes the form:

∆C =
3

2Kc

p1 p2

p3
1 + p3

2
.
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Since the heat capacity tends to a finite value at the critical point, the classical definition
of the critical exponent α loses sense. Therefore, we will use its alternative definition [28]:

F+(K)− F−(K) ∼ t2−α when t→ 0 , (19)

where F+(K) and F−(K) are the free energies for K < Kc and K > Kc, respectively. To
compute the exponent α from (19), the functions F+(K) and F−(K) must be analytically
extended to the K-axis beyond their domain. Using the expression for free energy (5) and
taking into account the equation of state (6) and expressions for spontaneous magnetiza-
tion (23), we obtain:

F+(K)− F−(K) = −
3t2

4

[
2Kc

(
q11 p2

1D1 − 2q12 p1 p2
√

D1D2 + q22 p2
2D2

)
+ p1D2

1 + p2D2
2

]
. (20)

Comparing (20) with (19), we obtain α = 0, which agrees with the classical mean-field
model. Note that this result is independent of the magnitude of the antiferromagnetic
interaction, i.e., it holds both for q12 = q∗12 and q12 6= q∗12.

Typical curves of spontaneous partial magnetization m1,2(K) and energy variance
σ2(K) = C(K)/K as functions of temperature without an external field are shown in
Figure 3.
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Figure 3. Typical curves for H = 0: (a) partial magnetizations m1,2 = m1,2(K) and full magnetization
M = M(K); (b) heat capacity C = C(K). The curves are drawn for q11 = 2, q22 = 1, q12 = −1,
p1 = 0.6, p2 = 0.4.

3.3. Susceptibility χ (H = 0) and Critical Exponents γ and γ′

Let us consider the behavior of the susceptibility of the system near the critical point,
given that H = 0. We define the full and partial susceptibilities as follows:

χ =
∂M(K, H)

∂H
= p1χ1 + p2χ2, χ1 =

∂m1(K, H)

∂H
, χ2 =

∂m2(K, H)

∂H
.

Differentiating the equations of state (6) with respect to H and solving the resulting equa-
tions for χ1 and χ2 in view of (15), we obtain the following expressions:

χ1 = t+[1−Kc p2(q22−q12)]

t
√
(q11 p1−q22 p2)

2+4p1 p1q2
12

i f t > 0
χ2 = t+[1−Kc p1(q11−q12)]

t
√
(q11 p1−q22 p2)

2+4p1 p1q2
12

, (21)
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and 
χ1 = −Kc

[1−Kc p2(q22−c)]− t(1−3D2)
t [(1−Kcq11 p1)(1−3D1)+(1−Kcq22 p2)(1−3D2)]

i f t < 0
χ2 = −Kc

[1−Kc p1(q11−c)]− t(1−3D1)
t [(1−Kcq11 p1)(1−3D1)+(1−Kcq22 p2)(1−3D2)]

, (22)

1. When q12 6= q∗12, the terms in the square brackets in the numerators of (21) and (22)
are not zero, and the quantity t in the numerators can be neglected. In this event, the
susceptibility of the system χ = p1χ1 + p2χ2 takes the classical form:

χ =
1− Kc p1 p2(q11 + q22 − 2q12)

|t|
√
(q11 p1 − q22 p2)

2 + 4p1 p1q2
12

i f t > 0 or t < 0 , (23)

holding true for both t > 0 and t < 0 .
2. When q12 = q∗12, we have

[
1− Kc p2(q22 − q∗12)

]
=
[
1− Kc p1(q11 − q∗12)

]
= 0. Then, χ1

and χ2 in (21) and (22) become constant values, and full susceptibility χ = p1χ1 + p2χ2
takes the same “non-classical” form for both t > 0 and t < 0 :

χ =
1∣∣q∗12

∣∣ . (24)

From (23) and (24), we can derive critical exponents:{
γ = γ′ = 1 i f q12 6= q∗12
γ = γ′ = 0 i f q12 = q∗12

It should be noted that in a balanced system (12) (at q12 = q∗12), partial susceptibilities
χ1 and χ2 experience a finite jump at the critical point; yet K-dependence of the full
susceptibility χ remains continuous.

3.4. Scaling Hypothesis and Critical Exponent δ

According to the scaling hypothesis, the field H is a homogeneous function of variables
M1/β and t near the critical point. Let us consider how the critical exponent δ and the form
of the scaling function rely on the interaction parameters.

1. The case q12 6= q∗12 (unbalanced system). Expanding the equations of state (6) in terms
of the small parameters m1, m2, t and extracting full magnetization M = p1m1 + p2m2,
we obtain:

Kc H = M3R1 + tMR2,

where

R1 =
(1− Kcq11 p1)

2 p1 + (1− Kcq22 p2)
2 p2

3p1 p2[1− Kc p1 p2(q11 + q22 − 2q12)]
2 , R2 =

Kc

√
(q11 p1 − q22 p2)

2 + 4p1 p2q2
12

1− Kc p1 p2(q11 + q22 − 2q12)
. (25)

It is easy to see that the scaling hypothesis in this case is confirmed, because if
q12 6= q∗12, it follows from (16) that β = 1/2. Indeed, expression (25) can be represented

in the classical form Kc H = M|M|δ−1hs

(
t|M|−1/β

)
with the critical exponent δ = 3

and the scaling function hs(x) of the form:

hs(x) = R1 + R2x, where x = t/M2.
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2. The case q12 = q∗12 (balanced system (12)). Performing similar calculations with regard
to the relations 1− Kc p1

(
q11 +

∣∣q∗12

∣∣) = 1− Kc p2
(
q22 +

∣∣q∗12

∣∣) = 0, which take place
when q12 = q∗12, we obtain:

Kc H =

{
Kc
∣∣q∗12

∣∣M , t > 0

Kc
∣∣q∗12

∣∣M− |t|3/2R3 , t < 0
, where R3 =

√
3 p1 p2|p1 − p2|
(1− 3p1 p2)

3/2 . (26)

In this event, (17) gives β = 3/2. Correspondingly, expression (26) can be rewritten
in the classical form KcH = M|M|δ−1hs

(
t|M|−1/β

)
, with the critical exponent δ = 1

and the scaling function hs(x) of the form:

hs(x) =

{
Kc
∣∣q∗12

∣∣ , t > 0
Kc
∣∣q∗12

∣∣− |x|3/2R3 , t < 0
, where x = t/M.

It is easy to see that with q12 = q∗12, the Rushbrooke relation, α + 2β + γ ≥ 2, the
Widom relation, γ ≥ β(δ− 1), and the Griffiths relation, β(δ + 1) ≥ 2− α, hold as strict
inequalities. At the same time, the monograph [28] claims that, being a consequence of the
scaling hypothesis, these relations should turn into strict equalities. Thus, the validity of
the scaling hypothesis remains in question when q12 = q∗12.

Summing up the above, we should note that the critical exponents of the model under
consideration correspond to the parameters of the classical mean-field model provided
that q12 6= q∗12, i.e., when the effective numbers of neighbors in different sub-lattices are
not equal (see Table 2). However, in a balanced system, when condition (12) is met (i.e.,
q12 = q∗12), the critical exponents β, γ and δ take “non-classical” values. Then, the relation
α + 2β + γ = 2, which is a consequence of the scaling hypothesis, is violated.

Table 2. Critical exponents.

Critical Exponent
q11p1+q12p2 6=q22p2+q12p1

(q12 6=q*
12)

q11p1+q12p2=q22p2+q12p1
(q12=q*

12)

α 0 0
β 1/2 3/2

γ = γ′ 1 0
δ 3 1

Scaling hypothesis confirmed ?

At the end of this section let us show how functions of certain physical quantities
change when q12 = q∗12. Figure 4a presents the temperature dependence of susceptibility in
the absence of an external field χ(K, 0). We can see that when q12 6= q∗12, the susceptibility
diverges at the critical point, just as in the case of the classical mean-field model. When
q12 = q∗12, the susceptibility has a finite critical value defined by expression (24). At
the “critical” values of antiferromagnetic interactions and critical temperature, the field-
dependences of partial magnetizations m1(Kc, H) and m2(Kc, H) also change (Figure 4b). If
q12 6= q∗12 and the field H is small, the system is in the antiferromagnetic state (m1m2 < 0),
and it makes a cross-over to the ferromagnetic state (m1m2 > 0) when the field increases.
If q12 = q∗12, the system is in the ferromagnetic state at any value of H, and its partial
magnetizations are equal (m1 = m2).
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Figure 4. Changes in functions of physical quantities at the “critical” antiferromagnetic interaction:
(a) susceptibility χ = χ(K, 0) at H = 0; (b) H-dependences of partial magnetizations m1 = m1(Kc, H)

and m2 = m2(Kc, H) at the critical temperature. The curves are drawn at q11 = 1, q22 = 2, p1 = 0.6,
p2 = 0.4. In panel (b), the curves m1,2 = m1,2(Kc, H) merge when q12 = q∗12.

4. Dependences of Physical Quantities on Temperature and External Field

In this section, we investigate how the physical parameters of the system depend on
temperature in the presence of an external field. We find that these dependences change
dramatically when the antiferromagnetic interaction parameter q12 takes a “critical” value
q12 = q∗12. In the first subsection, we deal with the situation when q12 6= q∗12. In the second
subsection, we consider a symmetric configuration q11 = q22, p1 = p2 = 1/2, which is a
particular case of a system with “critical” antiferromagnetic interaction.

4.1. Unbalanced System (q12 6= q∗12)

As follows from the equations of state (6), at H ≥ Hc the right sides of both equations
of state are necessarily positive and, therefore, when m1,2 > 0 the system is in the ferromag-
netic phase at any temperature. That is why the change in phase is only possible when
the external field is weak, H < Hc. It follows from expression (9) for the local fields that
for small K the local fields H1,2 > 0 and, therefore, when m1,2 > 0, both sub-groups are
in the ferromagnetic phase. If H < Hc, when m1m2 < 0, there is a temperature Kp(H), at
which point the transition into the antiferromagnetic phase occurs. If q12 6= q∗12, there are
four fundamentally different behaviors of partial magnetizations as functions of tempera-
ture, m1,2(K), as determined by the characteristics of the model and by the strength of the
external field H (Figures 5 and 6).

Before we proceed to further analysis, let us consider the behavior of partial magneti-
zations at high temperatures, i.e., at K → 0 . Differentiating Equation (6) with respect to K
and retaining only the quantities of the first order of smallness, we obtain the following
expressions for the derivatives

.
m1 and

.
m2 at K → 0 :

.
m1 >

.
m2 i f p1(q11 + |q12|) > p2(q22 + |q12|),.

m2 >
.

m1 i f p1(q11 + |q12|) < p2(q22 + |q12|).
(27)

This implies that with growing K, the partial magnetization m1 increases faster than m2 if the
effective number of neighbors in the lattice I is greater than that in the lattice II, and vice versa.
For definiteness, in this subsection, we will assume that p1(q11 + |q12|) > p2(q22 + |q12|). If
the opposite is true, all considerations will hold up to a permutation of the indices 1 and 2.
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Figure 5. Temperature dependences at H. From top to bottom: curves m1,2(K), M(K), U(K) and
C(K). (a) q11 = 2, q22 = 1, q12 = −1, p1 = 0.6, p2 = 0.4, H = 0.2 (b) q11 = 3, q22 = 1, q12 = −1,
p1 = 0.4, p2 = 0.6, H = 0.2. As we see, there is no phase transition when p1 > p2, and there is a
first-order phase transition when p1 < p2 (panel (b)).
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Figure 6. Temperature dependences with H > Hc. From top to bottom: curves m1,2(K), M(K),
и C(K). (a) q11 = 2, q22 = 1, q12 = −1, p1 = 0.6, p2 = 0.4, H = 0.61 (b) q11 = 1, q22 = 2,
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1. The case H < Hc. Let us first consider the case H < Hc, when the ground state is
antiferromagnetic (m1m2 = −1 at K → ∞ ).

Let p1(q11 + |q12|) > p2(q22 + |q12|). Then, in accordance with (27), for K << 1, the
magnetization m1 grows with K faster than m2. In this case, the magnetization m1 will
keep growing as K increases, while the magnetization m2 will initially grow and then will
drop to negative values, passing through a zero value at a particular temperature K = Kp.
At further growth of K, there are two distinct scenarios for the curve development in the
K > Kp region:

• If p1 > p2, the partial magnetization m1 will monotonously increase, and the partial
magnetization m2 will decrease, tending to 1 and −1, correspondingly (Figure 5a).
There is no phase transition in this case.

• If p1 < p2, the system’s ground state is the configuration with m1 = −1, m2 = 1. At a
certain temperature, a first-order phase transition will occur, as a result of which the
magnetization m1 will become negative, and the magnetization m2 will be positive
(Figure 5b). This transition will be accompanied by an abrupt change in the measurable
parameters: magnetization M(K), internal energy U(K), and heat capacity C(K).

Note that the full magnetization of the system M = p1m1 + p2m2 always remains
positive, and in the limit K → ∞ , we have M = |p1 − p2| independently of the relationship
between p1 and p2.

The temperature Kp of the phase change, i.e., the temperature at which m2 passes zero,
can be easily found: at m2 = 0, the second part of Equation (6) reduces to |q12|p1m1 = H.
Substituting this relation in the first part of Equation (6), we obtain:

Kp =
|q12|

2H(q11 + |q12|)
ln

p1|q12|+ H
p1|q12| − H

, m2(K = Kp) = 0, m1(K = Kp) =
H

|q12|p1
. (28)

When the external field is weak (H � p1|q12|), the temperature of the transition into
the antiferromagnetic phase approaches the quantity

Kp(H → 0) =
1

p1(q11 + |q12|)
(29)

Let us compare (29) with the temperature Kc. It is easy to see that inequality
Kp(H → 0) ≤ Kc is identical to condition (27), i.e., when the field is weak, the tempera-
ture Kp always tends to a value less or equal to Kc. The two temperatures can be equal,
Kp(H → 0) = Kc , only if q12 = q∗12.

Moreover, the expression (28) is correct given that p1|q12| > H. It means that m2 can
pass zero only if the external field is relatively weak, or if the transition into the antiferro-
magnetic phase is an abrupt process. Otherwise, m2 cannot pass zero, and m1,2(K) ≥ 0 for
any K.

2. If H > Hc, the behavior of the temperature dependences is quite predictable, without
any peculiarities (see Figure 6). The partial magnetizations are positive at any K. In
particular, if the field H is close enough to the critical value Hc, the magnetization m2
decreases with the growth of K in a certain temperature range, but it never becomes
negative (Figure 6a). When H � Hc, the partial magnetizations m1 and m2 are
increasing functions of K over the whole temperature range. When H > Hc, the
ground state of the system is the ferromagnetic state: M = m1 = m2 = 1, K → ∞ .

Summarizing the results of Section 4.1, we can highlight the following properties of
an unbalanced (q12 6= q∗12) system: Firstly, the presence of magnetic field suppresses a
second-order phase transition in the system. Secondly, if 0 < H < Hc, a first-order phase
transition can occur for a certain relation between parameters (27) and p1,2, as illustrated in
Figure 5b.
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4.2. Balanced System (q12 = q∗12)

If the condition of equal effective numbers of neighbors (12) is met, there is a solution
to the equations of state (6): m1 = m2. This solution does not always correspond to the free
energy minimum, and the behavior of partial magnetizations is so diverse that the analysis
of the general case (q11 6= q22, p1 6= p2) is not within the scope of this paper.

Here, we consider the simplest (symmetrical) case, when

q11 = q22 = q and p1 = p2 =
1
2

. (30)

Note that even in this simplest case, the behavior of partial magnetizations can be fairly
diverse (Figure 7). Although the below formulae are true only for symmetric systems (30),
general patterns hold true for all systems with q12 = q∗12.
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Figure 7. Temperature behavior of magnetizations in the symmetric model. (a) H = 0.75Hc;
(b) H = 0.995Hc; (c) H = 1.0075 Hc; (d) H = 0.82Hc; (e) H = 1.025Hc; (f) H = 0.9998Hc. In all
cases |q12| = 2q, except plots (d) |q12| = 0.75q and (f) |q12| = 5q. q in all plots is equal to 4.

We recall that in the symmetric model, the equality q12 = q∗12 is true for all negative
q12. The critical temperature in this case is determined as:

Kc =
2

q + |q12|
,

and equations of state (6) take the form:

1
K ln 1+m1

1−m1
= qm1 − |q12|m2 + 2H,

1
K ln 1+m2

1−m2
= qm2 − |q12|m1 + 2H.

(31)

As we see, these equations have the same coefficients and admit a solution m1 = m2.
Indeed, analysis of (31) shows that over a certain temperature interval 0 ≤ K ≤ KS, partial
magnetizations m1 = m2 = m are defined by the equation:

1
K

ln
1 + m
1−m

= m(q− |q12|) + 2H (32)

Magnetization m is positive because the external magnetic field H is positive. If the field
is smaller than a certain value Hsmax, at a temperature K = Ks, the curve m = m(K)
experiences a “soft” splitting into two diverging partial magnetizations m1(K) and m2(K)
(Figure 7a).

1. Soft splitting and merging. Let us determine the “soft” splitting point KS. Quantities
m1 = m2 = m3 at this point are derived from (32) at K = KS. Let us consider the be-
havior of magnetizations m1,2 in a small vicinity of KS, introducing the small deviation

ts =
T − Ts

Ts
=

Ks − K
K

, |ts| → 0 .

In this case, we seek partial magnetizations in the form m1 = m2 = mS − δ when
K < Ks and in the form m1,2 = mS ± δ1,2 when K > Ks, where δ→ 0 and δ1,2 → 0 . Let us
substitute m1,2 of this form into (31) and (32) and carry out expansion in small parameters
δ, δ1,2 retaining terms up to δ3

1,2. Equating the terms of the same order of smallness, we
obtain the expression for the splitting point:

Ks =
Kc

1−m2
s

, (33)
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as well as the expressions for small deviations from mS:

δ = tsκ,

δ1,2 =
√
−tsκ1 ± κ2ts,

(34)

where
κ = (q−|q12|)ms+2H

2|q12|

κ1 = 3
(
1−m2

s
)( |q12|−qm2

s−2Hms
|q12|−3qm2

s

)
κ2 = (1+3m2

s )κ1−3(1−m2
s )

2

6ms(1−m2
s )

(35)

2. Splitting point and “bubble” formation. The quantity mS is a solution to Equation (32)
at K = KS. This equation allows for a simple graphical solution if we rewrite it in
the form:

H = R(ms) ≡
1
2

ms(|q12| − q) +
1
4
(|q12|+ q)(1−m2

s ) ln
1 + ms

1−ms
(36)

One example of such a solution for |q12| < q, |q12| = q and |q12| > q is given in Figure 8.
The function R(ms) has one maximum at ms = mmax, where mmax is the solution to the
equation ∂R(m)/∂m = 0:

mmax ln
1 + mmax

1−mmax
=

2|q12|
q + |q12|

. (37)

Correspondingly, Equation (36) can have a solution only when H ≤ Hmax, where

Hmax =
(|q12| − qm2

max)

2mmax
. (38)
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If |q12| = q, the right wing of the curve R(ms) is on the abscissa axis. In the case
|q12| < q, the curve is lower than the abscissa. As one can see, if |q12| ≤ q, Equation (36)
may have two solutions. The first one (m′s ≤ mmax) corresponds to the splitting point of
the curves m1(K) and m2(K), the second solution (m

′′
s ≥ mmax) corresponds to the merging

point, and the formation of a “bubble” is shown in Figure 7b,c.
If |q12| > q, the right wing of the curve R(ms) behaves as R = (|q12| − q)/2 and is

above the abscissa. Therefore, for 0 < H ≤ (|q12| − q)/2, Equation (36) has only one solution
(ms ≤ mmax), which is responsible for the splitting, whereas for (|q12| − q)/2 < H ≤ Hmax,
there are two solutions m′s ≤ mmax and m

′′
s ≥ mmax, i.e., a “bubble” can form (as in

Figure 7b,c).
Let us determine the asymptotic values of mmax and Hmax. In the case of weak

antiferromagnetic interaction (|q12| << q), it follows from (37) and (38) that

mmax '
∣∣∣∣ q12

q

∣∣∣∣ 1/2
, Hmax '

|q12| 3/2

2
√

q
, (39)

and in the limit case |q12| >> q, we have:

mmax ' 0.8336, Hmax =
|q12|

2 mmax
' 1.2Hc. (40)

As we see, a soft splitting can be observed when H is varied within a wide enough range.
Note that the width of this range grows with |q12|.

If soft splitting is not feasible and the antiferromagnetic state (H < Hc) is the ground
state, then passing through the critical point is accompanied by a jump of partial magnetiza-
tions (Figure 7b). If the condition of a “bubble” formation is met, a jump in magnetization
occurs after the merging point at H < Hc (Figure 7c).

Generally, the temperature behavior of magnetizations is very diverse (Figure 7),
depending strongly on the relative magnitudes of the ratio of |q12|/q and H. This aspect of
the model will be investigated in more detail in future papers.

3. Field-controlled phase transition at K = Ks. A second-order phase transition occurs at
the point of soft splitting/merging and is accompanied by a jump in heat capacity. The
magnitude of the heat capacity jump, ∆C under the splitting can be easily calculated
by differentiating expression (3) for the energy, with the account of expression (35):

∆C =
3(q + |q12|)

(
|q12| − qm2

s − 2Hms
)2

4|q12|(|q12| − 3qm2
s )

. (41)

At the point of merging of the curves m1(K) and m2(K), ∆C is determined by the same
expression, but with a different value of ms.

It follows from what has been said that Ks determined by (33) is nothing else but a
magnetic-field-dependent critical point: Ks = Kc(H). In other words, in a symmetrical
system, the external field does not suppress a phase transition but only shifts it towards
larger temperatures: Kc(H 6= 0) > Kc(H = 0) ≡ Kc. The range of the critical point
values can be quite large. As follows from (33), given strong antiferromagnetic interaction
(|q12| >> q) the phase transition at the soft-splitting point can be greatly shifted: with
the field changing from H = 0 to H = Hmax ∼ 1.2Hc (ms changing from ms = 0 to
ms = mmax ∼ 0.83), Ks changes from Ks = Kc to Ks ' 3.3 Kc. The variations at the merging
point (if any) cover a yet wider range, where the case of ms → 1 , (i.e., Ks →∞) can take
place. For instance, Figure 7f demonstrates the case when, with H ' 0.999 Hc, a “bubble”
forms, and the system has two critical points: one at the splitting point at Ks ' 1.4 Kc
and the second at the merging point at Ks ' 8.3 Kc. We have deliberately chosen such
interaction parameters that reveal the richness of the system: besides two second-order
phase transitions, it has two first-order phase transitions (the curve m2(K) undergoes two
abrupt changes).
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4. Critical exponents of a phase transition at the point of soft splitting. Let us consider
the critical behavior of the involved physical quantities near the temperature Ks.

We start by pointing out that the exponent αs = 0, since, in accordance with Equation (41),
at the splitting point the heat capacity experiences a finite jump. We will define other critical
exponents as follows:

ms −M(K) ∼ (−ts)
βs with ts → 0− ,

ms −M(K) ∼ ts
β′s with ts → 0+ ,

χ(K) ∼ (−ts)
−γs with ts → 0− ,

χ(K) ∼ ts
−γ′s with ts → 0+ ,

M(Ks, H)−ms ∼ (H − Hs)
1/δs with H − Hs → 0+ ,

ms −M(Ks, H) ∼ (Hs − H)1/δ′s with H − Hs → 0− ,

where Hs is the magnitude of the external field at which the phase transition happens.
It follows from Equation (34) that in the vicinity of the splitting point, the full magneti-

sation is determined by the following equations:

M = ms + κ2ts, ts < 0,

M = ms − κts, ts > 0.
(42)

It follows from (42) that the critical exponents βs = β′s = 1. For H → 0 ( ms → 0), we
have κ2 → 0 , and hence we should take into account the terms of the order of t3/2

s in the
expansion of the full magnetization M over ts. This agrees with the results obtained earlier
in Section 3.1. We also point out that at large values of |q12|, there is such a value of the
magnetic field H′ < Hmax beyond which κ2 becomes negative, so that the magnetization
increases when the temperature rises above the splitting point.

We differentiate the equations of states (31) and (32) over H and, making use of
Equations (33) and (34), we obtain the following for the susceptibilities at the critical points:

χ = 1
|q12|

, ts → 0+

χ =

[
|q12|+ 2κ1m2

s (q+|q12|)
(1−m2

s+2ms)(1−m2
s )−(3m2

s+1)κ1

]−1
, ts → 0−

(43)

It follows from (43) that the susceptibility has a finite jump in the critical point. Its mag-
nitude depends on ms, and hence on the magnitude of the field H. In the absence of the
external field, the jump disappears. From Equation (43), we find the critical exponents
γs = γ′s = 0.

We will use Equation (32) to estimate the exponent δs. Let us look at how the mag-
netization changes in response to a small increase in the external field. We introduce the
notations ∆M = M−ms and ∆H = H − Hs, and accounting only for the first-order terms
in ∆M, we find at the temperature Ks:

∆H = |q12|∆M. (44)

Equation (44) is valid also for negative values of ∆H and ∆M; therefore, we obtain for the
critical exponents: δs = δ′s = 1.



Entropy 2023, 25, 1428 19 of 29

We see that in this case, the relationships α + 2β + γ = 2, γ = β(δ − 1) and
β(δ + 1) = 2− α, which are the consequences of the scaling hypothesis, are satisfied in the
form of equalities. Except for β, all other critical exponents at the soft splitting point are
equal to their values in the absence of the external field.

5. Restrictions in the soft splitting. Above we analyzed the processes of soft splitting
and merging with the assumption that these regimes could be reached. However,
sometimes this is not possible.

Firstly, the field H should be such that the condition Ks < Kp is met, i.e., the curves
m1,2(K) must split before one of them passes zero.

Secondly, the field cannot be too big, H < Hmax, otherwise the soft splitting will be
replaced by an abrupt jump-like change in partial magnetizations m1,2(K).

Thirdly, the splitting at point Ks is possible if δ1 and δ2 take real values. It follows
from (35) that δ1, δ2 ∈ R at ts < 0, if(

|q12| − qm2
s − 2Hms

)(
|q12| − 3qm2

s

)
> 0. (45)

Expression (45) is a necessary condition for the soft splitting point to exist. The quantities δ1
and δ2 must be real numbers at ts > 0 for Ks to be the point of merging. Correspondingly,
the necessary condition for the point of merging to exist is as follows:(

|q12| − qm2
s − 2Hms

)(
|q12| − 3qm2

s

)
< 0. (46)

Examination of (46) in light of (36)–(40) shows that merging of the curves m1(K) and m2(K)
(i.e., the formation of a “bubble”) usually takes place only when the magnitude of H is very
close to Hc.

5. Computer Simulation of the Layered Model

Let us compare the results of the mean-field model with the results of the computer
simulation of lattices with a finite interaction radius. We want to make sure that in the case
of “critical” antiferromagnetic interaction q12 = q∗12, which takes place if the condition (12)
is satisfied, the critical parameters indeed take non-classical values presented in Table 2.
To this end, let us consider a three-dimensional cubic lattice consisting of alternating two-
dimensional layers of spins (see Figure 9). The intra-layer spin interaction is described by
the interaction constants J11 > 0 and J22 > 0 for even and odd layers, respectively. The
interlayer interaction is antiferromagnetic, and it is described by the constant J12 < 0. The
interaction only between the nearest neighbors is taken into account.
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This model is described by the Hamiltonian

EN = −

J11 ∑
〈i,j〉

SiSj + J22 ∑
〈i,j〉

S′ iS′j + J12 ∑
〈i,j〉

SiS′j

− H

(
N1

∑
i=1

Si +
N2

∑
j=1

S′j

)
,

where 〈i, j〉 stands for a set of nearest neighbors. The relationship between the interaction
parameters of the layered model and the parameters of the mean-field model is defined by
the expression:

q11 = 8J11, q22 = 8J22, q12 = 4J12.

Condition (12), under which q12 = q∗12, is set for the simplest case of p1 = p2, q11 = q22.
The Metropolis algorithm is used to calculate the thermodynamic parameters for the

lattices of the size N = L× L× L, where L is the dimension of the lattice varying from
6 to 64. The linear dimension L is always an even number to secure the equality p1 = p2.
The case of p1 6= p2 was also modeled preliminarily, but the results of the modeling
showed that in this case, it is impossible to achieve the equality of the moduli of partial
magnetizations, |m1| = |m2|, over a wide temperature range even if condition (12), the
effective neighbor numbers being equal, is met. A possible cause for this is the effect of
boundaries. Therefore, to make it possible to study “critical” antiferromagnetic interactions
occurring in the balanced model (q12 = q∗12), the modeling is carried out for the case of
p1 = p2 only.

1. Figure 10 shows the temperature dependences of partial magnetizations of the layered
model when q11 = q22. The general behavior of these dependences is similar to the
dependences obtained in the mean-field model for a balanced system (c). Depending
on the magnitude of the external field, we can observe both “soft” (Figure 10b) and
“hard” (Figure 10c) splitting. However, we failed to observe magnetization “bubbles”
in this model.
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Figure 10. Curves m1 = m1(K), m2 = m2(K) and M = M(K) at different magnitudes of the external
field. (a) H = 0, (b) H = 0.25Hc, (c) Hc = 0.975H, (d) H = 0.9975Hc. Everywhere, L = 24 and
q11 = q22 = 8, q12 = −8.

When the lattice dimension is big enough and the external field H is close to, but less
than, the critical magnitude Hc, the system does not proceed into the antiferromagnetic
phase by cooling; instead, it stays in the local energy minimum (Figure 10d). We observe
the same situation for a fully connected lattice (the analog of the mean-field model) if we
use the Metropolis algorithm to compute the thermodynamic parameters.
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To avoid misunderstanding, we should add that “hard” splitting accompanied by an
abrupt change in magnetization (shown in Figure 10c) was observed only with relatively
small lattice dimensions (L ≤ 24). A small lattice size makes it possible to overcome
the energy barrier between the local and global minima. When dimensions are large
(L = 32, 64) and K → ∞ , the system always transits into the ferromagnetic state with the
magnetization M = 1, which is a local minimum at H < Hc.

2. Let us consider the temperature dependence of the susceptibility χ = χ(K) in the
layered model in the absence of the external field: H = 0. If q11 = q22, i.e., q12 = q∗12,
the form of the curve χ(K) is independent of the lattice dimension, and the suscepti-
bility takes a finite value at the critical point (Figure 11a,b). With large |q12|, the curve
χ(K) does not have a maximum (Figure 11a). It means that the critical exponents
γ = γ′ = 0, which agrees with the numbers in Table 2.
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Figure 11. Temperature dependences of susceptibility χ. (a) q11 = q22 = 8, q12 = −8; (b) q11 = q22 = 8,
q12 = −0.4; (c) q11 = 9.6, q22 = 8, q12 = −8; (d) q11 = 9.6, q22 = 8, q12 = −0.4. The form of the curves
χ(K) is independent of the lattice dimensions L for (a,b).

If q11 6= q22, the susceptibility peak, as expected, is observed at the critical temperature
(Figure 11c,d). The height of the peak increases with the lattice dimensions L, which means
that the susceptibility diverges at the critical point. This finding agrees with the classical
critical exponents γ = γ′ = 1.

3. To obtain the value of the critical exponent δ, we need to evaluate the critical tem-
perature Kc. The temperature dependences of the Binder cumulants [29] for lattices
of different dimensions were built for this purpose. The asymptotic value of Kc for
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the case of L→ ∞ is determined as a point of intersection of these dependences. We
define the Binder cumulants for partial and full magnetization in the following way:

g1 = 1−
〈
m4

1
〉

3
〈
m2

1
〉2 , g2 = 1−

〈
m4

2
〉

3
〈
m2

2
〉2 , g = 1−

〈
M4〉

3〈M2〉2
.

When q11 = q22, in the absence of the external field the full magnetization M is zero.
For this reason, we had to use partial magnetization cumulants to determine the critical
temperature (Figure 12a). The results obtained with the help of the cumulants g1 и g2 gave
approximately the same value of Kc. This allowed us to determine the exponent δ = 1 to
within 10−3 (Table 3).
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Table 3. Evaluation of the exponent δ for the layered model.

Model Parameters Kc δ

Balanced system (q12 = q∗12)

q11 = q22 = 8, q12 = −0.4 0.3580 0.9982
q11 = q22 = 8, q12 = −2 0.2710 0.9921
q11 = q22 = 8, q12 = −4 0.2217 0.9974
q11 = q22 = 8, q12 = −8 0.1707 1.0085
q11 = q22 = 8, q12 = −12 0.1430 1.0012

Unbalanced system (q12 6= q∗12)

q11 = 4, q22 = 8, q12 = −8 0.1985 2.2929
q11 = 16, q22 = 8, q12 = −4 0.1615 4.4033
q11 = 16, q22 = 8, q12 = −8 0.1310 2.5688

q11 = 16, q22 = 8, q12 = −12 0.1125 3.1631
q11 = 24, q22 = 8, q12 = −8 0.1010 3.1175

If q11 6= q22, the cumulants g1 and g2 give different estimates of Kc. At the same time,
the cumulants g for the full magnetization do not intersect at one point (Figure 12b). For
this reason, we evaluated Kc roughly as the middle of the interval where the cumulant g
experiences a jump. As can be seen from Table 3, such inaccuracy in the determination of
Kc results in large deviations of the exponent δ.

To evaluate the exponent δ, we built relationships between ln M and ln H (Figure 13).
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If q11 = q22, the relationships between ln M and ln H for lattices of different dimensions
L merge into one line already at a sufficiently small H (see Figure 13a). The slope of this
relationship was used to evaluate δ. The exponent δ was found to be independent of the
ratio q/|q12|, being roughly equal to one (see Table 3). Its deviations from one are about
10−3, which is comparable to the error of our evaluation. Thus, the value of the exponent δ
in this case fully agrees with its value δ = 1 in the mean-field model for q12 = q∗12.

If q11 6= q22, the curves ln M as functions of ln H become linear at certain H, whose
magnitude decreases with growing L (see Figure 13b). The parameter δ measured by the
curve slope differs considerably from the expected value δ = 3 in all the investigated
configurations (Table 3), and depends on the parameters of the model.

4. Let us consider how the critical exponents change with the increase in the external
field in a balanced layered model. We estimated the splitting temperature Ks by
plotting the temperature dependencies of the following cumulants:

gs = 1−

〈
(m1 −m2)

4
〉

3
〈
(m1 −m2)

2
〉2 .

The temperature Ks was determined as the point of intersection of the cumulants for
lattices with various dimensions (Figure 14). We point out that the cumulants gs are usually
used for determining the critical temperature of an antiferromagnetic phase transition [30].
The magnetization at the splitting point, ms, was calculated as the magnitude of the local
maximum of magnetization for the lattice of the maximum size (L = 32).

To determine the critical exponents βs and β′s, we plotted the dependencies of ln(ms −M)
on ln|ts| for the lattices with various dimensions (Figure 15). These curves become linear
when ts < 0, and their slope allows us to estimate the exponent βs (see Table 4). For ts > 0,
the dependencies of ln(ms −M) on ln ts are nonlinear for the whole range of ts, making it
impossible to estimate the value of the exponent β′s.

The temperature dependencies of the susceptibility χ near the splitting point are shown
in Figure 16. As one can see, when the external field is present, the susceptibility curves
depend on the lattice size. The accuracy of our simulations is insufficient to unambiguously
attribute this observation to either a divergence of the susceptibility at the temperature Ks,
or to its finite jump.
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Figure 14. The dependence of the cumulants on gs the reciprocal temperature K. The parameters of
the model are: q11 = q22 = 8, q12 = −8, H = 1.
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Figure 15. Determining the critical exponent βs. The parameters of the model are: q11 = q22 = 8,
q12 = −8, H = 2. (a) Dependencies of ln(ms −M) on ln(−ts) when ts < 0. The broken line is our
linear approximation, from which we calculated βs. (b) Dependencies of ln(ms −M) on ln ts when
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Table 4. Critical exponents for the layered model in the splitting point (q11 = q22 = 8).

q12 Kc/MFM βm1,2
Hs Ks/MFM/Equation (33) ms/MFM βs δs/δ’

s

−4 0.2217/0.1667 0.2826
0.5 0.2257/0.1694/0.2246 0.1145/0.1271 0.6106 1.0688/0.8623
1 0.2387/0.1798/0.2350 0.2381/0.2700 0.5814 1.0474/0.6352

−8 0.1707/0.1250 0.3128

0.1 0.1707/0.1250/0.1707 0.0110/0.0125 0.6077 1.0425/1.0502
0.5 0.1717/0.1255/0.1712 0.0550/0.0627 0.5922 1.0703/1.0083
1 0.1744/0.1270/0.1728 0.1105/0.1263 0.5814 1.1014/0.7923
2 0.1866/0.1342/0.1801 0.2287/0.2622 0.5650 1.1015/0.6304

−16 0.1240/0.0833 0.3032
2 0.1271/0.0847/0.1254 0.1051/0.1260 0.5049 1.1609/0.7473
4 0.1383/0.0893/0.1301 0.2168/0.2588 0.4906 1.1924/0.5753
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Figure 16. Temperature dependencies of the susceptibility near the critical point. The parameters of
the model are: q11 = q22 = 8, q12 = −8. The magnitude of the external field is (a) H = 0.1, (b) H = 2.

In order to determine the critical exponents δs and δ′s, we plotted the dependencies
of ln|∆M| on ln|∆H| for the lattices with the dimensions ranging from L = 12 to L = 32
(Figure 17). Independently of the sign of ∆H, these curves have a linear asymptotic, the
slope of which allowed us to extract the critical exponents (Table 4).
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Figure 17. Determining the critical exponents δs and δ′s. The parameters of the model are:
q11 = q22 = 8, q12 = −8, Hs = 2.

The results of these simulations are shown in Table 4. The splitting temperature Ks
differs substantially from the one obtained in the framework of the mean-field model
(MFM). The corresponding numbers are presented in column 2 of Table 4. However, when
in Equation (33) we use the values of Kc and ms obtained as a result of this modelling,
we obtain Ks rather accurately (compare three numbers in the column 5 of Table 4). The
obtained critical exponent of the layered model βs takes values in a range of 0.5–0.6, which
differs significantly from its value from the mean-field model (βs = 1). The value of the
exponent βs decreases with the increase in the external field. However, similarly to the
mean-field model, the value of βs exceeds considerably the values of the exponents of
partial magnetization, βm1,2 ≈ 0.3, measured in the absence of the external field (in the
mean-field model, βm1,2 = 1/2). For small values of the external field, the values of the
exponents δs and δ′s are approximately equal to 1. With the increase in the external field,
the exponent δs increases, while δ′s decreases.
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6. Results and Discussions

We have studied the spin system consisting of two antiferromagnetically interacting
sub-lattices. We obtained our results using the mean-field model, but we are not able to
assert that they hold for the general case. However, the Monte Carlo simulation for the 3D
layered model with a finite interaction radius confirms our conclusions. Our results are
as follows:

1. In the absence of an external field, the system has a second-order phase transition. If
the relationship between the system’s parameters is such that the effective numbers of
neighbors in the sub-lattices are equal (12), then the critical exponents of the transition
differ significantly from the usual values of the mean-field model (see Table 2), and
the susceptibility has a finite value at the critical point. It should be mentioned that
the concept of the universality class is still valid because the critical exponents for
each sub-lattice remain the same, and the unusual critical behavior takes place only
for total values of magnetization and susceptibility.

These conclusions are validated by computer simulations of a three-dimensional layered
lattice. In particular, the balanced system (q12 = q∗12) is shown to have the following
critical exponents: γ = γ′ = 0 and δ = 1. The dependences m1 = m1(K), m2 = m2(K)
and M = M(K) (Figure 10) generated in the computer simulation reproduce the
theoretical curves (Figures 6 and 7).
If the condition of equality of the effective number of neighbors (12) is met, the external
field does not destroy the phase transition, but only shifts the transition temperature.
If the external field is weak enough, H ≤ Hmax, where Hmax is defined by (38), the
shift of the critical point does not change the qualitative characteristics of the system,
and the transition remains a second-order phase transition. In Section 4.2, we show
that it is possible to vary the critical temperature over a sufficiently wide range (from
Kc to 3.3Kc) by varying H within the interval 0 ≤ H ≤ Hmax. Under these conditions,
the values of the critical exponents α, γ and δ do not change in the mean-field model,
and the exponent β becomes twice as large as its value for the partial magnetizations.
In addition, for a finite external field, the system exhibits a jump in the susceptibility
at the phase transition point.

The results of the numerical modeling on a three-dimensional layered lattice demon-
strate that the critical exponents β and δ do change when the external field increases (see
Table 4). Nevertheless, the results of the numerical modeling coincide with the predictions
of the mean-field model in two aspects: (1) the exponent β for the full magnetization
considerably exceeds its magnitude for the partial magnetization, and (2) the presence of
an external field results in a jump of the susceptibility.

If H > Hmax, the shift of the critical point is accompanied by qualitative changes: at
the critical point, a first-order phase transition replaces the second-order phase transition,
which is accompanied by jumps in the magnetization and the internal energy (Figure 7d).

Since this system has a lot of free parameters, the overall picture of possible regimes is
very diverse. Given a certain relation between the parameters of the model and the external
field, there may be two first-order phase transitions and two second-order phase transitions
(Figure 7f). The general behavior of the temperature dependences of the involved physical
quantities, as well as determining the conditions under which various regimes occur, is a
complicated problem that deserves to be considered in a separate paper.

2. The behavior of the system depends on the relation between the magnitude of the
magnetic field and the critical value Hc (11). When H < Hc, the system’s ground
state is an antiferromagnetic state with m1 = −m2, |m1| = |m2| = 1 and the mag-
netization M = |p1 − p2|. When H > Hc, the ground state is a ferromagnetic state
with M = m1 = m2 = 1 (Table 1). Correspondingly, adiabatic cooling of the system
( K → ∞ ) transfers it into the antiferromagnetic state at H < Hc and into the ferro-
magnetic state at H > Hc. The analysis given in Section 4 shows that (except for
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some special cases) the field dependence of the magnetization M = M(H) at a fixed
temperature follows the following pattern:

• If K is smaller than or of the order of Kc, then the magnetization M grows
monotonously with H, and becomes equal to one when the system reaches the
ferromagnetic state at H � Hc;

• If K is several times greater than Kc, the picture is different: for 0 < H < Hc
there is a plateau of a height M = |p1 − p2|, which obtains transferred to the
ferromagnetic limit M = 1 at H = Hc by means of a jump.

The plateau on the curve M = M(H) is shown in Figure 18, where we vary the
quantity |p1 − p2| while keeping the other parameters constant. It is seen that the increase
in |p1 − p2| results in the growth of the height of the plateau, as well as in the increase in
the field magnitude at which the jump to the state M = 1 takes place. Note that the curves
in Figure 18 resemble the well-known dependence M = M(H) demonstrated by many
materials with giant magnetoresistance [31–33].
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