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Abstract: We present a novel information-theoretic framework, termed as TURBO, designed to
systematically analyse and generalise auto-encoding methods. We start by examining the principles
of information bottleneck and bottleneck-based networks in the auto-encoding setting and identifying
their inherent limitations, which become more prominent for data with multiple relevant, physics-
related representations. The TURBO framework is then introduced, providing a comprehensive
derivation of its core concept consisting of the maximisation of mutual information between various
data representations expressed in two directions reflecting the information flows. We illustrate
that numerous prevalent neural network models are encompassed within this framework. The
paper underscores the insufficiency of the information bottleneck concept in elucidating all such
models, thereby establishing TURBO as a preferable theoretical reference. The introduction of TURBO
contributes to a richer understanding of data representation and the structure of neural network
models, enabling more efficient and versatile applications.

Keywords: information bottleneck; TURBO; generalisation; auto-encoder; variational approximation;
lower bound; mutual information; physical latent space; representations; Kullback–Leibler divergence

1. Introduction

Over the past few years, many deep learning architectures have been proposed and
successfully applied to a wide range of problems. However, they are often developed
from empirical observations and their theoretical foundations are still not well enough
understood. Typical examples of deep learning architectures that have been widely used
and revisited multiple times are generative adversarial networks (GANs) [1], variational
auto-encoders (VAEs) [2,3] and adversarial auto-encoders (AAEs) [4]. A rigorous inter-
pretation of the concepts and principles behind such machine learning methods is crucial
to understanding their strength and limitations, and to guiding the development of new
models. A concrete formulation of these concepts, unifying as many models as possible,
would be a huge gain for the field.

Showing a promising path towards this goal, bottleneck formulations of neural
network training have been extensively studied in many theoretical and experimental
works [5–9]. They are based on the fact that one may want to preserve as much relevant
information as possible from a given input, removing all unnecessary knowledge. This
is called the information bottleneck (IBN) principle [10] and it has a crucial impact in
several applications.

It was originally developed to characterise what can be termed “relevant” information
in the context of supervised learning [10]. The IBN principle was introduced as an extension
to the so-called rate-distortion theory [11], leaving the choice of the distortion function open
and giving an iterative algorithm for finding the optimal compressed representation of
the data. This first description of the IBN principle paves the way for machine-learning-
oriented formulations of supervised learning [5], as well as for the bounded information
bottleneck auto-encoder (BIB-AE) framework [12] in the context of unsupervised learning.
The BIB-AE framework shows that many bottleneck architectures, especially concerning
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the VAE family, are generalised by this approach. It can also be used for semi-supervised
learning [7], where the framework allows the impact of several well-known techniques to
be studied in a better and more interpretable way. More recently, the IBN principle has
been used as an attempt to explain the success of self-supervised learning (SSL) [13,14]. In
this context, the bottleneck manifests itself as a compression of information between the
learnt representation and the distorted image, usually obtained by applying augmentations
to the original input. This is achieved by minimising the mutual information between
the representation and the distorted image, while maximising the mutual information
between the representation and the original image. However, a key limitation rises from
this formulation of SSL, since it is largely based on the assumption that all the relevant
information for a given downstream task is shared by both the original and the distorted
images. If this is not the case, which may occur whenever one replaces the distorted image
by a second meaningful representation of the data, the IBN principle struggles to provide a
satisfactory explanation of SSL.

The IBN principle represents a significant theoretical advance towards explainable
machine learning, but it has several inherent limitations [8]. For example, while the
IBN provides a solid and comprehensive theoretical interpretation for the VAE family of
models, it can only address the GAN family with an intricate formulation and it encounters
difficulties in providing a compelling justification for the AAE family. The core issue
emerges when the objective is not to achieve maximum disentanglement of the latent space
from the input data, a scenario that is particularly salient with AAE models. The training
of an AAE encoder is oriented to maximise the informational content shared between the
input data and the latent representation, in direct contradiction to the premises of the IBN
principle. This shift in approach is not simply a mathematical manoeuvre to articulate new
models: it fundamentally alters the desired methodology of data interpretation. When
dealing with input data that admit two or more relevant representations, and where one
representation is designated as a physically meaningful latent space, it becomes natural to
construct a framework that maximises the mutual information between these two highly
correlated modalities.

On top of AAE type models, several other architectures cannot be interpreted via
the IBN principle, but rather need a new paradigm. Image-to-image translation models
such as pix2pix [15] and CycleGAN [16] played an important role in the development of
machine learning. As we will demonstrate, they directly fall into the category of models
that maximise the mutual information between two representations of the data, which is
a case that the IBN principle fails to address. Furthermore, normalising flows [17] suffer
from the same intricate formulation as GANs when attempting to explain them in terms of
the IBN principle. Additionally, other models such as ALAE [18] do not show a bottleneck
architecture and are thus unconvincingly interpretable via the IBN. All these points speak
for the necessity of developing a new framework capable of addressing and explaining
these methods theoretically.

In this work, we present a powerful formalism called Two-way Uni-directional Repre-
sentations by Bounded Optimisation (TURBO) that complements the IBN principle, giving
a rigorous interpretation of an additional wide range of neural network architectures. It is
based on the maximisation of the mutual information between various random variables
involved in an auto-encoder architecture.

The structure of the paper is following this logic: in Section 2, we define a unified lan-
guage in order to make the understanding and the comparison of the various frameworks
clearer. In Section 3, we explain the BIB-AE framework using these notations, exposing its
main advantages and drawbacks, and the reasons for considering the TURBO alternative.
In Section 4, we detail the TURBO framework and its generalisation power. In Section 5,
we highlight successful applications of TURBO for solving several practical tasks. For
the ease of reading, Table 1 shows a summary comparison of the BIB-AE and the TURBO
frameworks. The reader who is already familiar with the IBN principle is advised to
proceed directly to Section 3.2.
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Table 1. A summary of the main differences between the BIB-AE and the TURBO frameworks.

BIB-AE TURBO

Paradigm

Minimising the mutual information between the
input space and the latent space, while maximising
the mutual information between the latent space
and the output space

Maximising the mutual information between the
input space and the latent space, and maximising
the mutual information between the latent space
and the output space

One-way encoding Two-way encoding

Data and latent space distributions are considered
independently

Data and latent space distributions are considered
jointly

Targeted tasks • Data compression, privacy, classification
• Representation learning

• Linking relevant modalities
• Transcoding/translation between modalities

Advantages

• Theoretical basis for both supervised and un-
supervised tasks

• Allows for easy sampling

• Interpretable latent space
• Seamlessly handles paired, unpaired and par-

tially paired data
• The encoder can represent a physical system,

while the decoder can represent a learnable
model

Drawbacks

• Not suited for data translation
• Enforces a distribution for the latent space
• Struggles to map discontinuous data distribu-

tions to continuous latent space distributions

• More hyperparameters to tune
• More modules increases training complexity

Particular cases VAE, GAN, VAE/GAN AAE, GAN, pix2pix, SRGAN, CycleGAN, Flows

Related models InfoVAE, CLUB ALAE

Our main contributions in this work are:

• Highlighting the main limitations of the IBN principle and the need for a new framework;
• Introducing and explaining the details of the TURBO framework, and motivating

several use cases;
• Reviewing well-known models with the lens of the TURBO framework, showing how

it is a straightforward generalisation of them;
• Linking the TURBO framework to additional related models, opening the door to

additional studies and applications;
• Showcasing several applications where the TURBO framework gives either state-of-

the-art or competing results compared to existing methods.

2. Notations and Definitions

Before discussing the various frameworks that we study in this work, we define a
common basis for the notations. Since most of the considered models will be viewed as auto-
encoders or as parts of auto-encoders, we shape our notations to fit this framework. Most
of the quantities found throughout the paper are defined below and a table summarising
all symbols and naming used can be found in Appendix A.

We consider two random variables X and Z with marginal distributions X ∼ p(x)
and Z ∼ p(z), respectively, and either a known or unknown joint distribution p(x, z) =
p(x|z) p(z) = p(z|x) p(x). Notice that X and Z can be independent variables, in which case
their joint distribution simplifies to the product of their marginal distributions. The two
unknown conditional distributions can be parametrised by two neural networks, usually
called encoder qφ(z|x) ≈ p(z|x) and decoder pθ(x|z) ≈ p(x|z), where the parameters of
the networks are generically denoted by φ and θ. Once chained together as shown in
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Figure 1, they form a so-called auto-encoder. We thus define two approximations of the
joint distribution

qφ(x, z) := qφ(z|x)

real
data︷︸︸︷
p(x) = qφ(x|z)

synthetic
data︷ ︸︸ ︷

q̃φ(z) , (1)

pθ(x, z) := pθ(x|z)︸ ︷︷ ︸
known

networks

p(z) = pθ(z|x)︸ ︷︷ ︸
unknown
networks

p̃θ(x) , (2)

where the rightmost expressions are reparametrisations with unknown networks and
the approximated marginal distributions q̃φ(z) =

∫
qφ(x, z)dx and p̃θ(x) =

∫
pθ(x, z)dz

corresponding to the latent spaces synthetic variables. Two approximated marginal distribu-
tions, also used throughout this work, corresponding to the reconstructed spaces synthetic
variables can be defined as q̂φ(z) =

∫
p̃θ(x) qφ(z|x)dx and p̂θ(x) =

∫
q̃φ(z) pθ(x|z)dz.

Figure 1. All considered random variable manifolds and the related notations for their probability
distributions. The upper part of the diagram is an auto-encoder for the random variable X while the
lower part is a symmetrical formulation for the random variable Z. The two random variables X and
Z might be independent, so p(x, z) = p(x) p(z).

Since mutual information between different variables is extensively used in this paper,
we give a brief definition of it. We also showcase in Figure 2 the notations that we employ
when computing the mutual information between diverse random variables, corresponding
to diverse information flows in the networks. The mutual information for two random
variables X and Z following a joint distribution p(x, z) is defined as

I(X; Z) := Ep(x,z)

[
log

p(x, z)
p(x)p(z)

]
, (3)

where E[·] is the mathematical expectation with respect to the given distribution p(x, z)
and where p(x) and p(z) denote the corresponding marginal distributions. Therefore, to
exemplify our notations, the mutual information between X and the random variable Z̃
defined by the marginalisation of the encoder qφ(z|x) outputs Z̃ ∼ q̃φ(z) would be defined
by Iφ(X; Z̃) = Eqφ(x,z)[log qφ(x, z)/p(x)q̃φ(z)]. On the other hand, in order to compute
the mutual information between the random variable defined by the marginalisation
of the decoder pθ(x|z) outputs X̃ ∼ p̃θ(x) and Z, its expression would be Iθ(X̃; Z) =
Epθ(x,z)[log pθ(x, z)/ p̃θ(x)p(z)].
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Figure 2. The notations for the mutual information computed between different random variables.
The leftmost purple rectangle highlights the true mutual information between X and Z. The upper
red and the lower green rectangles highlight the mutual information when the joint distribution is
approximated by qφ(x, z) and pθ(x, z), respectively.

Lastly, we use several other common information-theoretic quantities such as the
Kullback–Leibler divergence (KLD) between two distributions denoted by DKL(·‖·), the
entropy of a distribution denoted by H(·), the conditional entropy of a distribution denoted
by H(·|·) and the cross-entropy between two distributions denoted by H(·; ·).

3. Background: From IBN to TURBO

In this section, for the completeness of our analysis, we briefly review the BIB-AE
framework [12], which addresses a variational formulation of the IBN principle for an
auto-encoding setting. We then redefine the two founding models at the root of many deep
learning studies, the so-called VAE and GAN, in order to unite them under the BIB-AE
umbrella and our notations. Finally, we explain why this formulation, even though well
suited to many problems and showing several advantages, is not applicable to applications
with a physical latent space where the data compression is not needed as such.

3.1. Min-Max Game: Or Bottleneck Training

The IBN is based on a compression principle where all targeted task-irrelevant infor-
mation should be filtered out from the input data, i.e., the input data are compressed. The
difference with the classical compression addressed in the rate-distortion theory, which
ensures the best source reconstruction under a given rate, is that the IBN compressed data
contain only sufficient statistics for a given downstream task. The main targeted application
of the IBN is classification [5,19], where the intermediate or latent representation contains
only the information related to the provided class labels. Recently, the IBN has also been
extended to cover a broad family of privacy-related issues through the complexity–leakage–
utility bottleneck (CLUB) [20]. For example, it can be used to disentangle some sensitive
data from a latent representation in such a way that no private information remains, while
useful features are still available for downstream tasks. Bottleneck networks are also used
in anomaly detection in order to get rid of all the useless features contained in the data,
keeping only what helps in identifying background from signal [21–23]. A parallel usage of
such models is for the generation of new data from a given manifold [24,25]. Indeed, as the
encoded latent space should ideally be a disentangled representation of the data, it might
be shaped towards any desired random distribution. Typically, this distribution would be
Gaussian so that one can generate new samples by passing Gaussian noise through the
trained decoder, which should have learnt to recover the data manifold from the minimal
amount of information kept by such latent representation. More generally, formalisms
derived from the IBN principle describe ways to create a mapping between some input
data and a defined distribution.

The BIB-AE framework formulated for both unsupervised [12] and semi-supervised
settings [7] is a variational formulation of the IBN principle [5]. It relies on a trade-off
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between the amount of information lost when encoding data into a latent space and
the amount of information kept for proper decoding from this latent space. It can be
formally expressed as an optimisation problem where one tries to balance minimisation
and maximisation of the mutual information between the data space random variable X
and the latent space random variable Z̃. Therefore, the BIB-AE loss has the form

LBIB-AE(φ, θ) = Iφ(X; Z̃)− λB Ix
φ,θ(X; Z̃), (4)

where Ix
φ,θ(X; Z̃) is a parametrised lower bound to Iφ(X; Z̃) as demonstrated in Appendix B.

The positive weight λB controls the trade-off between the minimisation and maximisation
of the two terms. Once Equation (4) expands, the resulting loss becomes

LBIB-AE(φ, θ) = Ep(x)
[
DKL(qφ(z|x)‖p(z))

]
− DKL(q̃φ(z)‖p(z))

− λB Eqφ(x,z)[log pθ(x|z)] + λB DKL(p(x)‖ p̂θ(x)).
(5)

Notice that we intentionally abuse the notation of DKL(qφ(z|X = x)‖p(z)) here and in
other analogous expressions in order to lighten the equations since the expectations always
solve the ambiguity. The full derivation of Equation (5) is given in Appendix B. Next, we
showcase how the BIB-AE formalism can be related to the VAE and GAN families.

3.1.1. VAE from BIB-AE Perspectives

In the wide range of machine learning methods, VAE [2,3] has a particular place as it
is among the first deep learning generative models developed. VAE has been extensively
studied to decorrelate a given data space, mapping it to a Gaussian latent distribution while
reconstructing back the data space from it. This is a typical example of the IBN principle
and therefore it easily falls under the BIB-AE formalism. Keeping only the first and third
terms of Equation (5) directly leads to the VAE loss

LVAE(φ, θ) = Ep(x)
[
DKL(qφ(z|x)‖p(z))

]
− λB Eqφ(x,z)[log pθ(x|z)], (6)

where we already allow for the weight λB to appear in order to generalise to a broader
family called β-VAE [26]. In the literature, the λB weight is often written β, hence the name
β-VAE. The usual VAE loss would correspond to λB = 1.

Typically, the encoder is designed in such a way as to output two values that are
used to parametrise the mean and the variance of a Gaussian distribution from which
latent points are drawn. Therefore, the conditional latent space distribution qφ(z|x) is a
conditional Gaussian distribution. For p(z) chosen to be a standard normal distribution,
the KLD term has a closed form and can be exactly and efficiently computed. For the
second term of the loss, it is typical to assume that the conditional decoded space shows
exponential deviations from the original data leading to log pθ(x|z) = −α‖x̂− x‖p

p + C,
where α and C are positive constants.

A successful extension called information maximising VAE (InfoVAE) [27] proposes to
add the mutual information term Iφ(X; Z̃) to the VAE objective and to maximise it. This is
exactly the first term of the BIB-AE loss in Equation (4), which is, however, minimised, so
that the InfoVAE objective is actually counter-balancing it. The expression of the InfoVAE
loss is given by the first, second and third terms of Equation (5) as well as an additional
weight factor λInfo

LInfoVAE(φ, θ) = Ep(x)
[
DKL(qφ(z|x)‖p(z))

]
− (1− λBλInfo)DKL(q̃φ(z)‖p(z))

− λB Eqφ(x,z)[log pθ(x|z)],
(7)

where the usual VAE loss would correspond to λB = λInfo = 1. Notice that, in the original
InfoVAE loss [27], the weights are denoted by α and λ, with λB = 1/(1− α) and λInfo = λ,
where α is the factor in front of the added mutual information term Iφ(X; Z̃) and where λ is
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artificially inserted. It should be emphasised that, for positive λB and λInfo, the InfoVAE
loss is not generalised by the BIB-AE formalism. The additional λBλInfoDKL(q̃φ(z)‖p(z))
term is, however, very similar to a term that we will later find in the TURBO formalism,
which is due to its mutual information maximisation origin. The success of the InfoVAE
framework is a strong incentive for the development of the TURBO formalism.

3.1.2. GAN from BIB-AE Perspectives

On the other side of the widely used yet very related deep learning generative models
stand GANs [1]. The principle of a basic GAN is simple as it may be summarised by a
decoder network that is trained to map a random input latent sample to an output sample
compatible with the data. Typically, the latent space again follows a Gaussian distribution
to ensure simple sampling, similar to VAEs. However, since there is no encoder in the usual
GAN formulation, there is no need to include any shaping of the latent space by means of
some loss terms. The sole role of the decoder is to transform the Gaussian distribution into
the data distribution p(x). Therefore, the training objective of a GAN can be expressed as
the fourth term of Equation (5)

LGAN(θ) = DKL(p(x)‖ p̂θ(x)), (8)

where we omit the λB weight as it has no impact here. This term ensures the closeness of
the true data distribution p(x) and the generated data distribution p̂θ(x).

In contrast to the KLD term in the latent space of the VAE formulation, the GAN loss
cannot be expressed in a closed form because the data distribution p(x) that the model
tries to approximate with p̂θ(x) is by definition unknown. Facing an intractable KLD is
unfortunately a common scenario in machine learning optimisation problems. In practice,
the loss is usually replaced by any differentiable metric suited to the comparison of two
distributions using samples from both. This includes, but is not limited to, density ratio
estimation through a discriminator network and optimal transport through Wasserstein
distance approximations. We refer the interested reader to [20,28] for an overview of
different methods that allow us to tackle this problem in a practical way.

It is worth noting that, in principle, the reconstructed marginal distribution p̂θ(x)
involves the latent marginal distribution q̃φ(z) in its definition. However, since there is no
encoder network in the case of a GAN, it must be understood as the true latent distribution
q̃φ(z) ≡ p(z), which would correspond to a perfect encoder qφ(z|x) ≡ p(z|x). The TURBO
formalism will later provide deeper insights into GANs.

For the sake of completeness, we also quote here the hybrid VAE/GAN loss [29]. It is
hybrid in the sense that it uses both the VAE-like latent space regularisation and the GAN-
like reconstruction space distribution matching. The VAE/GAN loss can be expressed as
the first, third and fourth terms of Equation (5):

LVAE/GAN(φ, θ) = Ep(x)
[
DKL(qφ(z|x)‖p(z))

]
− λB Eqφ(x,z)[log pθ(x|z)] + λB DKL(p(x)‖ p̂θ(x)),

(9)

where we do not take into account the refinement of the reconstruction error term proposed
in the original work. Indeed, the VAE/GAN loss replaces the likelihood term pθ(x|z) with
a Gaussian distribution on the outputs of the hidden layers of the discriminator network.

3.1.3. CLUB

Another noticeable extension of BIB-AE is the CLUB model [20]. This model extends
the IBN principle by providing a unified generalised framework for information-theoretic
privacy models, and by establishing a new interpretation of popular generation, discrimi-
nation and compression models. Using our notations, the CLUB objective function can be
expressed as

LCLUB(φ, θ, θs) = Iφ(X; Z̃)− λB Ix
φ,θ(X; Z̃) + λS Is

φ,θs
(S; Z̃), (10)
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which is the BIB-AE loss of Equation (4) plus the additional privacy term λS Is
φ,θs

(S; Z̃)
controlled by the positive weight λS. The S variable denotes the sensitive attribute linked to
the data X, which has to be kept secret for privacy purposes. The additional minimised
term Is

φ,θs
(S; Z̃) is an upper bound to the mutual information between S and Z̃, taking

into account an attacker network with parameters θs, which aims at inferring the sensitive
attribute from the latent variable Z̃. The trade-off between the three terms of the CLUB
loss can be understood as an attacker–defender game. Indeed, the first term tries to
globally reduce the shared information between the input data and the latent space, while
the second and third terms compete in order to keep and get rid of, respectively, the
information needed to reconstruct X̂ from Z̃ and to infer Ŝ from Z̃.

3.2. Max-Max Game: Or Physically Meaningful Latent Space

So far, we have presented the IBN principle, whose main objective is to find the optimal
way to compress data into a latent representation while preserving enough information for
the task at hand. What if one does not need any compression of the data? Alternatively,
what if the latent space should not be Gaussian in order to facilitate the compression and the
sampling? In other words, what if the latent space does not have to be latent? Indeed, except
if partially removing the information contained in the data serves a particular purpose, one
could want to retain all the information and just map the data to a latent space of the desired
shape. More precisely, one can get rid of the trade-off expressed in Equation (4) and train
a network to only maximise the mutual information between the data and latent spaces.
It should be noticed that the oxymoronic phrasing, namely a physical latent space, is used
to emphasise the questions raised here. Since it is a common name for the intermediate
representation in an auto-encoder setting, we choose to keep using the word latent for
denoting this space.

An AAE [4], for example, is based on an adversarial loss computed in the latent space,
very much like the GAN loss in the data space. This is a first hint that this loss term might
come from the maximisation of mutual information rather than minimisation. It can also be
understood as the second term of Equation (5) but with the opposite sign. This is a second
hint that goes towards the same conclusion. In the following section, we will detail the
TURBO formalism, which will provide a rigorous explanation of AAEs where the BIB-AE
formulation fails to do so.

The formalisms that do not show a bottleneck architecture are also highly relevant
in several contexts. Indeed, in many cases, the latent space should not be seen as a mere
compression of the data but rather as a physically meaningful representation of them.
Figure 3 shows a comparison of two auto-encoders settings, one with a virtual latent
space and one with a physical latent space. For example, a virtual latent variable could
represent a class label, while a physical latent variable would be a noisy picture captured
by some camera. In the physical setting, the complex yet unknown physical measurement
is approximated by the parametrised network corresponding to the encoder qφ(z|x), which
produces the observation z̃ as output. The parametrised decoder pθ(x|z) reconstructs back
x̂ or converts it to a suitable form for further analysis or storage. The latent space variable
z̃ is thus defined by the physics of the experiment rather than being fixed to follow a
Gaussian, a categorical or any other simple distribution.

One may even compose these settings as shown in Figure 4. For example, the latent
variable z̃ can be understood as a generic name encapsulating both a virtual z̃v and a
physical z̃p meaning. On the other hand, the encoder and decoder themselves could be
composed of their own auto-encoder-like networks, each processing some kind of internal
latent variable ye and yd, respectively. Combining the BIB-AE and the TURBO formalisms
in order to create such deep networks can lead to a very broad family of models.
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Virtual latent space

Physical latent space

Input data Reconstructed data

Input data Reconstructed data

Figure 3. Auto-encoders with a virtual latent space or a physical latent space. In the virtual setting,
the latent variable z̃ does not have any physical meaning, while in the physical setting, this latent
variable represents a part of the physical observation/measurement chain.

Figure 4. Composition of different latent space settings and several auto-encoder-like networks as
internal components of a global auto-encoder architecture. The global latent variable z̃ can contain
both virtual z̃v and physical z̃p parts. The global encoder and decoder can be nested auto-encoders
with internal latent variables of any kind ye and yd, respectively.

Treating the latent variable as a second representation of the data in a different space
is useful for several applications, as sketched in Figure 5. This is the case, for example, with
the optimal-transport-based unfolding and simulation (OTUS) method [30] in the context of
high-energy physics. Here, the latent space is the four-momenta of the particles produced
in a proton–proton collider experiment, while the data space is the detector response to the
passage of these particles. A sketch of the two representations is shown in the top row of
Figure 5.

Another example might be the image-to-image translation of a given portion of the
sky pictured by two different telescopes. In this case, the latent and data spaces are both
images, but one is the image of the sky as seen by the first telescope (e.g., the Hubble Space
Telescope), while the other is the image of the sky as seen by the second telescope (e.g., the
James Webb Space Telescope). A sketch of the two representations is shown in the middle
row of Figure 5.

A third example of a problem where two representations of the data are available is the
analysis of copy detection patterns (CDPs) for anti-counterfeiting applications. Templates
of CDPs printed on products can be scanned by a device such as a phone camera. The
original pattern and the digitally acquired one form a pair of meaningful representations of
the same data. A sketch of the two representations is shown in the bottom row of Figure 5.
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Representation twoRepresentation one

Particles Detector

Template Camera

Hubble Webb

Figure 5. Three different applications that fit into the TURBO formalism. For each domain, two
representations of the data are shown, each of which can be associated with one of the two spaces
considered, given by the variables X and Z. The top row shows a high-energy physics example,
where particles with given four-momenta are created in a collider experiment and detected by a
detector. The middle row shows a galaxy imaging example, where two pictures of the same portion
of the sky are taken by two different telescopes. The bottom row shows a counterfeiting detection
example, where a digital template is acquired by a phone camera.

In summary, in many physical observation or measurement systems, we can consider
the measured data as a latent space. The encoder therefore reflects the nature of a measure-
ment or a sampling process. Further extraction of useful information can be considered as
decoding the latent measured data and the overall system can be interpreted as a physical
auto-encoder. In such a setting, the measured data are in general not Gaussian. Moreover,
the data sensors usually being designed to provide as much information as possible about
some events or phenomena leads to a maximisation of mutual information between the
studied phenomena and their observations rather than a minimisation. There are many
situations where the latent space has a physical meaning as relevant as the data space. In
such domains, it may be highly relevant to keep as much information as possible, if not all
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of it, in the latent space by maximising its mutual information with the data space. This is
the most important concept leading to the TURBO formalism.

4. TURBO

In this section, we present the TURBO framework, which is formulated as a generalised
auto-encoder framework. The main ingredient of TURBO is its general loss derived from
the maximisation of various lower bounds to several mutual information expressions
as opposed to the variational IBN counterpart. Additionally, instead of considering a
single-way direction of information flow from x to z̃ and back to x̂, TURBO considers
a two-way uni-directional information flow that also includes the flow from z to x̃ and
back to ẑ. It is important to note that TURBO interprets the random variables X and Z as
following the joint distribution p(x, z) instead of treating them independently as in the BIB-
AE formulation. Furthermore, once the general TURBO loss is developed, turning on and
off the different terms allows us to recover many existing models, such as AAE [4], GAN [1],
WGAN [31], pix2pix [15], SRGAN [32], CycleGAN [16] and even normalising flows [17].
With minor extensions, it also allows us to recover other models such as ALAE [18]. Maybe
even more importantly, new models could also be uncovered by using new combinations
of the TURBO loss terms. Therefore, the TURBO framework not only summarises existing
systems that cannot be explained by the traditional IBN but also creates paths for the
development of new ones.

4.1. General Objective Function

The starting point of TURBO is to express several forms of the mutual information
between the data space and the latent space in the auto-encoder formulation. Three types
of mutual information expressions, highlighted in Figure 2, are studied. We consider the
mutual information for the real dataset (x, z) ∼ p(x, z), which is denoted by I(X; Z). We
also consider the two evolving mutual information expressions given by the encoded
dataset (x, z̃) ∼ qφ(x, z) and the decoded dataset (x̃, z) ∼ pθ(x, z), denoted by Iφ(X; Z̃)
and Iθ(X̃; Z), respectively. In the general case, the computation of mutual information
in high-dimensional space for real data is infeasible. To make this problem tractable, we
introduce four different lower bounds to these expressions. The technical details about
the derivations can be found in Appendix C. The objective function of TURBO is based on
these lower bounds and consists of their maximisation with respect to the parameters of
the encoder and decoder networks.

For convenience, the objective function is translated into a loss minimisation problem.
It involves eight terms, whose short notations are defined here for ease of reading:

Lz̃(z, z̃) := −Ep(x,z)
[
log qφ(z|x)

]
Dz̃(z, z̃) := DKL(p(z)‖q̃φ(z))

Lx̂(x, x̂) := −Eqφ(x,z)[log pθ(x|z)] Dx̂(x, x̂) := DKL(p(x)‖ p̂θ(x))

Lx̃(x, x̃) := −Ep(x,z)[log pθ(x|z)] Dx̃(x, x̃) := DKL(p(x)‖ p̃θ(x))

Lẑ(z, ẑ) := −Epθ(x,z)
[
log qφ(z|x)

]
Dẑ(z, ẑ) := DKL(p(z)‖q̂φ(z)).

The four terms in the left column correspond to conditional cross-entropies while the four
terms in the right column represent KLDs between the true marginals and the marginals
in the latent or reconstruction spaces. It should be noted that every KLD term is forward,
meaning that the expected values are taken over the true data distribution. The losses
involving such terms are therefore called mean-seeking as opposed to mode-seeking. While,
in general, the choice of the order of the KLD follows empirical observations, the TURBO
framework sets it beforehand. However, in practice, the KLD is usually approximated with
expressions that often appear to lose this asymmetry property.

The conditional cross-entropy terms reflect the pair-wise relationships while the un-
paired KLD terms characterise the correspondences between the distributions. Again, a
common choice of the conditional distributions in the cross-entropies is to assume exponen-
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tial deviations, leading to the `2-norm or the `1-norm in the special cases of multi-variate
Gaussian or Laplacian, respectively. Therefore, the conditional cross-entropy and KLD
terms can be computed in practice, providing the corresponding bound to the considered
mutual information terms.

Each auto-encoder has constraints on the latent and reconstruction spaces, but the
latent space of TURBO is not fictitious as in the IBN framework. It is rather linked to
observable variables and that is why, instead of the IBN information minimisation in the
latent space, TURBO considers information maximisation.

In contrast to the traditional single-way uni-directional IBN, the TURBO framework
considers two flows of information named as direct and reverse paths. TURBO assumes
that the real observable data follow the joint distribution (x, z) ∼ p(x, z). Therefore,
the two-way uni-directional nature of TURBO reflects the fact that this joint distribution
can be decomposed in two different ways using the chain rule for probability distribu-
tions p(x, z) = p(x)p(z|x) = p(z)p(x|z). Each path of TURBO corresponds to its own
auto-encoder setting as shown in Figures 6 and 7. Each auto-encoder consists of two
parametrised networks, qφ(z|x) and pθ(x|z), which are shared between the direct and
reverse paths. Only the order in which they are used is changed.

Figure 6. The direct path of the TURBO framework. Samples from the X space are encoded following
the qφ(z|x) parametrised conditional distribution. A reconstruction loss term and a distribution
matching loss term can be computed here. Then, the latent samples are decoded following the pθ(x|z)
parametrised conditional distribution. Another pair of reconstruction and distribution matching loss
terms can be computed at this step.

Figure 7. The reverse path of the TURBO framework. Samples from the Z space are decoded following
the pθ(x|z) parametrised conditional distribution. A reconstruction loss term and a distribution
matching loss term can be computed here. Then, the latent samples are decoded following the qφ(z|x)
parametrised conditional distribution. Another pair of reconstruction and distribution matching loss
terms can be computed at this step.
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The direct path loss of TURBO corresponding to the encoding of the variable x into z̃
and then the decoding of it back into x̂ as shown in Figure 6 is defined as

Ldirect(φ, θ) = −Iz
φ(X; Z)− λDIx

φ,θ(X; Z̃)

= Lz̃(z, z̃) +Dz̃(z, z̃) + λDLx̂(x, x̂) + λDDx̂(x, x̂),
(11)

where λD is a hyperparameter controlling the relative importance of the two mutual infor-
mation bounds Iz

φ(X; Z) and Ix
φ,θ(X; Z̃) derived in Appendixes C.1 and C.2, respectively.

The formulation in Equation (11) is expressed in terms of a loss that is typically minimised in
machine learning applications. That is why both terms have a minus sign in front of them.
It should still be non-ambiguously considered as the maximisation of mutual information.
The encoder part of the direct path loss ensures that the latent space variable z̃ produced by
the encoder qφ(z|x) matches its observable counterpart z for a given pair (x, z), according
to the Lz̃(z, z̃) term, while their marginals should be as close as possible according to the
Dz̃(z, z̃) term. The decoder part of the loss ensures the pair-wise correspondence between
the reconstructed variable x̂ produced by the decoder pθ(x|z) from z̃, according to the term
Lx̂(x, x̂), while the Dx̂(x, x̂) term guarantees the matching of the reconstructed and true
data distributions.

The reverse path loss of TURBO corresponding to the decoding of the variable z into x̃
and then the encoding of it back into ẑ as shown in Figure 7 is defined as

Lreverse(φ, θ) = −Ix
θ (X; Z)− λRIz

φ,θ(X̃; Z)

= Lx̃(x, x̃) +Dx̃(x, x̃) + λRLẑ(z, ẑ) + λRDẑ(z, ẑ),
(12)

where λR is another hyperparameter controlling the relative importance of the two mutual
information bounds Ix

θ (X; Z) and Iz
φ,θ(X̃; Z) derived in Appendixes C.3 and C.4, respec-

tively. The interpretation of these four terms is analogous to the direct path.
The complete TURBO loss is finally defined as the weighted sum of the direct and

reverse paths losses

LTURBO(φ, θ) = Ldirect(φ, θ) + λTLreverse(φ, θ), (13)

where a hyperparameter λT controls the relative importance of the two terms. It is worth
noting that the full loss contains four bounds to mutual information expressions that
involve both network sets of parameters φ and θ. In general, the optimal parameters
that would maximise these four terms separately do not coincide. Therefore, the global
solution of the complete optimisation problem usually shows deviations from the said
optimal parameters, which is strongly dependent on the trade-off weights that balance the
different bounds. Moreover, in practice, it is often impossible to calculate all the terms of the
TURBO loss due to the nature of the data considered. For example, pairwise comparisons
are particularly affected when there is no labelled correspondence between the X and Z
variable domains. This results in multiple relevant architectures, whose objective functions
lead to different optimal parameters.

4.2. Generalisation of Many Models

The complete loss being defined, we can now relate it to several well-known models.
This means that the TURBO framework is a generalisation of these models that gives a
uniform interpretation of their respective objective functions and creates a common basis
towards explainable machine learning.
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4.2.1. AAE

The inability of the BIB-AE framework to explain the celebrated family of AAEs [4]
was among the many motivation factors in developing the new TURBO framework. Indeed,
the AAE loss can now simply be expressed as the second and third terms of Equation (11):

LAAE(φ, θ) = Dz̃(z, z̃) + λDLx̂(x, x̂), (14)

where we recognise the adversarial loss in the latent space Z and the reconstruction loss
in the data space X. The latent space distribution is controlled by the imposed prior
p(z). Figure 8 shows a schematic representation of the AAE architecture in the TURBO
framework. Notice that the AAE, as a representative of the classical auto-encoder family,
only uses the direct path.

Figure 8. The AAE architecture expressed in the TURBO framework.

4.2.2. GAN and WGAN

As stated previously, GANs [1] are included into the BIB-AE formalism via a convo-
luted explanation of the distributions used to compute the adversarial loss. On the other
hand, they can be easily expressed in the TURBO framework using only the second term of
Equation (12):

LGAN(θ) = Dx̃(x, x̃), (15)

which much more naturally involves the data marginal distribution p(x) and the approx-
imated marginal distribution p̃θ(x). In this formulation, the Z space is a placeholder
used to represent any input to the decoder. It can be pure random noise, as for the
StyleGAN model [33], or also include additional information such as class labels, as for
the BigGAN [34] and StyleGAN-XL [35] large-scale models, which nowadays still compete
with other modern frameworks [36,37]. As stated previously, the KLD term Dx̃(x, x̃) can be
replaced by Wasserstein distance approximations, leading to the so-called Wasserstein GAN
(WGAN) model [31]. Figure 9 shows a schematic representation of the GAN architecture
in the TURBO framework. Notice that the classical GAN family does not make use of an
encoder network and thus is better interpreted in the reverse path.

Figure 9. The GAN architecture expressed in the TURBO framework.

4.2.3. pix2pix and SRGAN

The pix2pix [15] and SRGAN [32] architectures are conditional GANs initially de-
veloped for image-to-image translation and image super-resolution, respectively. During
training, both pix2pix and SRGAN assume the presence of N training pairs {xi, zi}N

i=1,
allowing one to use a paired loss for the translation network or the decoder optimisation.
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However, since the typically used losses, such as `2-norm, do not cope with the statistical
features of natural images, such a decoder produces poor results. This is why the training
loss is additionally complemented by an adversarial term, the goal of which is to ensure
that the translated images x̃ are on the same manifold as the training data x. Such an
adversarial loss does not require paired data and is similar to the GAN family.

The considered paired systems can be expressed in the TURBO framework using the
first and the second terms of Equation (12):

Lpix2pix(θ) = Lx̃(x, x̃) +Dx̃(x, x̃), (16)

where the Z space now represents the image to be translated, while the additional random
noise also used as input has to be implicitly understood. Figure 10 shows a schematic
representation of the pix2pix and the SRGAN architectures in the TURBO framework. It is
important to note that pix2pix and SRGAN do not consider the back reconstruction of ẑ
from the generated data x̃ as present in the full TURBO framework. Nevertheless, the fact
that such systems have been proposed in the prior art and have produced state-of-the-art
results for image-to-image translation and image super-resolution problems motivated us
to consider them from the point of view of the TURBO generalisation.

Figure 10. The pix2pix and SRGAN architectures expressed in the TURBO framework.

4.2.4. CycleGAN

The CycleGAN [16] architecture is an image-to-image translation model as well, but
designed for unpaired data. It can be thought of as an AAE trained in two ways, where the
X and Z spaces represent the two domains to be translated into each other. The CycleGAN
loss can therefore be expressed in the TURBO framework using the second and the third
terms of Equation (11) plus the second and the third terms of Equation (12):

LCycleGAN(φ, θ) = Dz̃(z, z̃) + λDLx̂(x, x̂) + λTDx̃(x, x̃) + λTλRLẑ(z, ẑ), (17)

where λT = 1 and λD = λR in the original loss formulation. Figure 11 shows a schematic
representation of the CycleGAN architecture in the TURBO framework.

Figure 11. The CycleGAN architecture expressed in the TURBO framework.



Entropy 2023, 25, 1471 16 of 29

4.2.5. Flows

In order to map a tractable base distribution to a complex data distribution, nor-
malising flows [17] learn a series of invertible transformations, creating an expressive
deterministic invertible function. The optimal function is usually found by maximising the
likelihood of the data under the flow transformation. Sampling points from the base distri-
bution and applying the transformation yields samples from the data distribution. Flows
also allow one to evaluate the likelihood of a data sample by evaluating the likelihood of
the corresponding base sample given by the inverse transformation.

At first look, normalising flows do not seem to fit into an auto-encoder framework.
However, a flow can be thought of as a special case of an auto-encoder where the decoder is
the deterministic parametrised invertible function, denoted by T(z), while the encoder is its
inverse T−1(x). Actually, the very principle of an auto-encoder is precisely to approximate
this ideal case, usually denoting z̃ = fφ(x) = T−1(x) for the encoder output and x̂ =
gθ(z̃) = T(z̃) for the decoder output. The approximated conditional distributions defined
by Equations (1) and (2) thus read pθ(x|z) = δ(x− T(z)) and qφ(z|x) = δ(z− T−1(x)),
where δ(·) is the Dirac distribution. Moreover, minimising the KLD between the true and
approximated data marginal distributions is equivalent to maximising the likelihood of the
data under the flow transformation [38]. The flow loss can therefore be expressed in the
TURBO framework using only the second term of Equation (12):

LFlow(θ) = Dx̃(x, x̃), (18)

which looks very much like the GAN loss of Equation (15). The differences reside in the way
the KLD is computed or approximated, and in the parametrisations of the encoder and the
decoder. The Z and X variables represent the base and data samples, respectively. Figure 12
shows a schematic representation of the flow architecture in the TURBO framework.

Figure 12. The flow architecture expressed in the TURBO framework.

4.3. Extension to Additional Models

In addition to the aforementioned models, other architectures can be expressed in the
TURBO framework, provided some minor extensions are made. We give here an example
of such an extension.

ALAE

The adversarial latent auto-encoder (ALAE) [18] is a model that tries to leverage the
advantages of GANs, still using an auto-encoder architecture for better representation
learning. The main novelty is to exclusively work in the latent space in order to disentangle
this data representation as much as possible. The aim is to facilitate the manipulation of the
latent space in downstream tasks, keeping a high quality of the generated data. The ALAE
loss can be expressed in the TURBO framework using the third and a minor modification
of the fourth terms of Equation (12):

LALAE(φ, θ) = Lẑ(z, ẑ) + D̄ẑ(z̃, ẑ). (19)
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This last term allows for cross-communication between the direct and the reverse paths. The
derivation of this modified term, still based on mutual information maximisation, is detailed
in Appendix D. Figure 13 shows a schematic representation of the ALAE architecture in the
TURBO framework.

Figure 13. The ALAE architecture expressed in the TURBO framework.

5. Applications

In this section, we present several applications of the TURBO framework in studies
about different domains. We highlight that these are summary presentations aiming to
showcase how the method can be used and to demonstrate its potential. The complete stud-
ies as well as all the details are left to dedicated papers. These applications are somewhat
disconnected, and TURBO is applied to diverse data with varying dimensionalities and
statistics. Nevertheless, as reported in the corresponding studies, TURBO has additional
benefits beyond interoperability, such as a superior performance with respect to the models
compared, as well as more stable and more efficient training.

5.1. TURBO in High-Energy Physics: Turbo-Sim

The TURBO formalism has been successfully applied to a problem of particles into
particles transformation in high-energy physics through the Turbo-Sim model [39]. The
task is to transform the real four-momenta of a set of particles created by the collision of two
protons in a collider experiment into the observed four-momenta of the particles captured
by detectors, and vice versa. A clever interpretation of the problem is to think of the real
and the observed spaces as two different representations of the same physical system, and
to consider them as the Z and X spaces, respectively [30,40]. In such a case, the Z and X
spaces are both physically meaningful and maximising the mutual information between
them is highly relevant, making the TURBO formalism a natural choice for the problem.

The complete TURBO formalism as depicted in Figures 6 and 7 and formalised in Equa-
tion (13) is implemented in the Turbo-Sim model and compared to the OTUS model [30],
the former being composed of two fully connected dense networks as the encoder and
decoder. Moreover, we do not implement any of the physical constraints considered in the
OTUS model. An example of the distributions generated by the TURBO model is shown
in Figure 14 and a subset of the metrics used to evaluate the model is shown in Table 2.
One can observe that the method is able to give good results up to uncertainties and even
outperforms the OTUS method for several crucial observables. It is worth emphasising that
the Turbo-Sim model uses very basic internal encoder and decoder networks, showcasing
the strength of the TURBO formalism on its own.
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Figure 14. Selected example of distributions generated by the Turbo-Sim model. The histogram
shows the distributions of the energy of a given observed particle, which, here, is a shower created
by a chain of disintegration called jet, for the specific process of top-quark pair production. The
blue bars correspond to the original data simulation, the orange line corresponds to the Turbo-
Sim transformation from the real particle and the green line corresponds to the Turbo-Sim auto-
encoded reconstruction.

Table 2. Selected subset of the metrics used to evaluate the Turbo-Sim model. The table shows the
Kolmogorov–Smirnov distance [×10−2] between the original data simulation and samples generated
by the model. A lower value means a higher accuracy and bold highlights the best value per
observable. One observable is shown per space. The energy of a real particle, a b-quark, is shown for
the Z space, while the energy of the leading jet is shown for the X space. The Rec. column corresponds
to unstable particles decaying into the real ones before flying through the detectors to be observed.
The observables of these particles must be reconstructed from the combinations of the observed
ones. Therefore, the quantity assesses whether the model has learnt the correlations between the
variables well enough to make predictions about the underlying physics. In this specific process, two
top-quarks are initially produced, and the observable is the invariant mass of the pair.

Z space X space Rec. space
Model Eb Ejet1 mtt

Turbo-Sim 3.96 4.43 2.97
OTUS 2.76 5.75 15.8

5.2. TURBO in Astronomy: Hubble-to-Webb

The advanced TURBO framework has been used in the domain of astronomy, specifi-
cally for sensor-to-sensor translation. The challenge involves using TURBO as an image-
to-image translation framework to generate simulated images of the James Webb Space
Telescope from observed images of the Hubble Space Telescope and vice versa. This appli-
cation of TURBO, concisely called Hubble-to-Webb, is conducted on paired images of the
galaxy cluster SMACS 0723.

In Figure 15, we showcase a side-by-side comparison of astronomical imagery. Several
additional demos of Hubble images translated into Webb images by various models are
available at https://hubble-to-webb.herokuapp.com/ (accessed on 20 September 23). The
leftmost image is sourced from the Hubble Space Telescope, providing us with a crisp and
detailed depiction of a celestial region. This Hubble image serves as the input to our TURBO
image-to-image translation model. The middle image presents the target representation,

https://hubble-to-webb.herokuapp.com/
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captured by the James Webb Space Telescope. The main objective of our model is to predict
this high-fidelity Webb image using the Hubble input. On the right, we observe the image
generated by the TURBO model, which displays a commendable attempt to replicate the
intricate features of the actual Webb image. It is evident from the generated image that
the TURBO model has made notable strides in bridging the differences between the two
telescopes’ observational capacities.

Figure 15. Comparison of images captured by the Hubble Space Telescope (left), the James Webb
Space Telescope (middle) and generated by our TURBO image-to-image translation model (right).

A comparison is made between three methods, namely CycleGAN, pix2pix and
TURBO. The same network architecture is used for all three methods; only the objective
function is changed accordingly to reflect Equations (13), (16) and (17). The TURBO
approach shows remarkable efficacy, demonstrating a state-of-the-art performance in terms
of both the learned perceptual image patch similarity (LPIPS) and the Fréchet inception
distance (FID) metrics within the domain of sensor-to-sensor translation, as compared to
traditional image-to-image translation frameworks. The results of the Hubble-to-Webb
translation are detailed in Table 3. Upon examination of the results table, it can be observed
that TURBO supersedes other methods in terms of both the LPIPS and the FID metrics,
while being competitive for the mean squared error (MSE), the structural similarity (SSIM)
and the peak signal-to-noise ratio (PSNR) metrics. These metrics, although not directly
related to per-pixel accuracy, are well-established indicators of image fidelity.

Table 3. Hubble-to-Webb sensor-to-sensor computed metrics. All results are obtained on a validation
set of the Galaxy Cluster SMACS 0723. Bold highlights the best value per metric.

Model MSE ↓ SSIM ↑ PSNR ↑ LPIPS ↓ FID ↓

CycleGAN 0.0097 0.83 20.11 0.48 128.1
pix2pix 0.0021 0.93 26.78 0.44 54.58
TURBO 0.0026 0.92 25.88 0.41 43.36

5.3. TURBO in Anti-Counterfeiting: Digital Twin

The TURBO framework has been employed to model the printing-imaging channel by
leveraging a machine-learning-based digital twin for CDPs [41]. CDPs serve as a modern
anti-counterfeiting technique in numerous applications. The process involves printing a
highly detailed digital template z using an industrial high-resolution printer, resulting in a
printed template x. The goal of the model is to accurately estimate the complex stochastic
process of printing and to generate predictions x̃ of how a digital template would appear
once printed, as well as to reverse the process and predict the original digital template z̃
from the printed one.

The same three methods, namely CycleGAN, pix2pix and TURBO, are also compared
in this study. Network architectures are shared by the three methods and the objective
functions of Equations (13), (16) and (17) constitute again the key differences between them.
The study demonstrates that, regardless of various architectural factors, discriminators and
hyperparameters, the TURBO framework consistently outperforms widely used image-to-
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image translation models. A subset of the results is provided in Table 4. The TURBO model
shows better results in almost all metrics, staying competitive in the other. In addition, a
UMAP projection [42] of real and generated samples is shown in Figure 16. We can see that
synthetic samples z̃ and x̃ are close to the corresponding real ones z and x, respectively. We
can also observe two distinct clusters, one for digital and one for printed templates.

real digital

synthetic digital

real printed

synthetic printed

Figure 16. UMAP visualisation of synthetically generated digital and printed templates z̃ and x̃,
respectively, superimposed on the corresponding real counterparts z and x.

Table 4. Digital twin estimation results. The performances of the models are evaluated on a test
split of a dataset acquired by a scanner. The Hamming metric corresponds to the Hamming distance
between the z and z̃ samples, while MSE and SSIM are computed between the x and x̃ samples. The
FID metric is calculated in both directions. Bold highlights the best value per metric and italic is
reserved to the case with direct comparison without any processing of the data.

Model FIDx→z̃ ↓ FIDz→x̃ ↓ Hamming ↓ MSE ↓ SSIM ↑

W/O processing 304 304 0.24 0.18 0.48
CycleGAN 3.87 4.45 0.15 0.05 0.73
pix2pix 3.37 8.57 0.11 0.05 0.76
TURBO 3.16 6.60 0.09 0.04 0.78

In Figure 17, we show a visual comparison of template images. The image on the
left is a randomly selected digital template, which acts as the input of our TURBO image-
to-image translation model. The middle image is the corresponding printed template
captured by a scanner. On the right, we display the image generated by the TURBO model.
Visually, the synthetic sample looks almost indistinguishable from its real counterpart,
meaning that the TURBO model is meritoriously capable of replicating the stochastic
printing-capturing process.

In a recent extension of the work, it is shown that the TURBO framework outperforms
the other methods not only on data acquired by a scanner but also on data captured using
mobile phones. This demonstrates the robustness and versatility of the TURBO approach
across different acquisition devices, highlighting its effectiveness in handling different
scenarios and its superiority over traditional methods for both high-resolution scanner data
and mobile phone data.
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Figure 17. Comparison of a digital template (left), printed template (middle) and estimation gener-
ated by our TURBO image-to-image translation model (right). For better visualisation, we display a
centrally cropped region that is equal to a quarter of the dimensions of the full image.

6. Conclusions

In this work, we have presented a new formalism, called TURBO, for the description
of a class of auto-encoders that do not require a bottleneck structure. The foundation of this
formalism is the maximisation of the mutual information between different representations
of the data. We argue that this is a powerful paradigm that is worth considering in
the design of many machine learning models in general. Indeed, we have shown that
TURBO can be used to derive a number of existing models and that simple extensions also
based on mutual information maximisation can lead to even more models. We have also
highlighted several practical use cases where the TURBO formalism is either state-of-the-art
or competitive with other models, demonstrating its versatility and robustness.

Our formulation of TURBO is based on the optimisation of multiple lower bounds to
several mutual information terms, but it is important to note that other decompositions
of such terms exist. We believe that many more modern machine learning architectures
can be interpreted as maximising some form of mutual information. For example, SSL
methods are not convincingly described by the IBN principle, and their understanding
could certainly benefit from the new perspective provided by the TURBO formalism.
Moreover, although general enough to allow for any stochastic neural network design,
how to meaningfully bring stochasticity into the TURBO framework is left to future work.
Another direct extension of the work presented in this paper would be to test TURBO in
other relevant applications, namely any problem for which two modalities of the same
underlying physical phenomenon are available. We leave the exploration of these ideas
to future work and hope that our study will inspire further research in this direction as
well, since having a common and interpretable general theory of deep learning is key to
its comprehension.
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Abbreviations
The following abbreviations are used in this manuscript:

TURBO Two-way Uni-directional Representations by Bounded Optimisation
IBN Information Bottleneck
BIB-AE Bounded Information Bottleneck Auto-Encoder
GAN Generative Adversarial Network
WGAN Wasserstein GAN
VAE Variational Auto-Encoder
InfoVAE Information maximising VAE
AAE Adversarial Auto-Encoder
pix2pix Image-to-Image Translation with Conditional GAN
SRGAN Super-Resolution GAN
CycleGAN Cycle-Consistent GAN
ALAE Adversarial Latent Auto-Encoder
KLD Kullback–Leibler Divergence
OTUS Optimal-Transport-based Unfolding and Simulation
LPIPS Learned Perceptual Image Patch Similarity
FID Fréchet Inception Distance
MSE Mean Squared Error
SSIM Structural SIMilarity
PSNR Peak Signal-to-Noise Ratio
CDP Copy Detection Pattern
UMAP Uniform Manifold Approximation and Projection

Appendix A. Notations Summary

Table A1. Summary of all symbols and naming used throughout the paper.

Notation Description

p(x, z), p(x|z), p(z|x), p(x), p(z) Data joint, conditional and marginal distributions. Short notations for px,z(x, z), px(x), etc.

qφ(x, z), qφ(x|z), qφ(z|x) Encoder joint and conditional distributions as defined in Equation (1).

q̃φ(z) :=
∫

p(x) qφ(z|x)dx Approximated marginal distribution of synthetic data in the encoder latent space.

q̂φ(z) :=
∫

p̃θ(x) qφ(z|x)dx Approximated marginal distribution of synthetic data in the encoder reconstructed space.

pθ(x, z), pθ(x|z), pθ(z|x) Decoder joint and conditional distributions as defined in Equation (2).

p̃θ(x) :=
∫

p(z) pθ(x|z)dz Approximated marginal distribution of synthetic data in the decoder latent space.

p̂θ(x) :=
∫

q̃φ(z) pθ(x|z)dz Approximated marginal distribution of synthetic data in the decoder reconstructed space.

I(X; Z), Iφ(X; Z̃), Iθ(X̃; Z)
Mutual information as defined in Equation (3) and below. Subscripts mean that parametrised
distributions are involved in the space denoted by a tilde.

Iz
φ(X; Z), Ix

φ,θ(X; Z̃),
Ix

θ (X; Z), Iz
φ,θ(X̃; Z)

Lower bounds to mutual information as derived in Appendix C. Superscripts denote for
which variable the corresponding loss terms are computed, subscripts denote the involved
parametrised distributions and tildes follow the notations of the bounded mutual
information.

Appendix B. BIB-AE Full Derivation

In this appendix, we detail the full derivation of all the BIB-AE loss terms expressed
in our notations. It relies on a minimisation and maximisation trade-off for the mutual
information between the data space and the latent space versus the latent space and the
reconstructed data space, formally expressed in Equation (4).
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Appendix B.1. Minimised Terms

Here, we detail the derivation of the loss computed between the random variables Z
and Z̃. We start from the evolving mutual information between X and Z̃:

Iφ(X; Z̃) = Eqφ(x,z)

[
log

qφ(x, z)
p(x)q̃φ(z)

]
= Eqφ(x,z)

[
log

qφ(z|x)
q̃φ(z)

]
, (A1)

in which we inject the marginal distribution p(z) and reorganise the expression as

Iφ(X; Z̃) = Eqφ(x,z)

[
log

qφ(z|x)
q̃φ(z)

· p(z)
p(z)

]
= Eqφ(x,z)

[
log

qφ(z|x)
p(z)

]
−Eqφ(x,z)

[
log

q̃φ(z)
p(z)

]
(A2)

= Ep(x)
[
DKL(qφ(z|x)‖p(z))

]
− DKL(q̃φ(z)‖p(z)),

where we use the two decompositions of Equation (1) to get to the two KLD formulas. This
gives the two terms that are minimised in the BIB-AE original formulation.

Appendix B.2. Maximised Terms

The derivation of the BIB-AE loss computed between the random variables X and
X̂ follows the exact same steps as detailed in Appendix C.2 for the TURBO loss. For
completeness, we quote the final result here and refer the reader to Appendix C.2 for the
details. It uses the lower bound to the evolving mutual information

Iφ(X; Z̃) ≥ Eqφ(x,z)[log pθ(x|z)]− DKL(p(x)‖ p̂θ(x)) =: Ix
φ,θ(X; Z̃), (A3)

which gives the two terms that are maximised in the BIB-AE original formulation. The first
term corresponds to the paired data reconstruction consistency constraint while the second
term requires the unpaired or distribution-wise consistency between the training data and
the reconstructed data.

Appendix C. TURBO Full Derivation

In this appendix, we detail the full derivation of all the TURBO loss terms. Each pair of
terms is derived starting from the mutual information between two given random variables
and injecting the proper distribution approximations. We present both the direct and the
reverse paths that auto-encode X and Z, respectively. For the two cases, a pair of terms is
derived in the encoder space and another pair is derived in the decoder space.

Appendix C.1. Direct Path, Encoder Space

Here, we detail the derivation of the loss computed between the random variables Z
and Z̃. We start from the mutual information between X and Z:

I(X; Z) = Ep(x,z)

[
log

p(x, z)
p(x)p(z)

]
= Ep(x,z)

[
log

p(z|x)
p(z)

]
, (A4)

in which we inject the parametrised approximated conditional distribution qφ(z|x) before
reorganising the expression as

I(X; Z) = Ep(x,z)

[
log

p(z|x)
p(z)

·
qφ(z|x)
qφ(z|x)

]
= Ep(x,z)

[
log

qφ(z|x)
p(z)

]
+Ep(x,z)

[
log

p(z|x)
qφ(z|x)

]
(A5)

= Ep(x,z)

[
log

qφ(z|x)
p(z)

]
+Ep(x)

[
DKL(p(z|x)‖qφ(z|x))

]
.
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Since both the KLD and any probability distribution are non-negative quantities, the last
term in Equation (A5) is non-negative and the mutual information is lower bounded by

I(X; Z) ≥ Ep(x,z)

[
log

qφ(z|x)
p(z)

]
. (A6)

We now inject the approximated marginal distribution q̃φ(z) and reorganise the expression
further as

I(X; Z) ≥ Ep(x,z)

[
log

qφ(z|x)
p(z)

·
q̃φ(z)
q̃φ(z)

]
= Ep(x,z)

[
log qφ(z|x)

]
−Ep(x,z)

[
log

p(z)
q̃φ(z)

]
−Ep(x,z)

[
log q̃φ(z)

]
(A7)

= Ep(x,z)
[
log qφ(z|x)

]
− DKL(p(z)‖q̃φ(z)) + H(p(z); q̃φ(z)).

Since the cross-entropy is a non-negative quantity, the last term in Equation (A7) is non-
negative. Notice that in general, this statement is only true for discrete random variables.
For continuous random variables, certain conditions should be satisfied. For example, the
entropy of a Gaussian random variable X with variance σ2 reads h(X) = 1/2 log

(
2πeσ2)

and is non-negative if σ2 ≥ 1/2πe. This condition is relatively easy to fulfil in practice. The
mutual information can therefore be lower bounded by

I(X; Z) ≥ Ep(x,z)
[
log qφ(z|x)

]︸ ︷︷ ︸
=:−Lz̃(z,z̃)

−DKL(p(z)‖q̃φ(z))︸ ︷︷ ︸
=:Dz̃(z,z̃)

=: Iz
φ(X; Z), (A8)

where we define Iz
φ(X; Z) as a parametrised lower bound to I(X; Z) and where we define

the two loss terms Lz̃(z, z̃) and Dz̃(z, z̃).
A crucial property of this lower bound is that its unique maximum with respect

to φ, corresponding to the optimal parameter φ∗ = arg maxφ Iz
φ(X; Z), is reached when

qφ∗(z|x) = p(z|x), i.e., when the encoder perfectly reflects the real physical process of data
transformation from the X manifold to the Z manifold.

Indeed, notice that, for a given dataset with (x, z) ∼ p(x, z), the mutual information
I(X; Z) is constant. When we insert the parametrised distribution in Equation (A5), the
final expression seems to depend on φ, but the terms actually compensate each other and
the value eventually does not depend on φ. In addition, the KLD term in Equation (A5)
vanishes if and only if the two compared distributions qφ(z|x) and p(z|x) are identical.
Therefore, the equality in Equation (A6) holds if and only if qφ∗(z|x) = p(z|x) and it is the
unique maximum with respect to φ of the right-hand side expression.

Further, notice that, in this case, q̃φ∗(z) = p(z), so one would have H(p(z); q̃φ∗(z)) =
H(p(z)) in Equation (A7). Since, for any two dissimilar distributions q̃φ(z) 6= p(z), one has
H(p(z); q̃φ(z)) > H(p(z)), the solution qφ∗(z|x) also coincides with the unique maximum
of Iz

φ(X; Z) with respect to φ. Indeed, if a higher maximum was reached for another
distribution qφ̄(z|x), it should be designed so that H(p(z); q̃φ̄(z)) < H(p(z)), which is
impossible, in order to keep satisfying the inequalities in Equation (A6) and Equation (A7).
Moreover, if multiple maxima would exist and would satisfy H(p(z); q̃φ∗(z)) = H(p(z)),
the uniqueness of the saturating point of Equation (A6) would be broken.

Appendix C.2. Direct Path, Decoder Space

Here, we detail the derivation of the loss computed between the random variables X
and X̂. We start from the evolving mutual information between X and Z̃:

Iφ(X; Z̃) = Eqφ(x,z)

[
log

qφ(x, z)
p(x)q̃φ(z)

]
= Eqφ(x,z)

[
log

qφ(x|z)
p(x)

]
, (A9)
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in which we inject the parametrised approximated conditional distribution pθ(x|z) before
reorganising the expression as

Iφ(X; Z̃) = Eqφ(x,z)

[
log

qφ(x|z)
p(x)

· pθ(x|z)
pθ(x|z)

]
= Eqφ(x,z)

[
log

pθ(x|z)
p(x)

]
+Eqφ(x,z)

[
log

qφ(x|z)
pθ(x|z)

]
(A10)

= Eqφ(x,z)

[
log

pθ(x|z)
p(x)

]
+Eq̃φ(z)

[
DKL(qφ(x|z)‖pθ(x|z))

]
.

The last term in Equation (A10) is non-negative and the mutual information is lower
bounded by

Iφ(X; Z̃) ≥ Eqφ(x,z)

[
log

pθ(x|z)
p(x)

]
. (A11)

We now inject the approximated marginal distribution p̂θ(x) and reorganise the expression
further as

Iφ(X; Z̃) ≥ Eqφ(x,z)

[
log

pθ(x|z)
p(x)

· p̂θ(x)
p̂θ(x)

]
= Eqφ(x,z)[log pθ(x|z)]−Eqφ(x,z)

[
log

p(x)
p̂θ(x)

]
−Eqφ(x,z)[log p̂θ(x)] (A12)

= Eqφ(x,z)[log pθ(x|z)]− DKL(p(x)‖ p̂θ(x)) + H(p(x); p̂θ(x)).

The last term in Equation (A12) is non-negative and the mutual information is lower
bounded by

Iφ(X; Z̃) ≥ Eqφ(x,z)[log pθ(x|z)]︸ ︷︷ ︸
=:−Lx̂(x,x̂)

−DKL(p(x)‖ p̂θ(x))︸ ︷︷ ︸
=:Dx̂(x,x̂)

=: Ix
φ,θ(X; Z̃), (A13)

where we define Ix
φ,θ(X; Z̃) as a parametrised lower bound to Iφ(X; Z̃) and where we define

the two loss terms Lx̂(x, x̂) and Dx̂(x, x̂).
With a proof analogous to the one given in Appendix C.1, we find that the unique maxi-

mum of this lower bound, corresponding to the optimal parameter θ∗ = arg maxθ Ix
φ,θ(X; Z̃),

is reached when pθ∗(x|z) = qφ(x|z), i.e., when the decoder is a perfect distribution-
wise inverse of the encoder. Notice that, in this case, p̂θ∗(x) =

∫
q̃φ(z) pθ∗(x|z)dz =∫

q̃φ(z) qφ(x|z)dz =
∫

p(x) qφ(z|x)dz = p(x) as necessary for the proof to hold.
Furthermore, once optimised with respect to θ, the lower bound satisfies Ix

φ,θ∗(X; Z̃) =
Iφ(X; Z̃)− H(p(x)). Therefore, maximising Ix

φ,θ∗(X; Z̃) with respect to φ is equivalent to
maximising the evolving mutual information Iφ(X; Z̃) between X and Z̃.

It is worth noting that maximising Iφ(X; Z̃) with respect to φ does not give any
guarantee that qφ(x, z) would match p(x, z), meaning that, in general, one has φ∗ =
arg maxφ Iz

φ(X; Z) 6= arg maxφ Ix
φ,θ∗(X; Z̃). Only the combination of the two objectives is

meaningful in this sense.

Appendix C.3. Reverse Path, Decoder Space

Here, we detail the derivation of the loss computed between the random variables X
and X̃. We start from the mutual information between X and Z:

I(X; Z) = Ep(x,z)

[
log

p(x, z)
p(x)p(z)

]
= Ep(x,z)

[
log

p(x|z)
p(x)

]
, (A14)
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in which we inject the parametrised approximated conditional distribution pθ(x|z) before
reorganising the expression as

I(X; Z) = Ep(x,z)

[
log

p(x|z)
p(x)

· pθ(x|z)
pθ(x|z)

]
= Ep(x,z)

[
log

pθ(x|z)
p(x)

]
+Ep(x,z)

[
log

p(x|z)
pθ(x|z)

]
(A15)

= Ep(x,z)

[
log

pθ(x|z)
p(x)

]
+Ep(z)[DKL(p(x|z)‖pθ(x|z))],

The last term in Equation (A15) is non-negative and the mutual information is lower
bounded by

I(X; Z) ≥ Ep(x,z)

[
log

pθ(x|z)
p(x)

]
. (A16)

We now inject the approximated marginal distribution p̃θ(x) and reorganise the expression
further as

I(X; Z) ≥ Ep(x,z)

[
log

pθ(x|z)
p(x)

· p̃θ(x)
p̃θ(x)

]
= Ep(x,z)[log pθ(x|z)]−Ep(x,z)

[
log

p(x)
p̃θ(x)

]
−Ep(x,z)[log p̃θ(x)] (A17)

= Ep(x,z)[log pθ(x|z)]− DKL(p(x)‖ p̃θ(x)) + H(p(x); p̃θ(x)),

The last term in Equation (A17) is non-negative and the mutual information is lower
bounded by

I(X; Z) ≥ Ep(x,z)[log pθ(x|z)]︸ ︷︷ ︸
=:−Lx̃(x,x̃)

−DKL(p(x)‖ p̃θ(x))︸ ︷︷ ︸
=:Dx̃(x,x̃)

=: Ix
θ (X; Z), (A18)

where we define Ix
θ (X; Z) as a parametrised lower bound to I(X; Z) and where we define

the two loss terms Lx̃(x, x̃) and Dx̃(x, x̃).
A symmetrical proof to the one given in Appendix C.1 shows that the optimal pa-

rameter θ† = arg maxθ Ix
θ (X; Z) corresponds to pθ†(x|z) = p(x|z), i.e., when the decoder

perfectly reflects the real physical process of data transformation from the Z manifold to
the X manifold.

Appendix C.4. Reverse Path, Encoder Space

Here, we detail the derivation of the loss computed between the random variables Z
and Ẑ. We start from the evolving mutual information between X̃ and Z:

Iθ(X̃; Z) = Epθ(x,z)

[
log

pθ(x, z)
p̃θ(x)p(z)

]
= Epθ(x,z)

[
log

pθ(z|x)
p(z)

]
, (A19)

in which we inject the parametrised approximated conditional distribution qφ(z|x) before
reorganising the expression as

Iθ(X̃; Z) = Epθ(x,z)

[
log

pθ(z|x)
p(z)

·
qφ(z|x)
qφ(z|x)

]
= Epθ(x,z)

[
log

qφ(z|x)
p(z)

]
+Epθ(x,z)

[
log

pθ(z|x)
qφ(z|x)

]
(A20)

= Epθ(x,z)

[
log

qφ(z|x)
p(z)

]
+Ep̃θ(x)

[
DKL(pθ(z|x)‖qφ(z|x))

]
.



Entropy 2023, 25, 1471 27 of 29

The last term in Equation (A20) is non-negative and the mutual information is lower
bounded by

Iθ(X̃; Z) ≥ Epθ(x,z)

[
log

qφ(z|x)
p(z)

]
. (A21)

We now inject the approximated marginal distribution q̂φ(z) and reorganise the expression
further as

Iθ(X̃; Z) ≥ Epθ(x,z)

[
log

qφ(z|x)
p(z)

·
q̂φ(z)
q̂φ(z)

]
= Epθ(x,z)

[
log qφ(z|x)

]
−Epθ(x,z)

[
log

p(z)
q̂φ(z)

]
−Epθ(x,z)

[
log q̂φ(z)

]
(A22)

= Epθ(x,z)
[
log qφ(z|x)

]
− DKL(p(z)‖q̂φ(z)) + H(p(z); q̂φ(z)).

The last term in Equation (A22) is non-negative and the mutual information is lower
bounded by

Iθ(X̃; Z) ≥ Epθ(x,z)
[
log qφ(z|x)

]︸ ︷︷ ︸
=:−Lẑ(z,ẑ)

−DKL(p(z)‖q̂φ(z))︸ ︷︷ ︸
=:Dẑ(z,ẑ)

=: Iz
φ,θ(X̃; Z), (A23)

where we define Iz
φ,θ(X̃; Z) as a parametrised lower bound to Iθ(X̃; Z) and where we define

the two loss terms Lẑ(z, ẑ) and Dẑ(z, ẑ).
A symmetrical proof to the one given in Appendix C.2 shows that the optimal param-

eter φ† = arg maxφ Iz
φ,θ(X̃; Z) corresponds to qφ†(z|x) = pθ(z|x), i.e., when the encoder is

a perfect distribution-wise inverse of the decoder, and that maximising Iz
φ† ,θ(X̃; Z) with

respect to θ is equivalent to maximising Iθ(X̃; Z).
Again, in general, θ† = arg maxθ Ix

θ (X; Z) 6= arg maxθ Iz
φ† ,θ(X̃; Z) and only the com-

bined objective makes full sense.

Appendix D. ALAE Modified Term

In this appendix, we detail how to obtain the modified adversarial term of the ALAE
loss found in Equation (19). It is based on the same mutual information term as defined in
Appendix C.2, but following another decomposition:

Iφ(X; Z̃) = Eqφ(x,z)

[
log

qφ(x, z)
p(x)q̃φ(z)

]
= Eqφ(x,z)

[
log

qφ(z|x)
q̃φ(z)

]
, (A24)

in which we inject the parametrised approximated marginal distribution q̂φ(z) before
reorganising the expression as

Iφ(X; Z̃) = Eqφ(x,z)

[
log

qφ(z|x)
q̃φ(z)

·
q̂φ(z)
q̂φ(z)

]
= Eqφ(x,z)

[
log qφ(z|x)

]
−Eqφ(x,z)

[
log

q̃φ(z)
q̂φ(z)

]
−Eqφ(x,z)

[
log q̂φ(z)

]
(A25)

= Eqφ(x,z)
[
log qφ(z|x)

]
− DKL(q̃φ(z)‖q̂φ(z)) + H(q̃φ(z); q̂φ(z)).

The last term in Equation (A25) is non-negative and the mutual information is lower
bounded by

Iφ(X; Z̃) ≥ Eqφ(x,z)
[
log qφ(z|x)

]
− DKL(q̃φ(z)‖q̂φ(z)), (A26)

where the KLD term is the modified adversarial term D̄ẑ(z̃, ẑ) of the ALAE loss.
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