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Abstract: Multiple input multiple output (MIMO) technology necessitates detection methods with
high performance and low complexity; however, the detection problem becomes severe when high-
order constellations are employed. Variational approximation-based algorithms prove to deal with
this problem efficiently, especially for high-order MIMO systems. Two typical algorithms named
Gaussian tree approximation (GTA) and expectation consistency (EC) attempt to approximate the
true likelihood function under discrete finite-set constraints with a new distribution by minimizing
the Kullback–Leibler (KL) divergence. As the KL divergence is not a true distance measure, ’exclusive‘
and ’inclusive‘ KL divergences are utilized by GTA and EC, respctively, demonstrating different
performances. In this paper, we further combine the two asymmetric KL divergences in a nested way
by proposing a generic algorithm framework named nested variational chain. Acting as an initial
application, a MIMO detection algorithm named Gaussian tree approximation expectation consistency
(GTA-EC) can thus be presented along with its alternative version for better understanding. With
less computational burden compared to its counterparts, GTA-EC is able to provide better detection
performance and diversity gain, especially for large-scale high-order MIMO systems.

Keywords: massive multiple input multiple output (MIMO); nested variational chain; Gaussian tree
approximation (GTA); expectation consistency (EC)

1. Introduction

Multiple input multiple output (MIMO) technology has attracted broad attention
over the last decade and has been widely applied into practical communication systems.
The benefit of MIMO technology lies in the improvement of spectral efficiency and link
reliability due to the multiplexing and diversity gain that grows with the number of
elements, and a MIMO system is referred to as a massive MIMO system when the scale
of array elements grows large enough, which brings increasing difficulty to the signal
detection due to huge computational burden, hindering the prevailing usage of massive
MIMO systems [1,2].

Many research studies have been carried out for signal detection in massive MIMO
systems [3–17]. It is well known that the maximum likelihood detection presents the best
detection performance with the cost of exponentially growing computational burden [3].
Neglecting the finite-set constraint, the minimum mean square error (MMSE) approach can
be applied by solving the least square fit, and a closest lattice point can then be found by
treating symbols independently [4]. The MMSE approach normally exhibits a benchmark
performance when comparing different detectors, and its performance can be vastly im-
proved by MMSE-SIC when combining with the successive interference cancellation (SIC)
technique [5]. However, as MMSE or MMSE-SIC cannot provide satisfied performance,
several alternatives have been proposed instead, which can be divided into two major
categories, i.e., sub-space searching-based and variational inference-based detectors.

The sub-space searching-based category originates from the idea of reducing the
searching space of all possible lattice points with unacceptable complexity. Sphere decoding
tries to replicate the maximum likelihood performance by diminishing the searching space,
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the dimension of which grows up with the number of antennas as well as the modulation
order, making it prohibitive for the large-scale or high-order MIMO systems [6,7]. Another
two local searching-based approaches were proposed by the name of likelihood ascending
search and reactive tabu search [8–10], and the basic idea behind them is to search through
a proximity sub-space around a given initial solution. They present good performance for
a large number of antennas with low-order constellations but poor performance for high-
order constellations. A layered tabu search algorithm was proposed in [11] by performing
detection over layers, requiring a higher order of complexity for high-order constellations,
and a Gibbs sampling-based detector was proposed in [12] by performing a serial of one-
dimensional searches over iterations. It may provide good performance for low-order
constellations with the cost of enormous processing time. Therefore, algorithms in the
former category suffer from poor performance or prohibitive computational burden in
large-scale high-order MIMO systems.

Proved to be suitable for the detection problem resulted by high-order constellations,
the variational inference based category tries to approximate the true likelihood function
into a new distribution that is much easier to handle. A Gaussian tree approximation (GTA)
algorithm was proposed in [13,14] by transforming the fully connected factor graph into a
tree graph, based on which belief propagation based message passing can be proceeded for
inference. The GTA algorithm has comparable performance with MMSE-SIC at a similar
complexity only to MMSE. The expectation propagation (EP) algorithm was proposed for
MIMO detection in [15] by substituting true priors belonging to a discrete finite set with the
introduced Gaussian priors being able to be updated over iterations. EP performs the best at
a complexity several times that of MMSE, and its alternative named expectation consistency
(EC) was then proposed to provide a more general perspective than EP [16]. Two low-
complexity EP/EC-based algorithms were proposed for scenarios when the number of
transmit antennas is less than that the number of receiver ones [17,18], and a double-EP
based iterative detection and decoding was proposed by iteratively exploiting decoders
in [19]. EP/EC-based algorithms can also be applied into channel estimation problems in
massive MIMO systems [20,21].

In this paper, we would like to expand the variational inference paradigm by proposing
a nested variational chain. The basic idea behind it is that ’exclusive‘ and ’inclusive‘ KL
divergences employed by GTA and EC, respectively, are not exclusive and can be combined
in a nested way so as to form an approximation chain, by which both GTA and EC are
improved. The major contributions are listed as follows.

• Firstly, the basic idea of the nested variational chain is proposed, and an algorithm is
then proposed to establish a general framework. By referring to ’general‘, it means
this framework is able to combine ’exclusive‘ and ’inclusive‘ KL divergences, or it
degrades to either one as a special case.

• Secondly, providing several examples, we show that existing algorithms, such as
MMSE, GTA, and EC, can be regarded as special cases of the variational chain.

• Finally, to provide an initial application of the variational chain into massive MIMO
detection, a GTA-embedded Expecatation Consistency (GTA-EC) algorithm is pro-
posed which proves to provide better detection performance, especially for high-order
constellations. The complexity of GTA-EC is analyzed as well along with comparisons.

This paper is arranged as follows. Section 2 introduces the system model and MIMO
detection problem, based on which the nested variational chain is provided in Section 3
along with a generic algorithm framework. Section 4 derives the GTA-EC algorithm
with complexity analyses. Simulation results are demonstrated in Section 5 along with
discussions, and the conclusion is presented in Section 6. Throughout this paper, matrices
and vectors are denoted by symbols in boldface, and variables are denoted in italics. The
notation A> or a> is used to represent the transpose of a vector or matrix, and I represents
a unit matrix.
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2. Preliminary
2.1. Signal Model

A multiuser MIMO system is considered, without loss of generality, in which Ñ
transmitters, each equipped with one antenna, communicate with a base station that is
equipped with M̃ antennas. Assume each transmitter transmits any symbol x̃i ∈ C that
is selected from a Quadrature Amplitude Modulation (QAM) constellation set Ã, where
C stands for the complex domain, and the cardinality of the constellation set is |Ã| = A.
The transmitted symbols can be represented as a vector x̃ ∈ ÃÑ×1 with the average energy
of each QAM symbol defined as Ẽs. After propagating through the wireless channels, the
received signal ỹ ∈ CM̃×1 at the base station can be expressed as

ỹ = H̃ x̃ + ñ, (1)

where ñ ∈ CM×1 stands for additive Gaussian white noises (AWGN), each element having
zero mean and σ2

n variance. H̃ , [h̃1, . . . , h̃i, . . . , h̃N ] is defined as a matrix by stacking
up channel coefficients with h̃i = diag{h̃i,1, . . . , h̃i,m, . . . , h̃i,M} being Rayleigh flat-fading
channel coefficients of the ith symbol. Perfect channel state information (CSI) is assumed
such that H̃ is known at the base station.

The channel model above is usually re-expressed in the real domain by taking into
consideration real and imaginary parts, respectively. By defining R(·) and I(·) as op-
erations to take the real and imaginary part of a variable or matrix, one can define
y = [R(ỹ)> I(ỹ)>]>, x = [R(x̃)> I(x̃)>]>, n = [R(ñ)> I(ñ)>]>, and that

H =

[
R(H̃) −I(H̃)

I(H̃) R(H̃)

]
,

where y, n ∈ RM×1, x ∈ RN×1, H ∈ RM×N , M = 2M̃, N = 2Ñ, and R stands for the real
domain. The equivalent model in the real domain is then given as

y = Hx + n, (2)

where the variance of each element of n equals σ2
n = σ̃2

n/2, and x belongs to the pulse
amplitude modulation (PAM) constellation set A containing real and imaginary parts of
the A-QAM alphabets with its cardinality being |A| =

√
A. The average energy of a PAM

symbol is Es = Ẽs/2, and the signal-to-noise (SNR) of the MIMO system is then defined as

SNR = 10 · log10

(
NẼs

σ̃2
n

)
= 10 · log10

(
NEs

σ2
n

)
2.2. MIMO Detection

As the received signal in a MIMO system is a superposition of transmitted symbols
weighted by channel coefficients, the purpose of MIMO detection is to estimate successfully
all transmitted symbols impaired by channel fading and noises. As is well known, the
maximum a posteriori (MAP) detector could achieve the best detection performance by
maximizing the a posteriori probability as follows

x̂ = arg max
x∈A

P(x|y, H),

where the aposteriori distribution given the received signal y and CSI H is expressed as

P(x|y, H) ∝ N
(

y : Hx, σ2
nI
)
P(x), (3)

N
(
y : Hx, σ2

nI
)

is defined as Gaussian distribution with a mean vector of Hx and a co-
variance matrix of σ2

nI, and P(x) is defined as the a priori probability of symbols. When
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P(x) = ∏N
i=1

1√
A
Ixi∈A is uniformly distributed with Ixi∈A being an indication function

that takes value one if xi ∈ A and zero otherwise, the MAP detection degrades into the
maximum likelihood detection, i.e.,

x̂ = arg max
x

N
(

y : Hx, σ2
nI
) N

∏
i=1

Ixi∈A

The complexity of maximum likelihood detection grows up exponentially with the num-
ber of symbols N, making it prohibitive for middle- or large-scale MIMO systems with
especially high-order constellations.

3. Nested Variational Chain

In order to perform low-complexity MIMO detection, one popular approach is to
approximate the true posterior with another distribution that is much simpler to perform
inference on, and the KL divergence is commonly used to obtain the desired distribu-
tion. Defining Q(x) as the distribution utilized to approximate the true posterior, the
minimization of the ’exclusive‘ and ’inclusive‘ KL divergences can be expressed as

Q(x) = arg min
Q′(x)

KL
(
Q′(x)||P(x|y, H)

)
= arg min

Q′(x)

∫
x
Q′(x) log

Q′(x)
P(x|y, H)

, (4)

and

Q(x) = arg min
Q′(x)

KL
(
P(x|y, H)||Q′(x)

)
= arg min

Q′(x)

∫
x
P(x|y, H) log

P(x|y, H)

Q′(x) . (5)

For instance, the GTA algorithm takes the former way, while the EC algorithm takes the
latter one. However, with only one approximation, GTA is unable to update its approx-
imated tree structure, while EC only treats symbols in an independent way rather than
exploiting correlation among symbles. In this case, we then would like to demonstrate that
the two KL divergences could be combined together, and a nested variational chain is then
proposed in what follows.

Suppose there is a desired variational distribution G(x) that can be obtained with
’exclusive‘ KL divergengce:

G(x) = arg min
G ′(x)

KL
(
Q(x)||G ′(x)

)
, (6)

which is embedded in an optimization for Q(x) with Q(x) obtained in the first place as

Q(x) = arg min
Q′(x)

KL
(
P(x|y, H)||Q′(x)

)
. (7)

The processing above actually forms a variational chain with a nested structure given as

P(x|y, H)⇒ Q(x)⇒ G(x), (8)

indicatingQ(x) should be obtained according to the minimization of KL(P(x|y, H)||Q′(x))
with respect to Q′(x), and that the desired G(x) could then be obtained by minimizing
KL(Q(x)||G ′(x)) with respect to G ′(x). Following the roadmap, we may derive an algo-
rithm for the nested variational chain combining the two asymetric KL divergences.
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3.1. A Generic Framework for Nested Variational Chain

To begin with, a general statistical model should first be defined as follows [12],

P(x) ∝ F (x)∏
i

ti(x), (9)

where F (x) is a function belonging to the exponential family, and ti(x) for i = 1, . . . , I
are non-negative factors. Normally, it is intractable or prohibitive complex to perform
inference over P(x) such that the variational inference-based approaches provide another
distributionQ(x) that is tractable or easy to handle. The nested variational chain consists of
four steps: factor substitution, inner approximation, symbol detection and factor updating.

As for factor substitution, the optimization of the KL divergence should first be
achieved, i.e., Q(x) = arg minQ′(x) KL(P(x)||Q′(x)), for which the EC framework can be
employed. The EC algorithm assumes a distribution that belongs to the exponential family:

Q(x) ∝ F (x)∏
i

t̃i(x), (10)

where t̃i(x) instead of ti(x) for i = 1, . . . , I are modified factors, belonging to the exponential
family as well.

It should be noticed that the EC framework replaces each non-negative factor ti(x) by
another t̃i(x) in the exponential family. However, the distribution F (x) remains constant
during this optimization process, which may be further exploited. Based on this idea,
another variational distribution could be embedded inside as an inner approximation so as
to achieve a final distribution G(x), and the optimization in (6) could be performed:

G(x) = arg min
G ′(x)

KL
(
G ′(x)||Q(x)

)
= arg min

G ′(x)
KL

(
G ′(x)||F (x)∏

i
t̃i(x)

)
. (11)

The approximation is normally expressed as G(x) = ∏j Gj(x). When Gj(x) for j = 1, . . . , J
are defined as disjoint groups, it is mean-field approximation, and structured approximation
can be employed when Gj(x) for j = 1, . . . , J are overlapped with each other.

Toward symbol detection, a cavity distribution for each factor can then be acquired as

G\i(x) = G(x)
t̃i(x)

(12)

and the final distribution can be represented as

G̃i(x) ∝
N

∏
i=1
G\i(x)ti(x)︸ ︷︷ ︸

pi(x)

, (13)

with pi(x) , G\i(x)ti(x) defined as a new distribution by attaching the true factor.
The moments of pi(x) are then obtained by exploiting the true distribution ti(x)

as Epi(x)[φ(x)], where φ(x) stands for the sufficient statistics of the exponential family.
A new factor t̃ new

i (x) is updated as well by satisfying the moment-matching condition
Epi(x)[φ(x)] = Eqi(x)[φ(x)] with

qi(x) ∝ G\i(x)t̃ new
i (x), (14)

such that the distribution Q(x) is able to be updated iteratively.
An algorithm is provided in Algorithm 1, which is used to approximate a statistical

modelP(x) ∝ F (x)∏i ti(x). Associating with the four steps described above, the algorithm
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first substites all factors in Step 1 with much easier accessible ones by using the ’inclusive‘
KL divergence, as seen in the EC algorithm. After that, the algorithm further approximates
Q(x) with a new distribution in Step 2 such that better detection performance is expected.
With detection proceeded on the new distribution, moment matching can be achieved in
Step 3 so as to update substituted factors in Step 4. Note that any of the steps, such as
factor substitution, inner approximation, or factor updating, may be skipped for a certain
purpose so as to form a special case. In the next subsection, we would like to demonstrate
that the MMSE, GTA and EC algorithms could be deemed as special cases.

Algorithm 1 An algorithm for nested variational chain

Require: A statistical model P(x) ∝ F (x)∏i ti(x).
Ensure:

repeat
(1) Step 1: Factor Substitution.
Substitute each non-negative factor ti(x) with t̃i(x) for i = 1, . . . , I such that Q(x) ∝
F (x)∏i t̃i(x).
(2) Step 2: Inner Approximation.
Obtain a new distribution to approximate Q(x) as

G(x) = arg min
G ′(x)

KL
(
G ′(x)||Q(x)

)
(3) Step 3: Symbol Detection.
for i ∈ [1, . . . , I] do

Obtain a cavity distribution as G\i(x) = G(x)/ t̃i(x), and then achieve moment
matching between pi(x) ∝ G\i(x)ti(x) and qi(x) ∝ G\i(x)t̃ new

i (x).
end for
(4) Step 4: Factor Updating.
Substitute t̃i(x) with t̃ new

i (x) into Q(x) ∝ F (x)∏i t̃i(x) and repeat this procedure if
necessary.

until Convergence is achieved.
Output: Detection results on the approximated distribution.

3.2. MMSE, GTA and EC MIMO Detectors as Special Cases

In a MIMO system, the distribution F (x) can be expressed as the likelihood function,
i.e., F (x) ∝ N (y : Hx, σ2

nI), and each non-negative factor ti(x) for i = 1, . . . , I could be
regarded as the apriori probability with respect to symbols. When a factor ti(x) corresponds
only to one symbol xi, it reduces to ti(xi) = P(xi) = 1√

A
Ixi∈A. Hence, as there are N

symbols in a MIMO system, there would be N factors or priors as well, and the expression
for the substituted factor t̃i(xi) for i = 1, . . . , N depends on any specific algorithm.

(1) Minimum Mean Square Error
The MMSE approach could be obtained by assuming that each non-negative factor

ti(xi) for i = 1, . . . , N can be replaced by a Gaussian distributed factor t̃i(xi) = N (xi : 0, Es)
of zero-mean and a variance of Es, and the modified distribution with factor substitution
for MMSE is then given as

QMMSE(x) ∝ N
(

y : Hx, σ2
nI
) N

∏
i=1
N (xi : 0, Es), (15)

whose second-order and first-order moments are derived asΣMMSE =

(
H>H +

σ2
n

Es
I
)−1

µMMSE = ΣMMSEH>y
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Not mentioned though before, there is actually a simple inner approximation for MMSE to
approximate the distribution QMMSE(x). With a fully factorized distribution
GMMSE(x) = ∏N

i GMMSE(xi), each factorized one can be obtained as

GMMSE(xi) ∝ exp
(
〈lnQMMSE(x)〉∼GMMSE(xi)

)
∝ N (xi : µi,MMSE, Σi,MMSE), (16)

which is known as the mean-field approximation. The expression 〈·〉∼GMMSE(xi)
refers to

expectation with respect to all factors GMMSE(xj) for j = 1, . . . , N except for GMMSE(xi).
This process is equivalent to marginalization ofQMMSE(x) with µi,MMSE and Σi,MMSE being
the ith element of µMMSE and of the diagonal of ΣMMSE.

The MMSE approach skips factor updating, but instead it may output directly the
hard detection results. The final distribution of MMSE is expressed as

G̃MMSE(x) ∝
N

∏
i=1

GMMSE(xi)ti(xi)︸ ︷︷ ︸
pMMSE,i(xi)

, (17)

where pMMSE,i(xi) , GMMSE(xi)ti(xi) is defined as a new distribution by attaching true
priors, based on which symbol detection can be proceeded for each symbol independently.

(2) Expectation Consistency
The EC algorithm defines a substitution factor for each symbol as well. It replaces the

prior ti(xi) =
1√
A
Ixi∈A to t̃i(xi) ∝ eγixi− 1

2 Λix2
i so the posterior can be expressed as

QEC(x) ∝ N
(

y : Hx, σ2
nI
) N

∏
i=1

eγixi− 1
2 Λix2

i (18)

Note that t̃i(xi) ∝ eγixi− 1
2 Λix2

i is Gaussian distributed. In this regard, it can be noticed that
EC relates essentially to MMSE with the difference that it is able to update priors. The
second-order and first-order moments of QEC(x) are derived as

ΣEC =
(

σ−2
n H>H + Λ

)−1

µEC = ΣEC

(
H>y + γ

)
where Λ is a diagonal matrix containing Λi, and γ is a vector containing γi for i = 1, . . . , N.

The EC algorithm employs mean-field approximation for inner approximation as well,
by which the fully factorized distribution is defined as GEC(x) = ∏N

i GEC(xi), and each
factorized distribution GEC(xi) is Gaussian distributed such that:

GEC(xi) ∝ exp
(
〈lnQEC(x)〉∼GEC(xi)

)
∝ N (xi : µi,EC, Σi,EC), (19)

with µi,EC and Σi,EC being the ith element of µEC and of the diagonal of ΣEC, respectively.
By doing so, factor updating is then operated with a cavity distribution:

G\iEC(xi) =
GEC(xi)

t̃i(xi)
, (20)

and the final distribution for EC is represented as

G̃EC(x) ∝
N

∏
i=1

G\iEC(xi)ti(xi)︸ ︷︷ ︸
pEC,i(xi)

, (21)
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where pEC,i(xi) , G\iEC(xi)ti(xi) is defined as a new distribution. Symbol detection can
then be performed to achieve the moment-matching condition so the pairs (γi, Λi) for
i = 1, . . . , N are updated in parallel.

(3) Gaussian Tree Approximation
The GTA algorithm was proposed based on the modified distribution of MMSE, and

its distribution with substituted factors can be represented as

QGTA(x) = QMMSE(x) ∝ F (x)
N

∏
i=1

t̃i(xi)

∝ N
(

y : Hx, σ2
nI
) N

∏
i=1
N (xi : 0, Es). (22)

As for inner approximation, the GTA algorithm chooses to optimally approximate the
distribution with a tree graph, which can be constructed based on QGTA(x) as

GGTA(x) = arg min
G ′(x)

KL
(
G ′(x)||QGTA(x)

)
= ∏

i
GGTA

(
xi|xpa(i)

)
, (23)

where GGTA(xi|xpa(i)) stands for the conditional probability of xi given its parent xpa(i),
and GGTA(xi|xpa(i)) = GGTA(xi) in case that xi is the root of the tree.

This leads to a result that GTA skips factor updating as well, similar to MMSE, and the
performance of the GTA algorithm is subject to the fixed initial distributionQGTA(x) that is
not able to be updated. In this case, by directly attaching the true priors ti(xi) =

1√
A
Ixi∈A

for i = 1, . . . , N, the final distribution of GTA is then represented as

G̃GTA(x) ∝
N

∏
i=1

GGTA

(
xi|xpa(i)

) N

∏
i=1

ti(xi)

=
N

∏
i=1

GGTA

(
xi|xpa(i)

)
ti(xi)︸ ︷︷ ︸

pGTA,i(xi)

. (24)

where pGTA,i(xi) , GGTA(xi)ti(xi). Proceeding on such a loop-free tree graph, message
passing can then be utilized to perform efficient detection during all but one iteration.

4. Applications into MIMO High-Order Detection

Introducing the nested variational chain for MIMO detection, it can be seen that all
existing approaches employ factor substitution. As for inner approximation, MMSE and EC
actually perform mean-field approximation with fully factorized distribution, while GTA
performs the maximum spanning tree approximation. Finally, only EC performs factor
updating, while MMSE and GTA choose to perform direct detection.

This analysis puts forward the question of whether any improvement can be achieved
when one enables GTA to update its substituted factors or whether any better inner approx-
imation can be derived for EC rather than being fully factorized. Both thoughts lead us to
an idea that it is worth trying to update the GTA factors iteratively since the approximated
Gaussian tree is capable of capturing correlation among symbols rather than keeping inde-
pendence among them. Following this idea, an initial application of the nested variational
chain can be performed. By utilizing EC as an outer approximation, an algorithm named
GTA-embedded EC (GTA-EC) is proposed in the following.

4.1. The GTA-EC Algorithm

Given ti(xi) ∝ Ixi∈A for i = 1, . . . , N, the algorithm starts from the likelihood function
with discrete priors as in (3), i.e.,
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QGTA−EC(x) ∝ N
(

y : Hx, σ2
nI
) N

∏
i=1

Ixi∈A, (25)

which could be divided into two parts, i.e.,

fq(x) = N
(

y : Hx, σ2
nI
)

, (26)

fr(x) =
N

∏
i=1

Ixi∈A (27)

It is then possible to define a new distribution q(x) as

q(x) ∝ fq(x) exp

(
γ>q x−

x>Λqx
2

)
, (28)

of which the moments can be expressed as
Σq =

(
H>H + Λq

)−1

µq = Σq

(
σ−2

n H>y + γq

)
Note that the pair (γq, Σq) acts as priors of all symbols to be updated, and that the definition
of q(x) actually serves as factor substitution.

To achieve moment consistency, another distribution s(x) is then defined as

s(x) ∝ exp

(
γ>s x− x>Λsx

2

)
, (29)

where moment matching between s(x) and q(x) should be achieved so as to obtain γs and
Λs. The EC algorithm assumes another distribution:

r(x) ∝ exp

(
γ>r x− x>Σrx

2

)
fr(x), (30)

with moments derived as {
γr = γs − γq

Λr = Λs −Λq

It can be observed that exp
(

γ>r x− x>Σrx
2

)
partly in r(x) actually serves as a cavity distri-

bution of symbols by subtracting their substituted priors (γq, Σq).
The next step involves inner approximation. Since fully factorization for r(x) neglects

correlation among symbols, we instead propose utilizing the Gaussian approximation tree
to perform detection according to the moments µr, Σr, µq, and Σq. This is because the
Gaussian approximation tree may capture correlation among symbols rather than treating
them independently. In this case, we define a new Gaussian tree-based distribution g(x)
rather than r(x) as

g(x) ∝ fr(x)
N

∏
i=1

G\i
(

xi|xpa(i)

)
=

N

∏
i=1

G\i
(

xi|xpa(i)

)
Ixi∈A︸ ︷︷ ︸

p′i|pa(i)(xi)

(31)

where p′i|pa(i) , G\i
(

xi|xpa(i)

)
Ixi∈A is a new distribution by attaching true priors, and the

conditional distribution can be represented as
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G\i
(

xi|xpa(i)

)
∝ exp

−1
2

[
(xi − µr

i )−
Σi,pa(i)

Σpa(i),pa(i)
(xpa(i) − µpa(i))

]2

Σr
i,i −

Σi,pa(i)
Σpa(i),pa(i)

 (32)

where µr
i and Σr

i,i for i = 1, . . . , N are taken from µr and the diagonal of Σr, respectively,
while µi and Σi,i for i = 1, . . . , N are taken from µq and the diagonal of Σq.

Based on g(x), message passing on the Gaussian tree can then be proceeded:

Mi→pa(i)

(
xpa(i)

)
= ∑
∼xi

G\i
(

xi|xpa(i)

)
ti(xi)︸ ︷︷ ︸

pi|pa(i)(xi)

∏
j|pa(j)=i

Mj→i(xi) (33)

and
Mpa(i)→i(xi) = ∑

∼xpa(i)

G\i
(

xi|xpa(i)

)
ti(xi)︸ ︷︷ ︸

pi|pa(i)(xi)

× ∏
j|j 6=i,pa(j)=pa(i)

Mj→p(i)

(
xpa(i)

)
Mpa(pa(i))→pa(i)

(
xpa(i)

)
(34)

To achieve consistency, the distribution s(x) is finally utilized once again to achieve
moment matching between g(x) and s(x) so as to obtain γs and Σs, and the a priori
moments can be updated: {

Λnew
q = β(Λs −Λr) + (1− β)Λq

γnew
q = β(γs − γr) + (1− β)γq

(35)

The GTA-EC algorithm is concluded and depicted in detail in Algorithm 2. In step 1, the
GTA-EC algorithm initiliazes the distribution q(x), which behaves as an outer approxima-
tion by substituting true factors. In step 2, the inner approximation is applied to q(x) by
using its moments, such that a maximum spanning tree is constructed. With the derived
tree structure, the algorithm repeats step 3 and step 4 over iterations such that factors can
be updated by performing symbol detection and moment matching, and hard outputs can
then be obtained according to the final distribution.

Algorithm 2 The GTA-EC Algorithm

Require: y, H, Es and σ2
n . InitializeMi→pa(i)(xpa(i)) = 1/

√
A,Mpa(i)→i(xi) = 1/

√
A, γi = 0 and Λi = E−1

s for
i = 1, . . . , N.

Ensure:
(1) Step 1: Factor Substitution.
Initial q(x) ∝ fq(x) exp

(
γ>q x− 1

2 x>Λqx
)

.
(2) Step 2: Inner Approximation.
The maximum Gaussian spanning tree is constructed according to the initial covariance matrix such that the
tree structure and relationship among symbols can be obtained.
repeat

(3) Step 3: Symbol Detection.
Obtain r(x) by achieving consistency between q(x) and s(x), and obtain g(x) according to the established tree
structure and derived moments. Perform message passing in updatingMi→pa(i)(xpa(i)) andMpa(i)→i(xi)

according to (33) and (34), and obtain the aposteriori statistics by achieving consistency between g(x) and
s(x).
(4) Step 4: Factor Updating.
Update γnew

q and Λnew
q such that qnew(x) can be updated.

until A maximum number of iterations has been achieved.
Output: Hard outputs according to the first-order moments of the latest qnew(x).
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4.2. Complexity Analysis

The calculation of GTA-EC resides mainly on three parts. The first one involves the
factor substitution step, which necessitates the calculation of second-order and first-order
moments in (29), the same as MMSE in (16) or EC in (19). As is well known, its com-
plexity in one iteration can be given as O(NM2). The second part involves construction
of the tree graph for inner approximation, which needs only to be initialized at the very
beginning of iterations. The construction is based on Prim’s algorithm, whose complexity
is O(M2). The last part involves the calculation of message passing and factor updat-
ing. For each iteration, the major complexity lies in calculating messages in (33) and (34),
each requiring the maximum likelihood detection on the conditional distribution with
the cardinality of PAM constellation being |A| =

√
A. Since there are M− 1 conditional

distributions in the tree graph, the complexity can be represented as O
(

M|A|2
)
= O(MA).

Therefore, by defining Niter as the number of iterations to proceed, the total complex-
ity can be expressed as O

(
(Niter + 1)NM2 + M2 + Niter MA

)
≈ O

(
(Niter + 1)NM2) due

to the reason that NM2 � MA is normally satisfied in a massive MIMO system. This
indicates that the complexity of GTA-EC is about Niter times more than that of MMSE
or GTA, namely O

(
NM2). As a comparison, the complexity of EC can be expressed as

O((Niter + 1)NM2 + M + Niter M
√

A) ≈ O
(
(Niter + 1)NM2), suggesting that the complex-

ity of GTA-EC is approximately in the same order. The less iterations one algorithm needs
to perform, the less complexity it requires. In the next section, when comparing the per-
formance of GTA-EC with EC, the number of iterations should be utilized for complexity
comparison. A summary of complexity comparison is demonstrated in Table 1, in which it
can be found that the total complexity is dominated by the complexity of factor substitution
as well as the number of iterations.

Table 1. Comparisons of complexity.

Algorithm Factor Substitution Inner Approximation Detection and Factor Updating Total Complexity

MMSE O
(

NM2) O(M) O
(

M
√

A
)

O
(

NM2)
GTA O

(
NM2) O

(
M2) O(MA) O

(
NM2)

EC O
(
(Niter + 1)NM2) O(M) O

(
Niter M

√
A
)

O
(
(Niter + 1)NM2)

GTA-EC O
(
(Niter + 1)NM2) O

(
M2) O(Niter MA) O

(
(Niter + 1)NM2)

5. Numerical Results
5.1. Simulation Parameters

In this section, the detection performance of a MIMO system is evaluated in terms of
bit error rate (BER). Uncorrelated scattering flat-fading channel model is assumed with
channel coefficients being modeled as complex Gaussian distributed variables that are
independently generated for all antennas. During the simulation, 20,000 realizations of
the channel matrix are employed with each used to send one message. As a comparison,
several existing algorithm are evaluated as well such as the MMSE, GTA, and EC algorithms.
And we mainly take into consideration the ’worst-case‘ scenarios of load α = N/M = 1
when N = M = 16 and N = M = 64 with high-order constellations 16-QAM, 64-QAM,
and 256-QAM considered. The factor β is set as 0.2 for all algorithms, and the iteration
number of EC and GTA-EC is set as 2, 4, and 6 since convergence can be achieved within
six iterations.

5.2. Performance Evaluation

Figures 1–3 demonstrate the BER comparison of the GTA-EC algorithm with existing
algorithms. The number of antennas deployed at both the transmitter and receiver in
the system is set as N = M = 16 with the constellations being 16-QAM, 64-QAM and
256-QAM, respectively. It can be found that GTA-EC outperforms EC with the same
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number of iterations, and that GTA-EC with f our iterations outperforms EC with six
iterations, indicating that GTA-EC may achieve better performances than EC does with
lower complexity. While in Figures 2 and 3, GTA-EC with two iterations almost exibits
better performance than EC with six iterations, revealing better performance gain when
high-order constellations are employed. One can further obseve that the BER slopes of
GTA-EC decrease faster than that of EC, demonstrating that superior divergence gain can
also be obtained by GTA-EC in a high SNR regime.

SNR/dB

15 20 25 30

B
E

R

10
-5

10
-4

10
-3

10
-2

10
-1

MMSE

GTA

EC, N
iter

=2

EC, N
iter

=4

EC, N
iter

=6

GTA-EC, N
iter

=2

GTA-EC, N
iter

=4

GTA-EC, N
iter

=6

Figure 1. BER comparison of GTA-EC with existing algorithms when N = M = 16 with 16-QAM.
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Figure 2. BER comparison of GTA-EC with existing algorithms when N = M = 16 with 64-QAM.
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Figure 3. BER comparison of GTA-EC with existing algorithms when N = M = 16 with 256-QAM.

Figures 4–6 demonstrate a BER comparison of the GTA-EC algorithm with existing
algorithms. The number of antennas deployed at both the transmitter and receiver is
given as N = M = 64 with the constellations being 16-QAM, 64-QAM and 256-QAM,
respectively. In these figures, it can be found that GTA-EC outperforms EC with the same
number of iterations, while GTA-EC with f our iterations may have similar performance to
that of EC with six iterations. This indicates that GTA-EC exhibits better performance than
EC does at the same order of complexity or that GTA-EC presents similar performance to
that of EC with lower complexity. And in Figures 4 and 5, one can further observe that the
BER slope of GTA-EC decreases faster than that of EC, leading to better performance in a
high SNR regime.
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Figure 4. BER comparison of GTA-EC with existing algorithms when N = M = 64 with 16-QAM.
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Figure 5. BER comparison of GTA-EC with existing algorithms when N = M = 64 with 64-QAM.
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Figure 6. BER comparison of GTA-EC with existing algorithms when N = M = 64 with 256-QAM.

By observing and analyzing the figures in different scenarios, we may come to conclu-
sions about the performance comparison of GTA-EC with existing algorithms.

• On one hand, both EC and GTA-EC significantly outperform existing algorithms such
as MMSE and GTA. In most scenarios, GTA-EC can obviously outperform EC with
either 16-QAM, 64-QAM, or 256-QAM employed. The performance gain of GTA-EC
becomes larger when high-order constellation is employed. For example, both the 64-
QAM and 256-QAM cases exhibit larger gain than the 16-QAM case when employing
16 or 64 antennas. This indicates that GTA-EC has superior performance gain and is
especially suitable for high-order constellations. We believe that the performance gain
comes from exploiting additonal relations (correlation) among symbols rather than
treating them independently.
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• On the other hand, as for the complexity issue, GTA-EC with f our iterations may
outperform or have comparable performance to EC with six iterations, suggesting
that GTA-EC requires less complexity than EC by recalling that their computational
burdens are dominated by the number of iterations needed. As a result, f our iterations
are recommended for GTA-EC according to the simulation results, and hence the
complexity of GTA-EC is approximately f our times more than MMSE, indicating that
it is a practical method for massive MIMO systems.

6. Conclusions

A nested variational chain is proposed along with an algorithm provided, which
combines two asymmetic KL divergences. Introduced into MIMO systems, it can be found
that several existing algorithms such as MMSE, GTA, and EC can be regarded as special
cases. As initial applications for MIMO detection, an algorithm named GTA-EC is proposed
with complexity analysis, and numerical results prove that it may achieve better detection
performance with less complexity compared to existing algorithms. As for further research
topics, it is suggested that one can find better inner approximation that may capture much
more correlation among symbols by applying this framework to other detection fields,
such as space code multiple access (SCMA), orthogonal time frequency space (OTFS), or
low-density parity check (LDPC) decoding systems.
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