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Abstract: The restricted Boltzmann machine (RBM) is a generative neural network that can learn in
an unsupervised way. This machine has been proven to help understand complex systems, using
its ability to generate samples of the system with the same observed distribution. In this work, an
Ising system is simulated, creating configurations via Monte Carlo sampling and then using them
to train RBMs at different temperatures. Then, 1. the ability of the machine to reconstruct system
configurations and 2. its ability to be used as a detector of configurations at specific temperatures
are evaluated. The results indicate that the RBM reconstructs configurations following a distribution
similar to the original one, but only when the system is in a disordered phase. In an ordered phase, the
RBM faces levels of irreproducibility of the configurations in the presence of bimodality, even when
the physical observables agree with the theoretical ones. On the other hand, independent of the phase
of the system, the information embodied in the neural network weights is sufficient to discriminate
whether the configurations come from a given temperature well. The learned representations of
the RBM can discriminate system configurations at different temperatures, promising interesting
applications in real systems that could help recognize crossover phenomena.

Keywords: restricted Boltzmann machine; Ising model; learning representation; multilayer perceptron;
crossover

1. Introduction

Since Hinton and Salakhutdinov [1] introduced the restricted Boltzmann machines
(RBMs), there have been many applications and research in which unsupervised learning
using this type of neural network has allowed researchers to find complex representations
of the input data in a compressed form in several disciplines. For example, the discovery of
patterns of coevolution between amino acids in protein sequences [2], the capture of higher-
order statistical dependencies in ECG signals and their reconstruction [3], the creation
of representative vectors of speech in speaker recognition [4] and the finding of product
cross-categories dependencies obtained from sampling market baskets [5], just to mention
a few examples.

To achieve these high-level representations, the RBM must initiate a learning process
that consists of an iterative adjustment of the weight’s connections between neurons
in the input and the hidden layers, such that the likelihood of the training data being
used is maximized. Once this process is completed, the neural network can be used to
generate or reconstruct new samples from the learned probability distribution. In traditional
feedforward neural networks, the information flows forward to calculate an error between
the input value and the prediction and then adjusts the weights in proportion to that error
(the backpropagation error). However, in an RBM, the learning is based on a process called
contrastive divergence [6], which allows for a more-efficient and faster convergence than other
traditional methods such as simulated annealing [7] and sequential Gibbs sampling [8] (for
a more exhaustive review of the learning process, please review Zhang and colleagues [9]).
This particular distinction makes RBMs a type of neural network with sample-generation
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and learning-representation capabilities. Thus, the RBM trained with appropriate inputs
provides an interesting tool to represent complex dependencies in the data through samples
synthetically generated from the neural network itself.

Recent studies have used Boltzmann machines to produce generative samples on
the paradigmatic Ising models. For example, the process of generating samples using
RBMs accelerates the Monte Carlo simulation of the system, identifying distinct patterns of
clusters in the lattice [10]. Similar to this work, an RBM is trained from Metropolis samples
of an Ising system at a fixed temperature, and they analyze the ability of the machine to
reproduce salient features of phase transition [11,12].

Modeling the thermodynamic observables of many-body physical systems, such as,
for example, that of an Ising system through unsupervised learning by using Boltzmann
machines, has captured the attention of researchers who have found interesting results.
First, the trained Boltzmann machines are able to generate spin states that capture thermo-
dynamic observables (i.e., energy, magnetization, specific heat and susceptibility) similar to
the original ones generated by Monte Carlo simulation methods [13,14], even identifying
phase transitions [15,16]. Second, the appearance of the RBM flow, a phenomenon consist-
ing of the convergence of the machine to a fixed point (close to the critical temperature)
after iterative reconstructions of spin configurations [16–19]. Third, the possibility of char-
acterizing the Ising phase transition from the matrix of weights connecting the visible and
hidden units of the RBM [14,18,20].

There is evidence that RBMs are able to capture the distribution of the Ising model [21,22]
and also detect phase transitions without external help from a human [23]; however, the present
work does not deal with the latter aspect but rather with the RBM’s ability to detect input
configurations that do or do not correspond to a given system temperature even when the RBM
has difficulty generating samples that are physically incompatible with the Ising system.

This study has two primary purposes: The first is to show that the RBM possesses
some synthetic-sample-generation problems, particularly in situations where the distri-
bution is bimodal, such as in an Ising system when the system temperature is below the
critical temperature. Second, despite this difficulty, the trained RBM encodes sufficient
information (with only one hidden layer) through the network weights to successfully
guess the temperature of a system configuration.

The following sections of the manuscript are organized as follows: I describe the prob-
lem of RBMs to generate samples under certain conditions. I then describe the methodology
used to train the RBM and generate Ising samples. Next, I describe the ability of the RBM
to generate representations of various sample configurations and to discriminate whether
or not the samples correspond to a certain temperature of the system. Finally, I show how
these results can be helpful and applied in contexts other than an Ising system.

2. Materials and Methods

This work’s development involves four phases, which can be described as: 1. Monte
Carlo simulations of the Ising system at a specific temperature, 2. training of the RBM,
3. training a multilayer perceptron (MPL) and 4. evaluation of the MLP. Most of the
methods used in this work are standard and well known, so I will briefly describe the
Monte Carlo generation of Ising samples and the RBM training, with references in case the
reader needs to go deeper into the algorithms.

2.1. Ising Simulations

To keep the analysis computationally simple, we use a two-dimensional lattice as
the object of study of size L × L, with periodic border conditions, i.e., borders wrapped
around the opposite site, being L = 10, i.e., N = 100 spins, which can adopt values
si = ±1, i = 1, . . . , N. The couplings are between spin i and j, and Jij is ferromagnetic with
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Jij = J = 1 and external magnetic field h = 0. In this case, the Hamiltonian of the system
for a particular state s = (s1, s2, . . . , sN) can be described as

H(s) = −J ∑
⟨i,j⟩

sisj (1)

where ⟨i, j⟩ represents the nearest neighbors for spin i and j. For any given spin, the number
of nearest spins will be always another four.

The Metropolis Monte Carlo (MC) method [24] is used to create system configura-
tions at a given temperature T. I follow the procedure similar to the one in Iso, Shiba,
Yokoo (2018) [17] and Morningstar and Melko (2018) [12], in which I prepare 214 MC sim-
ulated configurations from the target probability distribution of a configuration s given
by p(s, T) = 1/Zse−H(s)/T . To achieve this, the system must be in thermal equilibrium
at temperature T. By observing the magnetization M and energy E per site during the
Metropolis sweeps process (see Equation (2)) outside the critical region, the equilibrium
state tends to be achieved quickly in the first few iterations. For calculating observables
(such as those indicated in Figure 1), I discard the first 8000 configurations and then select
the remaining configurations but spaced every 100 successive configurations so that they
are less correlated.

T=2.0 T=2.3 T=3.0 T=4.0

Figure 1. The left part of the figure shows the shape of the magnetization curve of the spins as a
function of temperature (the M-T plane). The right part is the absolute value of the magnetization |M|.
The dotted blue line represents the critical temperature for this system (Tc ≈ 2.269). The red-colored
curve is the theoretical approximation corresponding to the Onsager’s solution [25] for T < Tc,
in which |M| = (1 − sinh−4(2J))1/8. The four figures below represent sample configurations of the
Ising system for L = 10 at different temperatures.

Initially, the system starts with a random s configuration, and then the orientation of
each spin is flipped according to

pi =

{
1 if ∆Hi < 0
e−∆Hi/T if ∆Hi ≥ 0

(2)
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where ∆Hi is the energy change in the system when we change the spin orientation i.
After many iterations of flipping all the spins, the configuration begins to converge to an
equilibrium state at temperature T. In the simulations, I flipped each of the N spins in
random order. This represents a Metropolis sweep.

It should be noted that at a temperature near the critical temperature (e.g., at T = 2.3),
the critical slowing down manifests itself, making it more challenging to obtain steady-state
configurations. A visual inspection of M and E after many iterations (over 5000) reveals that
the system achieves some but not complete stabilization due to persistent low-magnitude
oscillations. By selecting samples at this temperature, a higher error level in the observables
manifests itself, which is visible in the error bars in Figure 1.

To obtain an idea of the average orientation or magnetization, M = 1
N ∑ si of the

system configurations, Figure 1 shows the typical magnetization curve in a temperature
range from 1.3 to 3.7. In this range of temperature, we can see the magnetization of the
system below and above the critical system temperature Tc (Tc ≈ 2.269J for a 2D lattice [25]).

A visible phase transition can be seen in Figure 1 between T = 2 and T = 2.5. It
is important to note that for a temperature lower than Tc, the average orientation of the
spins tends to follow one of the two ground states (almost all spins up or down). The RBM
should learn that both equilibrium configurations can be attributed at the same temperature.
At temperatures above the critical value, spins tend to be randomly distributed. Thus,
the results of all these configurations for each temperature will be the input data used to
train the Boltzmann machine.

2.2. Restricted Boltzmann Machine Learning

In this section, I review the basic algorithm for training RBMs. For more technical
details of the Boltzmann machine learning process, the reader can review [26–28].

In its simplest form, the RBM consists of two layers: an input layer with m = nV,
v = (v1, . . . , vm) visible units and an invisible layer with n = nH, h = (h1, . . . , hn) hidden
units. It is equivalent to a bipartite network in which the connections are between the
neurons of the input layer and the hidden layer, but connections between neurons of
the same layer are not allowed. It is in the hidden layer where the machine extracts the
statistical features of the input data.

For training purposes, the input to the visible layer is the Ising configurations sampled
with MC. The Ising system has N = L2 = 100 spins, and then the number of visible units
of the machine will be nV = m = 100.

Regarding the number of hidden units, at present, such a choice seems to be of
empirical matter. Too high a number (e.g., nH > nV) seems to be unnecessary since a high
percentage of neurons in this layer become inactive and encode very little information from
the input [29], and the network tends to learn too many noisy fluctuations [17]. On the
other hand, with a very low number of units, there is a risk of limiting learning and
failing to recognize complex patterns and interrelationships between variables in the input
units [2,26]. The number of hidden units that seems to work well in practice is close to half
the number of visible units, so nH = n = 64.

The main objective of the RBM can be understood as a neural network that adjusts
its weights (connections between the visible and hidden units) such that the learned p(v)
distribution models the underlying q(v) distribution in the training data. The above is
equivalent to maximizing the likelihood function given by:

lnL(θ|S) =
l

∑
i=1

ln p(vi|θ). (3)
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where S is the given dataset and θ = {W, B, C} is the set of RBM parameters. Expressed
differently, RBM learning is an optimization process that consists of minimizing the distance
between q(v) and p(v), or the Kullback–Leibler (KL) divergence:

KL(p||q) = ∑
v∈ω

p(v) ln
p(v)
q(v)

= ∑
v∈ω

p(v) ln p(v)− ∑
v∈ω

p(v) ln q(v) (4)

The KL divergence is minimized by adjusting the weights of the network W connecting
each visible unit to all hidden units and its biases B and C for visible and hidden units,
respectively. The description of the p(v) distribution of learning from the joint probability
distribution of (v, h) will be given by

p(v) = ∑
h

p(v, h) =
1
Z ∑

h
exp(−E(v, h)) (5)

where Z = ∑v,h exp(−E(v, h)) is the partition function with its energy function:

E(v, h) = −
m

∑
i=1

n

∑
j=1

wijhivj −
m

∑
j=1

bjvj −
n

∑
i=1

cihi (6)

Approximating the expectation over q in Equation (4) with training samples from q
results in the log-likelihood function Equation (3), so maximizing the log likelihood is the
same as minimizing the KL divergence.

In RBMs, the gradient of the log likelihood can be written in terms of the sum of two
expectations as

∂ lnL(θ|v)
∂wij

∝ ⟨vihi⟩data − ⟨vihi⟩model (7)

where the notation ⟨. . .⟩ denotes expectations. A similar expression for the log likelihood
with respect to the bias parameters of visible bj and hidden units ci is used. The problem is
that the second expectation ⟨vihj⟩model is difficult to obtain since it requires using enough
MC sampling, which makes the process too slow. Instead, it has been found that obtaining
estimates of this expectation can be performed through Gibbs sampling chain running
for k steps (usually works well with k = 1), a process called contrastive divergence [6,30].
Thus, the gradients in the direction of each parameter are obtained by estimating the
expectations on p(v) in Equation (7) in sample batches vk. Finally, the upgrading of the
network parameters θ is made iteratively such that

∆wij = η
(
⟨vihj⟩data − ⟨vk

i hj⟩model
)

∆bi = η
(
⟨vi⟩data − ⟨vk

i ⟩model
)

∆cj = η
(
⟨hj⟩data − ⟨hj⟩model

) (8)

where η is the learning rate. For RBM training using samples from the Ising system at a
specific temperature, the initial learning rate is 0.0001 and then progressively decreases
across epochs with a decay of 0.01 with a momentum of 0.8. The number of epochs is
usually between 200 and 500 and depends on the convergence of the reconstruction error
(the mean square deviation between the original and reconstructed data and an increasing
pseudolikelihood). The Gibbs sampling number in the negative training phase is k = 20.
The size of the batch size presented to the RBM on each epoch was 128 configurations.
The initial values of the θ parameters were initialized with random values drawn from a
Gaussian distribution with a zero mean and standard deviation of 0.01 [26]. During learning,
batches of system configurations of the Ising system at different temperatures of size 100
are presented to the input layer. For the convenience of the RBM calculations, the original
values of the spins in state zi, +1 or −1, are rescaled to values of +1 or 0, respectively, using
si = 0.5(zi + 1).
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3. Simulation Results

Before beginning the analysis of training and classification, I present a simple example
to denote the problem of the RBM to generate new samples. This problem manifests
itself when the original distribution presents a bimodal distribution of the magnetizations
of spins.

3.1. Reconstruction under Bimodal Spins Distribution

Let us assume two fictitious configurations: A and B, as shown in Figure 2. Let us
define the magnetization of a configuration s as M = 1/N ∑N

i si. In Example 1, M = 0 for
both configurations; i.e., half of the spins are in −1 state and the rest are in +1 states. Conse-
quently, the magnetization distribution of the samples is conserved at zero, but, especially,
both configurations have marked concentration spins at −1 and +1 at different locations,
as can be seen in Example 1. In contrast, in Example 2, the one training configuration has
M = −0.8 (predominantly in the −1 state) and the other has M = 0.8 (predominantly in
the +1 state), a distinctive bimodal distribution of spin magnetization; however, the mean
of the magnetization distribution of the training data is 0.

E
xa

m
p
le

 1
E
xa

m
p
le

 2

config. A config. B Reconstructed 
sample

Figure 2. Two examples in which two RBMs are trained with only two configurations (A,B). The third
column shows a typical reconstruction achieved by the RBM. For both cases, the training configura-
tions have half spins at +1 and half at −1, i.e., M = 0. The reconstruction also has M = 0.5; however,
the physical arrangement of each spin’s orientations is incorrect.

As shown in Example 1, the reconstructed sample (using k = 20 iterations of Gibbs
samplings) results in a configuration that complies with the mean orientation of the spins
(M = 0). However, it reconstructs a sample that violates the spatial correlations between
the spins. In Example 2, the same thing happens, reconstructing a sample in which
also M = 0 but does not physically comply with a configuration predominantly with
spins at −1 or +1. This problem is not in itself a machine failure since Gibbs sampling
is essentially a stochastic procedure compliant with generating samples that satisfy the
training configurations on average.

These examples are only intended to show that although the RBM manages to generate
synthetic samples that comply with the above when observing the orientation of the spins,
they do not correctly reproduce the spatial distribution of the orientations; i.e., they are
configurations of the system that are physically not supported and fail to capture the large
clusters present in the examples.

In the next section, I show that even though the machine cannot generate physically
correct samples, it can still correctly store information on the temperature from which the
training samples were generated.
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3.2. Revealing RBM’s Representations of Spin Configurations

This section presents the training results of an RBM and analyzes its ability to gen-
erate Ising coherent samples. I then analyze the learned representations of the machine,
projecting the values of the hidden units into a 2D plane.

For the 2D Ising system with N = 100 spins, I trained an RBM at a single temperature at
T = 2.3 (near the critical temperature of Tc = 2.269) by using M = 2048 configurations gen-
erated from the MC sampling at that temperature. The number of hidden units is nH = 64.
The hyperparameters used are described in Section 2.2. Let us call this trained machine
RBMT=2.3 to denote that it is a restricted Boltzmann machine trained with configurations
at a temperature of T = 2.3.

It is interesting to evaluate the ability of the RBM to learn representations between
configurations of the same temperature at which the RBM was trained from other configu-
rations generated at other temperatures. This approach is different from what has been con-
ducted before, in which some kind of feedforward neural network is trained to determine
the temperature of a configuration [21]. The idea here is to analyze the ability of the RBM to
detect configurations at a given temperature. A total of 8192 different configurations were
presented to the RBMT=2.3, 1024 for each temperature set T = {2.0, 2.2, 2.3, 2.4, 2.5, 2.7};
two temperatures for the ordered phase, one near criticality (where magnetization con-
verges to zero) and three for the disordered phase. Then, the resulting activation prob-
abilities of the hidden units are projected on a 2D plane by using the first two principal
components. The activation probabilities of the hidden units are computed by using
Equation (A2) (see Appendix A).

Similar to what was found by [15], the variation along the first component is stronger
than in the second. However, projecting the probabilities of the hidden RBM units pro-
vides a different perspective than doing the same directly on the original configurations.
Figure 3 on the left shows that the configurations at T = 2.3 tend to lie in the plane with a
larger spread in both components than other samples at different temperatures. This de-
notes long fluctuations in the system’s dynamics and the effect of long-range spin ordering.
On the other hand, it is observed in the projection that the components are concentrated
at the opposite poles of the first component at low temperatures, and those at higher tem-
peratures are scattered in a thinner band along the first component. These characteristics
can help discriminate between configurations coming from the system at a near-critical
temperature and other ones.

Figure 3. (Left) Two principal components plot of the hidden values’ probabilities activation for
a sample of configurations at different temperatures. The total variance explained by these two
components is 87.5%. (Right) The empirical cumulative distribution function for the free energy
F(s). The gray dashed horizontal line denotes the P(F ≤ x) = 0.5. Note: the input vectors fed to the
RBMT=2.3 are samples different from those used for training.
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For a specific input configuration s, the log probability that the RBMT assigns to a
specific input vector s is equivalent to the likelihood that this configuration belongs to the
temperature T, which can be computed as

log p(s|T) = −F(s)− log ZT , (9)

where ZT is the partition function of the RBMT and F(s) is the free energy computed as

F(s) = −∑
j

bjsj − ∑
i

log(1 + exi ), (10)

where xi = ci + ∑j wijsj. The partition function ZT can be considered here as a constant so
that log p(s|T) is proportional to free energy.

The idea is to observe and compare the log likelihood distribution of p(s|T) via the free
energy (Equation (9)) for configurations at different temperatures over an RBM trained for a
specific temperature Ti. By calculating the distribution of F(s) over configurations at Ti and
other different temperatures, say Tj, i ̸= j, then one should expect that the log likelihood
of those configurations at Ti should be larger than those at a temperature Tj. In this way,
one can observe the machine’s discrimination potential to differentiate configurations at
different temperatures. This idea has been used to use RBMs as classifiers in other fields,
such as spectral classification [31].

Figure 3 on the right shows the cumulative distribution probability of the free energy
calculated over several configurations at different temperatures. Recall that the set of
parameters θ of the RBM is always the same and corresponds to the trained RBM at T = 2.3.
As expected, those input vectors coming from a temperature equal to that of the RBM tend
to have lower free energy than other configurations coming from a temperature T ̸= 2.3.
In fact, it can be seen from the samples used that there are configurations at T = 2.0 that
possess a slightly lower free energy than configurations at T = 2.3. This could be a source
of confusion in the ability of the machine to discriminate.

3.3. Sampling Configurations from the RBMT=2.3

As indicated in Section 2.2, the trained RBM can approximate the data distribution
with samples from v∼q through a p learned distribution. This approximation is conducted
via the generative model such that the distribution p remains a function of the machine
parameters θ. Once trained, the RBM is used as a generative model of p(θ) to generate
new configurations using Equations (A2) and (A3) (see Appendix A) through the block
Gibbs sampling procedure: from an initial random spins system configuration v0, p(h0|v0)
is computed, from which h0 is obtained. Then, p(v1|h0) is computed and the sample v1 is
obtained. We repeat this process of updating for visible and hidden units k times to obtain
a distribution q(θ).

For the purposes of this study, with k = 20 repetitions of Gibbs samplings (increasing
k does not change the results), it is possible to obtain a sample of configurations with
a distribution q similar to the original p used to train the RBM. Using this procedure, I
generated 2048 synthetic configurations.

For clarity in the comparison between the configurations sampled by MCMC and
generated by the RBM, the following observables are computed: First, ⟨si⟩ represents
the mean of the ith spin orientation of the lattice computed from the configurations sam-
pled by MC and generated by the RBM. Second, the pairwise products between spins,
⟨sisj⟩ = 1

N ∑∀i ̸=j sisj, are the average of the multiplications between each pair of spins using
all the sampled configurations. Third, the magnetization M = 1

N ∑N
i si is the average of

the states of each spin of a given configuration. Finally, the energy density of the system is
E = − 1

N ∑⟨ij⟩ sisj for a given configuration, with ⟨ij⟩ being the nearest neighbors per spin
for i and j.
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To compare the representations that the RBM sees in the hidden layer, Figure 4 shows
a scatterplot of the first two components of the hidden unit values of the MC samples and
the synthetic configurations.

c d ea b

Figure 4. (a) First two principal components of 2048 reconstructed samples via Gibbs samplings
using k = 10 steps with the RBMT=2.3 and 2048 MC samples at T = 2.3. The explained variance with
these two components was 90.3%. (b) Distribution of mean orientations of every spin of the lattice.
(c) Distribution of pairwise product means between spins. (d) Distribution of the magnetizations of
sample configurations of the Ising system. (e) Distribution of the system energies. Note: For all plots,
black represents data from reconstructed samples and red represents data from MC samples.

It is possible to observe from Figure 4a that the synthetic configurations (in black)
tend to be grouped in the same place, being under-represented in relation to the greater
heterogeneity of MC’s sample configurations (in red). The distribution of the magnetiza-
tions (Figure 4d in black) simulated by the RBM fails to capture the bimodality produced
by symmetry breaking in these two predominant states.

At this temperature, the system has configurations with both negative (in the figure
with M < 0.5) and positive (M > 0.5) magnetizations, while the reconstructions are all with
a magnetization close to ⟨M⟩ = 0.750. Notwithstanding the above, the RBM does a decent
job of recovering the average orientations of the spins ⟨si⟩ and pairwise products ⟨sisj⟩ in
Figure 4a and Figure 4b, respectively. This is expected because RBM training is essentially
based on maximizing the p(v, h) log likelihood, i.e., finding a distribution p(v) that models
the underlying distribution q(v) as indicated in Equation (5), which necessarily implies
achieving consistency between the first moment and second moment of the distribution
of q(v) and consequently also with the pairwise products ⟨sisj⟩. In Figure 4e, it is also
observed that the energy distribution of MC and synthetic configurations only agree on
the mean (at least they are very similar); however, both distributions differ in their shapes.
A similar situation occurs at T = 2.2 (see Appendix C.1), in which the mean orientation
of the spins is correctly recovered but the mean pairwise product clearly starts to differ,
revealing a problem with the synthetic configurations. At T = 3.0 (see Appendix C.2),
the RBM correctly recovers the observables and distributions.

A manifestation of the learning problem with bimodal distributions is also observed
in the error reconstruction of the configurations, particularly at low temperatures, which is
more severe. The difference in the evolution of these errors in the learning process of an
RBM with ordered and disordered phase configurations can be observed in Appendix B.

It would be important to note at this point that the RBM does not have the inability
to reproduce the statistics at different temperatures of the Ising system. The means of
observables, such as the mean orientation of the spins and the pairwise product between
spins, are quite similar between those of the data and those of the model. However,
particularly at very low temperatures, when the system predominantly has states on −1 or
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+1 spins, the distribution of the magnetizations simulated by the RBM fails to capture the
bimodality produced by symmetry breaking in these two predominant states.

3.4. Additional Training

The RBM does not entirely fail to reproduce specific statistics (the mean orientation
and pairwise spin products) about those coming from the Ising system, a matter that
other studies have shown that the RBM can perform quite well. What it fails to reproduce
correctly, particularly at low temperatures, are the system configurations, in which at
temperatures below the critical temperature of the system, the spins are highly correlated
with large clusters with the same polarization. Specifically, it is observed that under these
conditions, the magnetization M and the system’s energy do not agree with the real ones.
The RBM does not seem to capture the physical connections between the spins in the 2D
Ising lattice. A situation similar to this one has also been reported by Azizi and Pleimling
(2021) [32].

Given the clustered nature of the distribution of Ising-system configurations at low
temperatures, it is possible that the Gibbs sampling process to estimate the negative part
of the log-likelihood gradient during training (Equation (7)) fails to reach an equilibrium
state; consequently, the RBM samples out-of-equilibrium configurations [33], resulting
in biased configurations. To analyze this issue, additional training was carried out with
longer MCMC steps and also using Persistent Contrastive Divergence (PCD) [34]. PCD
can be considered as an improvement over contrastive divergence (CD), in which the final
configurations of each Markov chain are used as a starting point in the next chain. Decelle
and coauthors [33] showed that the CD method is often poor because the sampling of the
Markov chains in equilibrium differs from the training dataset’s distribution. In this sense,
PCD could provide better results.

I chose to conduct the simulations at a temperature T = 2.3 close to the critical
temperature. At this temperature, we already have evidence of symmetry breaking, where
the system tends to form large clusters of neighboring spins with the same orientation.
At lower temperatures, this phenomenon is more exacerbated, and the set of spins of the
system is represented by a majority in one of the two possible equilibrium states, giving rise
to magnetization distributions with a clear bimodality (M ≈ −1 and M ≈ +1). Figure 5
shows the degree of fit achieved by the RBM in reproducing synthetic samples by using
the squared difference between the mean orientation of the spins of the (test) data and
the samples generated by the RBM ⟨si⟩ and likewise for the pairwise products between
spins ⟨sisj⟩.

First, the differences between the test data and those generated by the machine do not
decrease as we increase the number of MCMC steps. In fact, for the pairwise products, it
seems to increase, being minimal at k = 10,000. It is worth noting that the averages of the
orientation of the reproduced spins fit reasonably well; however, looking at the distribution
of the magnetizations of the real and synthetic spins (right-lower part of the Figure, also
similar to what happens in Figure 4d), we see that the machine-generated configurations are
oblivious to the real ones. Second, this situation does not improve when using PCD. Either
way, the dominance of metastable states or clustered data causes the mixing time to increase
rapidly during training [35]. This could explain why the RBM-generating configurations
do not represent the natural Ising system.

Several other simulations were carried out to evaluate the error of the configurations
generated by the RBM at different temperatures and with different levels of randomness or
noise in the initial configurations for synthetic-sample generation. Given an s configuration
of the Ising system at temperature T, let us define the parameter f , which is simply the ratio
between the number of spin orientations from the MCMC data and the total number of spins
of the system (in our case it is 100). So, for example, we can generate a new configuration
with f = 0.5, which means that half of the spins are random and the other half are the
actual orientations of s. If f = 0, it is simply a completely random configuration. For a
given temperature, we used the RBM to generate synthetic configurations, starting with
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configurations with different noise values ( f ), and then compared the error with the actual
configurations. The error was evaluated as the squared difference of the magnetization of
the synthetic and real samples and the squared difference of the pairwise products between
spins ⟨sisj⟩.

Data Model Data Model

Figure 5. Comparison of real Ising-system samples with synthetic samples generated by RBMs with
different numbers of MCMC Gibbs samplings k, using contrastive divergence (CD) and Persistent
Contrastive Divergence (PCD). The plots in the lower part of the figure show an example of the distri-
butions of pairwise connections between spins and mean orientations for Ising-system configurations
and RBM-generated configurations. A mini-representation of the Ising system, coloring the spins in
red-yellow according to their orientation, is found in the Inset of the magnetization distributions to
denote the difference between a real system configuration and a synthetic one. All training has been
carried out with configurations at T = 2.3. The reported boxplots correspond to 15 different trainings.

In Figure 6, we can observe the general results of the simulations. First, the error
increases as we increase the level of randomness of the configurations to start the generation
process. For example, when we leave 75% of the orientations untouched, the error in the
magnetization and pairwise products is close to zero. However, the real test for the RBM
is when f = 0; i.e., we start the process from totally random configurations. In this case,
the error is slightly larger, although it is worth noting that this error does not seem to
decrease by increasing the number of Gibbs samplings in the training process or using
PCD, as discussed previously (see Figure 5). Second, for temperature T = 3, the errors
are very close to zero, but as we decrease the temperature, the average error increases
slightly, but with a significant increase in the variance. Here, it is worth mentioning
that the average magnetization and pairwise error at f = 0 and T = 2.0 are 15% and
1.7%, respectively. Hence, the main problem lies in the bimodality of the distribution
of configurations at temperatures below the critical temperature, which becomes more
pronounced at lower temperatures.
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Figure 6. For each temperature T = {2.0, 2.2, 2.3, 3.0}, 2048 MCMC-sampled Ising-system config-
urations (see Section 2.1) not used in RBM learning were taken. For each of these configurations,
the noise level f is varied.

A more detailed comparison can be seen in Figure 7. The errors are quite low at
higher temperatures (here at T = 3.0) compared to lower temperatures, even with noise
parameters f close to one. For example, at lower temperatures (here at T = 2.0 and T = 2.2),
the RBM has more difficulty recovering the original configurations. From the physical
point of view, as the temperature is low, the system is predominantly in two equilibrium
states: one where almost all the spins are at +1, and another where almost all are oriented
at −1. This condition occurs predominantly at temperatures below the critical temperature,
in which there is an increase in the error in the reconstruction of the configurations. Note
that, as expected, with low noise values, the RBM will recover the real configurations
virtually perfectly.

T=
2.
2

T=
2.
0

T=
2.
3

T=
3.
0

Original Original

Original Original

Figure 7. To construct these boxplots, 2048 configurations of the Ising system sampled by MCMC
(see Section 2.1) were used for the indicated temperatures. For each of these configurations,
a randomization of the orientation of the spins was applied according to the value of the f parameter.
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The resulting configurations are then used as a starting point for generating synthetic samples,
which are compared with the original ones to calculate the error. An example of a real configuration
and its respective recoveries with different noise levels is shown on the right side of the magne-
tization error plots to obtain a visual idea of the real and synthetic Ising-system configurations.
The red arrow indicates the average error obtained when starting the generation process with totally
randomized spins.

3.5. Training a Critical Spin Configuration’s Detector

Although the RBM is among the types of machines trained under unsupervised
learning, its feature representation can help discriminate system configurations that belong
to a particular condition. In this case, to verify the ability of the representation achieved by
the RBM with the Ising system, I train a multilayer perceptron (MLP) as a binary classifier
whose input information is the representation of the RBM in the hidden layer, say p(h|s),
and the output y of the neural model is a classification indicating whether the configuration
s belongs to the system at a temperature T.

For MLP training and testing purposes, I generated ten different sample sets of MC
configurations of an Ising system as described in Section 2.1. Each set has 16,384 different
configurations. About 80% of them are used for training, and the remaining 20% are used
for testing. For each set, I generated a class variable y indicating 1 if the probability vector
p(h|s) belongs to a configuration s at a temperature of T = 2.3 or 0 if it belongs to a
configuration of any other different temperature. Likewise, to ensure a balanced sampling
of classes, for each set, half of the samples correspond to configurations at T = 2.3, and the
other half correspond to different temperatures of 2.0, 2.2, 2.4, 2.5, 2.7, 3.0 and 3.4. Each
training set was used to train 10 different MLPs independently. All MLPs have an input
layer with n = 64 units, an intermediate layer with two neurons with a RELU activation
function and an output neuron with a sigmoid activation function. Initial random weights
for the MLP training were set to 0.5. The parameter for weight decay was set to 0.004,
and the maximum number of iterations was set to 200.

Table 1 shows the performance of the MLP classifiers. These results appear to be
respectable, considering the overlap between the classes and the nature of the problem we
are dealing with. This indicates that the hidden layer of the RBM carries enough system
information to discriminate whether the configurations in the input layer belong to valid
configurations at the system temperature. This is attractive because if we are interested only
in some particular system temperature (in this case, the near-critical temperature), training
a series of other RBMs at different temperatures is unnecessary to discriminate between
other system states. In Appendix D, I show the results of repeating precisely the same MLP
training exercise but using a different number of hidden RBM units. In short, it can be
seen that there is a marginal impact on the classifier’s ability to discriminate configurations.
The higher the number of hidden units, the slightly better the performance of the classifier.

Table 1. Performance measures for the MLP classifier achieved in train and test sets using hidden
units of RBMT=2.3: area under the curve (AUC), F-score (F), accuracy (ACC), precision (PREC),
sensitivity (TPR) and specificity (TNR). Values are averages over ten different MLP models with the
same architecture. Values in parentheses are standard deviations.

Sample AUC F ACC PREC TPR TNR

Train 0.924 0.886 0.878 0.844 0.937 0.819
(0.034) (0.035) (0.045) (0.061) (0.036) (0.098)

Test 0.914 0.867 0.859 0.832 0.909 0.809
(0.033) (0.032) (0.041) (0.058) (0.050) (0.096)

To obtain an idea of how the MLP discriminates near-critical temperature configura-
tions from others, Figure 8a–c shows a representation of the hidden units colored according
to the class they belong to; next to them, the hidden units are the same, but they are colored
according to the probability that the MLP assigns configuration at T = 2.3. In this case,
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different samples were taken from configurations at temperature T = 2.3 (magenta) and
the same number of samples from configurations with T ̸= 2.3 (in pink). Although a high
degree of overlap between the two sets of configurations can be observed, the MLP (three
different ones) assign high probabilities to values of the hidden units of configurations at
T = 2.3 and low probabilities to those that are not.

a b

c d

Figure 8. (a–c) Three exercises of configuration detection at temperature T = 2.3. The figures show
the first two components of the hidden values calculated with RBMT=2.3 in two versions: The first is
colored according to the temperature of the configurations; in magenta are configurations at T = 2.3
and in pink are configurations at T ̸= 2.3. The second is colored according to the probability that
y = 1 is what the MLP classifier assigns to each hidden value. (d) The first two principal components
of configurations at T = 2.3; in magenta color configurations reconstructed with Gibbs samplings
using k = 10 iterations, in pink color configurations from Ising model samples. On the right is
the same, but they are colored by probability that the hidden units come from configurations at
T = 2.3.

Additionally, the same idea is shown in Figure 8d but with samples of configurations
at T = 2.3 and others that the RBM generated. When feeding the hidden unit values
of these configurations to the MLP, the MLP successfully recognizes the configurations
at T = 2.3; however, the reconstructions achieved with the same RBM are classified as
configurations other than T = 2.3, when in fact, they should not be. This again highlights
the problems of the RBM in generating appropriate configurations.

As a complement, in Appendix C, I repeat the same exercise for two other system
temperatures—one at a disordered phase temperature at T = 3.0 and one at an ordered
phase at T = 2.2. In the first case, it is possible to observe that the results of generating
configurations using RBMT=3.0 are much better than those when using RBMT=2.3 and
also in the second case with RBMT=2.2. This is not surprising: with disordered or high-
temperature configurations, there are no bimodal distributions, while in the opposite case,
as we have already indicated above, with bimodal distributions, the RBM has difficulties
generating correct configurations. Despite this problem, the RBMs still encode in the hidden
units the information necessary to identify whether or not the configurations belong to the
RBM temperature when we use the hidden units as inputs to train MLP classifiers.

Previous research [15,36] has shown that other much simpler unsupervised learning
techniques, such as principal component analysis (PCA), can successfully recognize the
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phase changes in an Ising system. Thus, it can be assumed that it could be a good competitor
to RBMs for detecting the temperature of configurations. Additional temperature-detection
models of configurations of an Ising system have been added, but only using the PCA
components applied directly on training setups. This allows for a comparison of both PCA
and RBM performance (under the same MLP architectures described before) in identifying
samples of different temperatures.

In Figure 9, it can be seen that PCA is a good competitor to RBMs for detecting tem-
perature, although RBMs perform better than PCA in detecting temperatures below the
critical temperature. Above it, the performance of both alternatives is similar. At tem-
peratures above the critical temperature, the configurations tend to be disordered with a
magnetization level close to zero. In contrast, configurations with metastates begin to exist
below the critical temperature, so the PCA has a more challenging time discriminating from
other configurations at higher temperatures. The PCA finds the directions of the greatest
variance in the dataset and plots each configuration in its coordinates along these directions.
In contrast, the RBM provides a nonlinear generalization of the PCA that transforms the
high dimensionality of the system configurations into a low-dimensional code, turning the
hidden layer into a feature detector of higher-order correlations of the individual activity
of the spins. In this sense, it seems to us that the RBM is more flexible than a PCA in that it
can transform the input into complex nonlinear representations.
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Figure 9. Different performance measurements of temperature detectors trained at different tempera-
tures using MLPs with the same architecture: 64 units in the input layer, an intermediate layer with
two units with RELU activation function and an output neuron with sigmoid activation function.
The input-layer values differ: for PCA, they are the first 64 components of the training-input configu-
rations; for the RBM, they are the probability vectors p(h|s). I train ten different models in each case
and report the averages of the performance measures. The values of the Figure represent results over
the test datasets.

4. Discussion and Conclusions

This work has shown that an RBM trained with configurations of a 2D Ising system at a
given temperature can store enough information in the network weights to be used later as
a configuration discriminator. The RBM converts the input information into a transformed
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vector, a simplified dimensionality representation of a raw system state. This vector can
feed a simple MLP (previously trained) to recognize a system state at a specific temperature.

Why not simply use a neural network with enough hidden layers and train it as a
classifier? Unlike a conventional feedforward neural network, the RBM is trained through
an unsupervised process in which no information is presented to the class to which the
configurations belong. Thus, in its original conception, the RBM is a model that maps the
input data distribution into an alternative (ideally simplified) representation. When the
RBM is trained with data for a specific temperature, say TRBM, this representation may be
sufficient to subsequently discriminate between Ising configurations at that temperature
and those not. In other words, the RBM, in addition to informing us about how the
configurations are distributed in a latent space simpler than the original space to which the
system configurations belong, contains enough information to use this representation to
train a classifier. Simple unsupervised learning techniques, such as principal component
analysis (PCA) and autoencoders applied directly on the raw spin configurations of a typical
Ising lattice, can identify the phase transition in the system [15,23]. The low-dimensional
representations of the original data keep relevant phase information and, consequently, can
be used to identify the states of interest in which the system is found.

This capability of the RBM could be helpful in frustrated systems with a wide range
of ground states and roughness of the energy landscape. In these cases, there is no pos-
sibility of finding analytical solutions in advance in which one knows that under certain
temperature conditions, the system could undergo a phase transition. Also, in situations
where there are no singular phase transitions with abrupt changes and broken symmetry
but there is a crossover region, the RBM could help to identify them. It has been shown
that this is possible [37] but by using a Variational Autoencoder [38], which also achieves a
dimensional data reduction in unsupervised learning. For example, with just data on the
configurations of a system, one could train an RBM that takes “special” configurations and,
consequently, use that RBM to detect configurations that fall into that “special” domain.
To be more specific, let us think of the financial system, where we collect all the states
(previously represented in a binary system) and train an RBM only on conditions of that
system when it is in crisis (high volatility, for example).

Although the RBM seems useful as an alternative to creating a latent representation
of an Ising system and a discriminator of configurations between different temperatures,
the same cannot be said for a generator of new configurations, particularly in the ordered
phase. The Ising model is characterized by a symmetry break at temperatures below the
critical temperature, in which the system tends to polarize in one of the two magnetization
states (+1 or −1). Under the same temperature, the distribution of the system configurations
will be bimodal. This work shows that under these conditions, the RBM can capture “on
average" the magnetization, correlation, energy and other measurements, but this does
not imply that it can adequately reproduce system configurations. When examining the
configurations generated by the RBM (at temperatures T ≤ Tcrit), they fail to capture the
characteristic polarization of the Ising system, instead reproducing average configurations.
This does not occur at temperatures T > Tcrit since there is no correlation between states
in the disordered phase, and the distribution of the states tends to be offset around a
magnetization around zero. This problem was initially detected by [32] by training RBMs
at different temperatures but keeping the magnetization fixed at zero (M0 = 0).

The RBM is not a good generator of Ising-system configurations at temperatures below
the critical temperature due to the dominance of metastable states; consequently, the chains
fail to mix in a reasonable amount of time [35]. This study did not solve this problem, but it
may be addressed in future research by considering other types of sampling techniques
that deal with data with multimodal distributions.

An actual solution to this problem, according to [39], is to predefine a concentration
at a magnetization x0. The previously trained RBM generates a sample. If it has mag-
netization x0, it is accepted. If the magnetization is less than x0, the number of spins in
state −1 must be reduced, so a node k in state −1 is randomly selected and rebinarized
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according to Equation (A3). The process is repeated until the desired magnetization is
achieved. The same idea applies when the sample has a magnetization greater than de-
sired. The disadvantage of this solution is that in systems with a large number of spins,
the sample-generation process can take a long time; however, it is a solution so far that
manages to generate synthetic samples consistent with the actual system. Another alterna-
tive is to extend the RBM with local and shared connections to a convolutional layer [40] so
that the machine can capture and preserve the spatial structure of the configurations.

I would like to point out that our study does not show the ability of the RBM to
reproduce physical observables of the RBM, which is shown to be possible in several papers
(as, for example, in [14,41]), but rather highlights the difficulty of correctly reproducing
the bimodality observed in the Ising-model configurations at low temperatures. We have
observed that once the RBM has been trained with low-temperature configurations when
reproducing synthetic configurations, the average observables may agree with those mea-
sured from the data. However, when looking at the individual configurations, we see that
they are not representative of those corresponding to the configuration of that temperature.
We can note that the distribution of the magnetizations of the synthetic configurations fails
to reproduce the bimodality of the distribution of original configurations adequately. Note
that sampling feeding to the input layer contains configurations with spins predominantly
with an orientation of +1 or −1 simultaneously. However, if we train considering only
configurations with predominantly +1 (or −1) spins, the RBM can reproduce physically
correct samples with excellent coherence of the magnetization distribution. An alternative
way to overcome this problem is to alter the input configurations by imposing the constraint
of leaving the predominant orientations at +1 or −1 for all the training configurations.
In other words, making s become −s. This arrangement, while not altering the physical dis-
tribution of the orientations, destroys the original bimodality of the probability distribution
and changes the distribution of the energies of the system as well because E(s) ̸= E(−s).
Again, an additional constraint can be imposed on the RBM such that E(s) = E(−s) by
making the visible and hidden layer biases vanish (suggested by Fernandez-de-Cossio-
Diaz et al. [42]) and using the centering trick (Melchior, et al., 2016) [43]. Recently, Béreux
and colleagues [44] noted the problem of the RBMs to reproduce synthetic samples in the
presence of highly clustered distributions by implementing a Tethered Monte Carlo (TMC)
method, a form of biased sampling to approximate the negative part of the log-likelihood
gradient. This line of research could be highly relevant to expanding the data domain for
unsupervised learning with energy-based models.

Although in the classification problem, the RBM performs quite well, new quantum
learning models can help overcome some difficulties in generating synthetic samples that
are representative of the physical system. In this sense, quantum RBMs can offer new
development perspectives [45,46].

In summary, I envision that RBMs have a high potential for applicability in highly
complex systems, particularly in retaining essential information in the latent parameters.
The latent representation of the states into the RBM can be handy for detecting states or
phases of the system, without necessarily possessing a priori knowledge of the interactions
among units or the energy-functional form.
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Abbreviations
The following abbreviations are used in this manuscript:

CD Contrastive divergence
PCD Persistent Contrastive Divergence
RBM Restricted Boltzmann machine
MC Monte Carlo
MCMC Monte Carlo Markov chain
MLP Multilayer perceptron

Appendix A

Recall that Equation (5) indicates the probability of finding the system in a certain
configuration s, which is described by the Boltzmann distribution [27]. The restricted
condition of the Boltzmann machine means that there are no connections between neurons
in the hidden layer nor between neurons in the input layer, so the hidden units are mutually
independent given the value of the visible units. Likewise, the visible units are mutually
independent of the hidden units. Therefore, the conditional probabilities for the visible and
hidden units, respectively, can be written as

p(s|h) =
m

∏
i=1

p(si|h) p(h|s) =
n

∏
j=1

p(hj|s) (A1)

where

p(hi|s) = σ

(
cj +

n

∑
i=1

wijsi

)
(A2)

p(sj|h) = σ

(
bi +

m

∑
j=1

wijhj

)
(A3)

and σ = 1/(1 + exp(−x)) denotes the sigmoid function.

Appendix B

As indicated in Section 2.2, the learning consists of solving the optimization problem,
where the function to minimize is the KL divergence between the probability model p(s)
and the objective probability q(s) (see Equation (7)), where s is samples of the configurations
drawn with Markov chain MC sampling at some temperature T from an Ising system. One
way to monitor the learning progress is to compute the reconstructions [26] of the batches
entering the input layer of both the mean pairwise products between spins ⟨sisj⟩ and the
mean orientations ⟨si⟩. Operationally, I take the natural logarithm of the square of the
difference between the visible units in the input layer (data) and the reconstructions (model):

E1 = ∑
i ̸=j

ln
[
⟨sisj⟩data − ⟨sisj⟩model

]2

E2 = ∑
∀i

ln
[
⟨si⟩data − ⟨si⟩model

]2
(A4)

where E1 and E2 represent the similarity measure between the mean orientations and
pairwise products of the Ising-system sample and the reconstruction achieved by the
machine, respectively.

Also, it is possible to observe the evolution of the learning curves by using the log
likelihood (see Equation (3)); however, this function becomes analytically intractable. To ob-
tain an estimate of this quantity (a pseudolikelihood), the first sum of the log-likelihood
gradient can be used to observe whether there is convergence in the process. In this case,
one can use the probabilities p(hi|vk), i = 1, . . . , N, in the Gibbs sampling algorithm for the
contrastive divergence [28].



Entropy 2023, 25, 1649 19 of 25

Figure A1 shows the reconstruction errors of the average orientation of the spins E1
and of the pairwise connections between spins E2 at different RBM-training temperatures.
As can be seen, in general, the pseudolikelihood values increase at a decreasing rate,
indicating the finding of an optimum in the learning process. In almost all cases, there is a
rapid and consistent decrease in the reconstruction errors at the beginning and then a slower
decrease. However, this is different for RBM training with Ising-system configurations in
the ordered phase, i.e., when there is a clear bimodality in the magnetization of the spins.
This can be explained by the fact that the RBM finds an optimal solution for the θ parameters,
equivalent to an intermediate solution between the distribution of configurations with
negative and positive magnetization. This explains why the spin-orientation reconstruction
error E1 drops at the beginning and starts to increase until it stabilizes.

T=2.0

T=2.2

T=2.3

T=2.5

T=3.0

Figure A1. Examples of reconstruction errors through the learning process of RBM, E1, E2 and
pseudolikelihood for different temperatures. All training using same hyperparameters: 200 iterations,
nH = 64 hidden units, batch size of 128, momentum = 0.8, k = 20 steps of Gibbs samplings and initial
learning rate of 0.0001 with decay of 0.1.

Appendix C

Appendix C.1

In this appendix, I show the same exercise developed in Section 3.3 but by using an
RBM trained at a temperature of T = 2.2, corresponding to the system’s configurations
in an ordered phase. I name this machine RBMT=2.2. As can be seen in Figure 1, at this
temperature below the critical temperature Tc, the system tends to be in states preferentially
with magnetizations very close to +1 or −1, corresponding to minimum energy, leaving
large areas dominated in one of these two states.

As seen in Figure A2a, and similar to what happened with T = 2.3, the RBM-generated
configurations tend to be an average of the set of configurations of the MC-generated
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samples. Likewise, the average orientation of the spins ⟨si⟩ of the MC and RBM-generated
samples tend to agree (see Figure A2b); however, it is clear that the magnetization of
the synthetic configurations does not have the same characteristics as those of MC (see
Figure A2d). The correspondence between the pairwise connections ⟨sisj⟩ is slightly biased,
indicating that the pairwise connections of the synthetic samples are undervalued relative
to the MC samples.

a b c d e

Figure A2. (a) First two principal components of 2048 reconstructed samples via Gibbs samplings
using k = 10 steps with RBMT=2.2 and 2048 MC samples at T = 2.2. The explained variance with
these two components was 73.9%. (b) Distribution of mean orientations of every spin of the lattice.
(c) Distribution of pairwise product means between spins. (d) Distribution of the magnetizations of
sample configurations of the Ising system. (e) Distribution of the system energies. Note: For all plots,
black represents data from reconstructed samples and red represents data from MC samples.

Following the same procedure described in Section 3.5, the trained RBMT=2.2 is used to
obtain values of hidden units that will be input to an MLP trained to detect configurations
at T = 2.2. The MLP parameters are the same for comparison purposes; 10 samples of
independent configurations are generated by MC at different temperatures. Table A1 shows
the classifier’s performance in recognizing configurations at T = 2.2 for the training and
test sets. All measurements are above 0.8 or very close to this value, suggesting that the
RBM does a good job retaining discriminatory information between configurations in the
ordered phase, similar to what occurs at the critical temperature.

Table A1. Performance measures for the MLP classifier achieved in training and test sets using
hidden units of RBMT=2.2: area under the curve (AUC), F-score (F), accuracy (ACC), precision
(PREC), sensitivity (TPR) and specificity (TNR). Values are averages over ten different MLP models
with the same architecture. Values in parentheses are standard deviations.

Sample AUC F ACC PREC TPR TNR

Train 0.877 0.812 0.801 0.773 0.858 0.744
(0.017) (0.018) (0.022) (0.034) (0.047) (0.067)

Test 0.872 0.805 0.794 0.768 0.849 0.739
(0.016) (0.016) (0.021) (0.039) (0.048) (0.069)

Figure A3a–c is equivalent to Figure 8, providing a visual representation of the MLP’s
ability to discriminate between system configurations that are at T = 2.2 from those at
T ̸= 2.2. In Figure A3d, it is possible to observe that the configurations generated by
RBMT=2.2 acquire a low probability of being classified as configurations at T = 2.2 when in
fact they should have a high probability, indicating the inability of the RBM to generate
appropriate system configurations.
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Figure A3. (a–c) Three exercises of configuration detection at temperature T = 2.2. The figures
show the first two components of the hidden values calculated with RBMT=2.2 in two versions: The
first is colored according to the temperature of the configurations; in magenta are configurations
with T = 2.2 and in pink are configurations at T ̸= 2.2. The second is colored according to the
probability that y = 1 is what the MLP classifier assigns to each hidden value. (d) The first two
principal components of configurations at T = 2.2; in magenta color configurations reconstructed
with Gibbs samplings using k = 10 iterations, in pink color configurations from Ising model samples.
On the right, the configurations are the same, but they are colored by probability that the hidden
units come from configurations at T = 2.2.

Appendix C.2

As in the previous section of this Appendix, the same exercise is repeated, but this
time, I am training an RBM with only T = 3.0 configurations, called RBMT=3.0. These
configurations correspond to a disordered phase characterized by very low or no spatial
correlations, leaving no place to form blocks or regions with the same orientation. The mean
magnetization is close to zero.

In Figure A4, unlike the previous case, it is unsurprising that the configurations are
represented in the plane as a point cloud centered at zero. Similar to other temperatures,
the generation of synthetic samples, while performing better, has lower variability than the
MC samples. This is also observed in the distribution of the mean orientations ⟨si⟩ and the
average magnetizations ⟨M⟩ of the configurations, where less variance is observed. Despite
the above, the agreement regarding the means of the MC samples and those generated by
the machine is satisfactory (see the means of Figure A4a–d).

When an MLP is trained (with the same procedure and architecture described in
Section 3.5) to detect configurations at T = 3.0 using the trained RBMT=3.0, we can observe
that the performance is remarkable (see Table A2). All measurements are above 0.9 or very
close to it. This performance is even better than in the cases for detecting configurations in
the ordered phase. This is interesting because it would indicate that, in general, the RBM has
the necessary information to correctly discriminate or identify a classifier configuration at a
temperature equal to that of the RBM, doing slightly better when dealing with disordered
phase temperatures.

Figure A5a–c shows a visual representation of the hidden units in their first two
components and colored according to the probability that the MLP assigns them to belong
or not to a configuration at T = 3.0. Consistency between the probabilities and the class is
observed. Configurations at T = 3.0 have a high probability, and configurations at T ̸= 3.0
are assigned a low probability. On the other hand, samples artificially generated by the
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RBM fail to be recognized as samples at T = 3.0 (Figure A5d), indicating that the synthetic
samples do not have same characteristics of natural configurations.

a b c d e

Figure A4. (a) First two principal components of 2048 reconstructed samples via Gibbs samplings
with k = 10 with the RBMT=3.0 and 2048 MC samples at T = 3.0. The explained variance with
these two components was 21.8%. (b) Distribution of mean orientations of every spin of the lattice.
(c) Distribution of pairwise product means between spins. (d) Distribution of the magnetizations of
sample configurations of the Ising system. (e) Distribution of the systems energies. Note: for all plots,
black represents data from reconstructed samples and red represents data from MC samples.

a b

c d

Figure A5. (a–c) Three exercises of configuration detection at temperature T = 3.0. The figures
show the first two components of the hidden values calculated with RBMT=3.0 in two versions:
The first is colored according to the temperature of the configurations; in magenta are configurations
at T = 3.0 and in pink are configurations at T ̸= 3.0. The second is colored according to the
probability that y = 1 is what the MLP classifier assigns to each hidden value. (d) The first two
principal components of configurations at T = 3.0; in magenta color configurations reconstructed
with Gibbs samplings using k = 10 iterations, in pink color configurations from Ising model samples.
On the right, the configurations are the same but are colored by probability that the hidden units
come from configurations at T = 3.0. All computations are performed by using test samples.
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Table A2. Performance measures for the MLP classifier achieved with training and test sets using
hidden units of RBMT=3.0: area under the curve (AUC), F-score (F), accuracy (ACC), precision (PREC),
sensitivity (TPR) and specificity (TNR). Values are averages over ten different MLP models with the
same architecture. Values in parentheses are standard deviations.

Sample AUC F ACC PREC TPR TNR

Train 0.957 0.919 0.916 0.889 0.950 0.881
(0.018) (0.017) (0.018) (0.016) (0.023) (0.019)

Test 0.951 0.907 0.904 0.877 0.939 0.869
(0.009) (0.017) (0.018) (0.019) (0.026) (0.023)

Appendix D

A larger number of nH neurons in the hidden layer of the RBM allows the neural
network to capture a higher level of complexity in the relationships between the nonlinear
dependencies that may exist in the Ising-lattice spins. On the other hand, if the number is
too low, we may limit the ability to learn such relationships by having too few latent units
to capture too many complex interrelationships.

In order to see if there is an effect on the predictive ability of the RBM to discriminate
configurations at different temperatures, two RBMs were trained with different numbers of
neurons in the hidden layer, one with nH = 160, 100 and with nH = 32. Then, each of the
RBMs are used to train MLPs. The training of the RBM and MLPs are carried out in the
same way described in Sections 2.2 and 3.5, respectively.

The performance indicators are shown in Tables A3–A5.

Table A3. Performance measures for the MLP classifier achieved with training and test sets using
hidden units of RBMT=2.3 with nH = 160 hidden units: area under the curve (AUC), F-score (F),
accuracy (ACC), precision (PREC), sensitivity (TPR) and specificity (TNR). Values are averages over
ten different MLP models with the same architecture. Values in parentheses are standard deviations.

Sample AUC F ACC PREC TPR TNR

Train 0.981 0.957 0.956 0.951 0.965 0.947
(0.044) (0.043) (0.044) (0.057) (0.056) (0.068)

Test 0.976 0.928 0.928 0.930 0.932 0.925
(0.023) (0.036) (0.036) (0.055) (0.064) (0.068)

Table A4. Performance measures for the MLP classifier achieved with training and test sets using
hidden units of RBMT=2.3 with nH = 100 hidden units: area under the curve (AUC), F-score (F),
accuracy (ACC), precision (PREC), sensitivity (TPR) and specificity (TNR). Values are averages over
ten different MLP models with the same architecture. Values in parentheses are standard deviations.

Sample AUC F ACC PREC TPR TNR

Train 0.971 0.938 0.935 0.911 0.967 0.903
(0.038) (0.034) (0.038) (0.051) (0.024) (0.064)

Test 0.965 0.923 0.920 0.896 0.953 0.886
(0.032) (0.028) (0.032) (0.048) (0.027) (0.063)

Table A5. Performance measures for the MLP classifier achieved in training and test sets using
hidden units of RBMT=2.3 with nH = 32 hidden units: area under the curve (AUC), F-score (F),
accuracy (ACC), precision (PREC), sensitivity (TPR) and specificity (TNR). Values are averages over
ten different MLP models with the same architecture. Values in parentheses are standard deviations.

Sample AUC F ACC PREC TPR TNR

Train 0.882 0.827 0.815 0.779 0.885 0.745
(0.018) (0.015) (0.022) (0.035) (0.027) (0.061)

Test 0.873 0.816 0.804 0.773 0.869 0.739
(0.021) (0.014) (0.021) (0.043) (0.048) (0.078)
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In all the classifier performance measures, there is an improvement when the RBM
has more hidden units. With nH = 100, almost all indicators exceed the 90% level of
performance, while with nH = 32, although equally acceptable, they are almost all above
80%. Comparing the results with those in Table 1, we also see some performance gain
in having 100 hidden neurons instead of 64. However, the performance gain achieved
by increasing to nH = 160 hidden units is marginal with respect to the 100 neurons.
Considering the cost of increasing the number of hidden units (more training time) in
models with a much larger number of spins than in this study, this parameter should be
selected with greater caution. These results reinforce the idea that the RBM contains relevant
information in the synaptic weights to determine whether or not an input configuration
comes from the temperature of the RBM.
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